中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (11): 1953-1963 DOI: 10.7536/PC200856 Previous Articles   Next Articles

• Review •

Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly

Yena Feng1,2, Shuhe Liu2, Shubo Zhang2, Tong Xue2, Honglin Zhuang2, Anchao Feng1,2()   

  1. 1 Beijing Key Laboratory of Preparation and Processing of New Polymer Materials, Beijing University of Chemical Technology,Beijing 100029, China
    2 Center of Advanced Elastomer Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology,Beijing 100029, China
  • Received: Revised: Online: Published:
  • Contact: Anchao Feng
  • Supported by:
    National Natural Science Foundation of China(21704001); SINOPEC(H2019485)
Richhtml ( 49 ) PDF ( 383 ) Cited
Export

EndNote

Ris

BibTeX

Nano-silica(SiO2) particles are widely used in the preparation of composite materials due to their high hardness, high specific surface area, high stability and reasonable price. The obtained SiO2/polymer composite materials generally have excellent mechanical properties, good thermal stability, enhanced optical and electrical properties. In recent years, with the development of polymerization-induced self-assembly(PISA), scientists have developed a variety of simple methods for preparing polymeric nanoparticles with different morphologies based on PISA, which provides a new way to prepare SiO2/polymer composites. Although there are many related reviews of SiO2/polymer composites, while there is no review on the preparation of nanocomposites based on PISA. Thus we investigated the relevant research in the past ten years on the preparation of SiO2/polymer composite materials based on PISA. According to the different interaction between SiO2 and polymer and the compound mechanism, the preparation of SiO2/polymer composite materials was innovatively divided into physical encapsulation method, chemical grafting method, supramolecular interaction method and in-situ growth method. This review focuses on the synthesis methods, main properties and applications of composite materials, while analyzes the advantages and disadvantages of various composite methods and makes prospects for the future development of preparation methods. It is hoped to provide a clearer context and richer information for scientific researchers in related fields.

Contents

1 Introduction

2 Physical encapsulation

3 Chemical grafting

3.1 Grafting to

3.2 Grafting from

4 Supramolecular interaction

4.1 Hydrogen bond interaction

4.2 Electrostatic interaction

5 In-situ growth

6 Conclusions and outlooks

Fig. 1 One-pot preparation of composite polymer electrolyte[10]
Fig. 2 Photo-initiated preparation of polymer assemblies[11]
Fig. 3 Copolymer vesicles(1a), vesicles encapsulating SiO2 nanoparticles(1b), pure SiO2 nanoparticles(1c), TEM images after cooling treatment at different temperature(2a~d)[13]
Fig. 4 Schematic diagram(a), TEM images(b), AFM images and corresponding water contact angle(c) of PTFEMA/SiO2 composite latex[20]
Fig. 5 Schematic diagram of SiO2 grafted polymer composite vesicles[26]
Fig. 6 Change of polymer morphology on the surface of SiO2 nanoparticles[28]
Fig. 7 Schematic and electron micrograph of multi-pod SiO2/polymer composite latex particles[35]
Fig. 8 (a,b) TEM and FESEM images of SiO2/PAM core-shell nanoparticles;(c) schematic diagram of SiO2/PMAC composite particles prepared by electrostatic adsorption[41]
Fig. 9 (a) Schematic diagram of silicon shell growth(through TEOS hydrolysis and condensation);(b) volume distribution of DLS before and after the growth of silica shell;(c~f) TEM and SEM images of particles after silicon shell growth[49]
Table 1 The comparison of four synthesis methods
[1]
Sanchez C, Julián B, Belleville P, Popall M. J. Mater. Chem., 2005, 15(35/36): 3559.

doi: 10.1039/b509097k
[2]
Zhang X, Sun F J. Materials Review, 2006, 11(20): 212.
(张旭, 孙凤九. 材料导报, 2006, 11(20): 212.)
[3]
Mallakpour S, Naghdi M. Prog. Mater. Sci., 2018, 97: 409.

doi: 10.1016/j.pmatsci.2018.04.002
[4]
Rahman I A, Padavettan V. J. Nanomater., 2012, 2012: 1.
[5]
Thickett S C, Teo G H. Polym. Chem., 2019, 10(23): 2906.

doi: 10.1039/C9PY00097F
[6]
Canning S L, Smith G N, Armes S P. Macromolecules, 2016, 49(6): 1985.

pmid: 27019522
[7]
Allahverdi A, Ehsani M, Janpour H, Ahmadi S. Prog. Org. Coat., 2012, 75(4): 543.

doi: 10.1016/j.porgcoat.2012.05.013
[8]
Ortega P F R, Trigueiro J P C, Silva G G, Lavall R L. ElectroChim. Acta., 2016, 188: 809.

doi: 10.1016/j.electacta.2015.12.056
[9]
Caldona E B, de Leon A C C, Thomas P G, Naylor D F III, Pajarito B B, Advincula R C. Ind. Eng. Chem. Res., 2017, 56(6): 1485.

doi: 10.1021/acs.iecr.6b04382
[10]
Yuan B, Luo G M, Liang J, Cheng F Y, Zhang W Q, Chen J. J. Energy Chem., 2019, 38: 55.

doi: 10.1016/j.jechem.2019.01.004
[11]
Tan J B, Sun H, Yu M G, Sumerlin B S, Zhang L. ACS Macro Lett., 2015, 4(11): 1249.

doi: 10.1021/acsmacrolett.5b00748
[12]
Yu L L, Zhang Y X, Dai X C, Xu Q, Zhang L, Tan J B. Chem. Commun., 2019, 55(79): 11920.

doi: 10.1039/C9CC05812E
[13]
Mable C J, Gibson R R, Prevost S, McKenzie B E, Mykhaylyk O O, Armes S P. J. Am. Chem. Soc., 2015, 137(51): 16098.

doi: 10.1021/jacs.5b10415
[14]
Deng R H, Derry M J, Mable C J, Ning Y, Armes S P. J. Am. Chem. Soc., 2017, 139(22): 7616.

doi: 10.1021/jacs.7b02642
[15]
Yu Y Y, Chien W C, Tsai T W. Polym. Test, 2010, 29: 33.

doi: 10.1016/j.polymertesting.2009.09.002
[16]
Dong H C, Ye P L, Zhong M J, Pietrasik J, Drumright R, Matyjaszewski K. Langmuir, 2010, 26(19): 15567.

doi: 10.1021/la102145s
[17]
Hu X L, Hou G M, Zhang M Q, Rong M Z, Ruan W H, Giannelis E P. J. Mater. Chem., 2012, 22(36): 18961.

doi: 10.1039/c2jm33156j
[18]
Zhou C, Lu X, Xin Z, Liu J, Zhang Y. Corrosion Sci., 2014, 80: 269.

doi: 10.1016/j.corsci.2013.11.042
[19]
Wu X, Zheng J, Han B, Zhang L, Lu J, Ye X. Compos Pt. B-Eng., 2019, 178: 1.
[20]
Chakrabarty A, Ponnupandian S, Kang N G, Mays J W, Singha N K. J. Polym. Sci. A: Polym. Chem., 2018, 56(3): 266.

doi: 10.1002/pola.v56.3
[21]
Wu G M, Liu D, Chen J, Liu G F, Kong Z W. Prog. Org. Coat., 2019, 127: 80.
[22]
Farrukh A, Ashraf F, Kaltbeitzel A, Ling X, Wagner M, Duran H, Ghaffar A ur Rehman H, Parekh S H, Domke K F, Yameen B. Polym. Chem., 2015, 6(31): 5782.

doi: 10.1039/C5PY00514K
[23]
Zhu L J, Zhu L P, Jiang J H, Yi Z, Zhao Y F, Zhu B K, Xu Y Y. J. Membr. Sci., 2014, 451: 157.

doi: 10.1016/j.memsci.2013.09.053
[24]
Ma A Y, Zhang J K, Wang N, Bai L J, Chen H, Wang W X, Yang H W, Yang L X, Niu Y Z, Wei D L. Ind. Eng. Chem. Res., 2018, 57(51): 17417.

doi: 10.1021/acs.iecr.8b05020
[25]
Rungta A, Natarajan B, Neely T, Dukes D, Schadler L S, Benicewicz B C. Macromolecules, 2012, 45(23): 9303.

doi: 10.1021/ma3018876
[26]
Zheng Y, Huang Y C, Abbas Z M, Benicewicz B C. Polym. Chem., 2017, 8(2): 370.

doi: 10.1039/C6PY01956K
[27]
Zhou J M, Zhang W J, Hong C Y, Pan C Y. ACS Appl. Mater. Interfaces, 2015, 7(6): 3618.

doi: 10.1021/am507832n
[28]
Hou W M, Wang H, Cui Y L, Liu Y Z, Ma X T, Zhao H Y. Macromolecules, 2019, 52(21): 8404.

doi: 10.1021/acs.macromol.9b01664
[29]
Buerkle L E, Rowan S J. Chem. Soc. Rev., 2012, 41(18): 6089.

doi: 10.1039/c2cs35106d pmid: 22677951
[30]
Wang M, Choi B, Sun Z, Wei X, Feng A, Thang S H. Chem. Commun., 2019, 55: 1462.

doi: 10.1039/C8CC09923E
[31]
Wang M, Choi B, Wei X H, Feng A C, Thang S H. Polym. Chem., 2018, 9(41): 5086.

doi: 10.1039/C8PY01201F
[32]
Zhang X, Wang C. Chem. Soc. Rev., 2011, 40(1): 94.

doi: 10.1039/b919678c pmid: 20890490
[33]
Pal S, Ghorai S, Das C, Samrat S, Ghosh A, Panda A B. Ind. Eng. Chem. Res., 2012, 51(48): 15546.

doi: 10.1021/ie301134a
[34]
Jain R, Mahto V, Sharma V P. J. Nat. Gas Sci. Eng., 2015, 26: 526.

doi: 10.1016/j.jngse.2015.06.051
[35]
Qiao X G, Dugas P Y, Charleux B, Lansalot M, Bourgeat-Lami E. Macromolecules, 2015, 48(3): 545.

doi: 10.1021/ma5019473
[36]
Bourgeat-Lami E, França A J P G, Chaparro T C, Silva R D, Dugas P Y, Alves G M, Santos A M. Macromolecules, 2016, 49(12): 4431.

doi: 10.1021/acs.macromol.6b00737
[37]
Qiao X G, Lambert O, Taveau J C, Dugas P Y, Charleux B, Lansalot M, Bourgeat-Lami E. Macromolecules, 2017, 50(10): 3796.

doi: 10.1021/acs.macromol.7b00033
[38]
Wang X, Wang L, Su Q, Zheng J P. Compos. Sci. Technol., 2013, 89: 52.

doi: 10.1016/j.compscitech.2013.09.018
[39]
Lee S, Hong J Y, Jang J. J. Colloid Interface Sci., 2013, 398: 33.

doi: 10.1016/j.jcis.2013.01.066
[40]
Wang Z, Guo F, Chen C, Shi L, Yuan S, Sun L, Zhu J. ACS Appl. Mater. Inter., 2015, 7: 3314.

doi: 10.1021/am508149n
[41]
Qiu Q H, Liu T, Li Z H, Ding X B. J. Mater. Chem. B, 2015, 3(36): 7203.

doi: 10.1039/C5TB00973A
[42]
Samanta S, Banerjee S L, Ghosh S K, Singha N K. ACS Appl. Mater. Interfaces, 2019, 11(47): 44722.

doi: 10.1021/acsami.9b15964
[43]
Pan A Z, He L. J. Colloid Interface Sci., 2014, 414: 1.

doi: 10.1016/j.jcis.2013.09.044
[44]
Kim S K, Wang X Y, Ando S, Wang X G. Eur. Polym. J., 2015, 64: 206.

doi: 10.1016/j.eurpolymj.2015.01.012
[45]
Mittal H, Maity A, Ray S S. Chem. Eng. J., 2015, 279: 166.

doi: 10.1016/j.cej.2015.05.002
[46]
Iftekhar S, Srivastava V, Casas A, Sillanpää M. J. Clean. Prod., 2018, 170: 251.

doi: 10.1016/j.jclepro.2017.09.166
[47]
Lin D, Liu W, Liu Y, Lee H R, Hsu P C, Liu K, Cui Y. Nano. Lett., 2016, 16: 459.

doi: 10.1021/acs.nanolett.5b04117
[48]
Depa K, Strachota A, Šlouf M, Brus J, Cimrová V. Sens. Actuat. B: Chem., 2017, 244: 616.

doi: 10.1016/j.snb.2016.12.121
[49]
Teo G H, Kuchel R P, Zetterlund P B, Thickett S C. Polym. Chem., 2016, 7(43): 6575.

doi: 10.1039/C6PY01447J
[50]
Zhang W J, Hong C Y, Pan C Y. J. Mater. Chem. A, 2014, 2(21): 7819.

doi: 10.1039/c4ta00465e
[51]
Zhang Y M, Wang Z Y, Matyjaszewski K, Pietrasik J. Eur. Polym. J., 2019, 110: 49.

doi: 10.1016/j.eurpolymj.2018.11.014
[52]
Rubio A, Desnos G, Semsarilar M. Macromol. Chem. Phys., 2018, 219(20): 1800351.
[1] Zhong Zhen, Lu Hang, Ren Tianbin. Shape Control Synthesis of Silver Nanoparticles and Silver Polymeric Nanocomposites [J]. Progress in Chemistry, 2014, 26(12): 1930-1941.
[2] Li Sichao, Han Peng, Xu Huaping. Self-Healing Polymeric Materials [J]. Progress in Chemistry, 2012, 24(07): 1346-1352.
[3] Huang Ping, Chai Shigan, Yuan Jianjun, Lu Guohong, Yang Tingting, Cheng Shiyuan. Preparation of Silica/Polymer Core-Shell Hybrid Particles and Their Hollow Structures [J]. Progress in Chemistry, 2012, 24(01): 31-38.