中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (4): 670-677 DOI: 10.7536/PC200459 Previous Articles   Next Articles

• Review •

Mechanical Property Regulation of Graphene Oxide Separation Membranes

Binbin Zhu1,2, Xiaohui Zheng2(), Guang Yang2, Xu Zeng1,2(), Wei Qiu1,2, Bin Xu1   

  1. 1 State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology,Beijing 100029, China
    2 State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Sciences, Beijing 100191, China
  • Received: Revised: Online: Published:
  • Contact: Xiaohui Zheng, Bin Xu
  • Supported by:
    the National Natural Science Foundation of China(51572011)
Richhtml ( 30 ) PDF ( 680 ) Cited
Export

EndNote

Ris

BibTeX

Due to the controllable nanoscale channels and unique separation performance, the separation films assembled from graphene oxide(GO) nanosheets are promising separation materials, but the unsatisfactory mechanical properties restrict their practical application. Introducing particles such as active molecules and cations between the GO nanosheets can improve the mechanical properties of the GO membranes due to the formation of the stable bonding. In this review, the recent progress on the methods for improving the mechanical properties of GO membranes is summarized. According to the bonding mode between GO and the introduced particles, these methods can be divided into two types, covalent bonding and non-covalent bonding. Furthermore, covalent bonding methods can be divided into macromolecular covalent bonding and small molecule covalent bonding, while noncovalent bonding methods include hydrogen bonding, π-π bonding and ionic bonding. Both covalent bonding and noncovalent bonding can significantly improve the mechanical properties of the GO films, while the covalent bonding methods are more effective. Among the covalent bonding methods, the macromolecule covalent bonding is superior to the small molecule covalent bonding. Finally, the major problems of the current methods for enhancing the mechanical property of GO are discussed, and the future prospects is proposed.

Content:

1 Introduction

2 Covalent bonding method

2.1 Small molecule covalent bonding method

2.2 Macromolecular covalent bonding method

3 Noncovalent bonding method

3.1 Ionic bonding method

3.2 Hydrogen bonding method

3.3 π-π bonding method

4 Conclusion and prospect

Fig.1 (a) Cross-linking reaction diagram of macromolecular covalent bonding method;(b) Cross-linking reaction diagram of small molecule covalent bonding method;(c) Cross-linking reaction diagram of ion bonding method;(d) Cross-linking reaction diagram of hydrogen bonding method;(e) Cross-linking reaction diagram of π-π bonding method
Fig.2 Mechanical properties of raw material GO and modified GO:(a) typical tensile stress-strain curve;(b) summary of modulus and strength of the specimen;(c) typical creep recovery curve[19]
Fig.3 Characterization tests of borate crosslinked composite films :(a) stress-strain curves of unmodified(green) and borate modified(blue) GO films;(b) XRD characterization results of unmodified GO film(black), borate modified GO film(red, 0.08 wt% B) and disordered borate modified GO film(green, 6.32 wt% B)[11]
Fig.4 Stress-strain curve of GO membrane obtained in cyclic loading experiment:(a) original diagram of stress and strain curve in cyclic loading experiment of unmodified GO film;(b) the original stress-strain curve of the rinsing Ca2+ modified GO composite membrane under cyclic loading;(c) the enlarged initial region in the cyclic loading experiment of unmodified GO film;(d) the enlarged initial area in the cyclic loading experiment after modification[43]
Fig.5 (a) influence of water content on GO layer spacing(C10O1(OH)1(red) and C10O2(OH)2(green));(b) Hydrogen and oxygen bond energies vary with bond spacing[51]
Fig.6 (a) Young’s modulus and tensile strength of GO composite membrane based on PVA prepared in water;(b) Young’s modulus and tensile strength of GO composite membrane based on PMMA prepared in DMF[52]
Table 1 Summary of mechanical properties modification of GO composite membrane
[1]
Huang H B, Mao Y Y, Ying Y L, Liu Y, Sun L W, Peng X S. Chem. Commun., 2013, 49(53): 5963.
[2]
Zhao Y, Yuan S L, Zhang Q M. Appl. Math. Comput., 2015, 260: 385.
[3]
Ouyang G, Hussain A, Li J B, Li D X. RSC Adv., 2015, 5(86): 70448.
[4]
Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T, Ruoff R S. Nature, 2007, 448(7152): 457.
[5]
Zhang Y Y, Gong S S, Zhang Q, Ming P, Wan S J, Peng J S, Jiang L, Cheng Q F. Chem. Soc. Rev., 2016, 45(9): 2378.

pmid: 27039951
[6]
Koros W J, Fleming G K. J. Membr. Sci., 1993, 83(1): 1.
[7]
van der Bruggen B, Vandecasteele C. Environ. Pollut., 2003, 122(3): 435.

doi: 10.1016/s0269-7491(02)00308-1 pmid: 12547533
[8]
Peng X S, Jin J, Nakamura Y, Ohno T, Ichinose I. Nat. Nanotechnol., 2009, 4(6): 353.
[9]
Mikoushkin V M, Shnitov V V, Nikonov S Y, Dideykin A T, Vul’ S P, Vul’ A Y, Sakseev D A, Vyalikh D V, Vilkov O Y. Tech. Phys. Lett., 2011, 37(10): 942.
[10]
Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K. Science, 2012, 335(6067): 442.

doi: 10.1126/science.1211694 pmid: 22282806
[11]
An Z, Compton O C, Putz K W, Brinson L C, Nguyen S T. Adv. Mater., 2011, 23(33): 3842.

pmid: 21793051
[12]
Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R. Science, 2014, 343(6172): 752.

pmid: 24531966
[13]
Georgakilas V, Tiwari J N, Kemp K C, Perman J A, Bourlinos A B, Kim K S, Zboril R. Chem. Rev., 2016, 116(9): 5464.

pmid: 27033639
[14]
Radha B, Esfandiar A, Wang F C, Rooney A P, Gopinadhan K, Keerthi A, Mishchenko A, Janardanan A, Blake P, Fumagalli L, Lozada-Hidalgo M, Garaj S, Haigh S J, Grigorieva I V, Wu H A, Geim A K. Nature, 2016, 538(7624): 222.

pmid: 27602512
[15]
Esfandiar A, Radha B, Wang F C, Yang Q, Hu S, Garaj S, Nair R R, Geim A K, Gopinadhan K. Science, 2017, 358(6362): 511.

pmid: 29074772
[16]
Gopinadhan K, Hu S, Esfandiar A, Lozada-Hidalgo M, Wang F C, Yang Q, Tyurnina A V, Keerthi A, Radha B, Geim A K. Science, 2019, 363(6423): 145.

pmid: 30630924
[17]
Mouterde T, Keerthi A, Poggioli A R, Dar S A, Siria A, Geim A K, Bocquet L, Radha B. Nature, 2019, 567(7746): 87.

pmid: 30842639
[18]
Yang Q, Su Y, Chi C, Cherian C T, Huang K, Kravets V G, Wang F C, Zhang J C, Pratt A, Grigorenko A N, Guinea F, Geim A K, Nair R R. Nat. Mater., 2017, 16(12): 1198.

pmid: 29170556
[19]
Gao Y, Liu L Q, Zu S Z, Peng K, Zhou D, Han B H, Zhang Z. ACS Nano, 2011, 5(3): 2134.

doi: 10.1021/nn103331x pmid: 21341706
[20]
Park S, Ruoff R S. Nat. Nanotechnol., 2009, 4(4): 217.

pmid: 19350030
[21]
Wan S J, Li Y C, Peng J S, Hu H, Cheng Q F, Jiang L. ACS Nano, 2015, 9(1): 708.
[22]
Sun P Z, Chen Q, Li X D, Liu H, Wang K L, Zhong M L, Wei J Q, Wu D H, Ma R Z, Sasaki T, Zhu H W. NPG Asia Mater., 2015, 7(2): e162.
[23]
Sun P Z, Zhu M, Wang K L, Zhong M L, Wei J Q, Wu D H, Xu Z P, Zhu H W. ACS Nano, 2013, 7(1): 428.

pmid: 23214493
[24]
Hung W S, Tsou C H, de Guzman M, An Q F, Liu Y L, Zhang Y M, Hu C C, Lee K R, Lai J Y. Chem. Mater., 2014, 26(9): 2983.
[25]
Hu M, Mi B X. Environ. Sci. Technol., 2013, 47(8): 3715.

pmid: 23488812
[26]
Gong S S, Jiang L, Cheng Q F. J. Mater. Chem. A, 2016, 4(43): 17073.
[27]
Cheng Q F, Wu M X, Li M Z, Jiang L, Tang Z Y. Angew. Chem. Int. Ed., 2013, 52(13): 3750.
[28]
Chen J T, Fu Y J, An Q F, Lo S C, Huang S H, Hung W S, Hu C C, Lee K R, Lai J Y. Nanoscale, 2013, 5(19): 9081.

pmid: 23900571
[29]
Sham A Y W, Notley S M. Langmuir, 2014, 30(9): 2410.

doi: 10.1021/la404745b pmid: 24528297
[30]
Yu L, Lim Y S, Han J H, Kim K, Kim J Y, Choi S Y, Shin K. Synth. Met., 2012, 162(7/8): 710.
[31]
Sun S P, Hatton T A, Chung T S. Environ. Sci. Technol., 2011, 45(9): 4003.

pmid: 21456576
[32]
Zhang M, Huang L, Chen J, Li C, Shi G Q. Adv. Mater., 2014, 26(45): 7588.

pmid: 25250891
[33]
Wan S J, Peng J S, Li Y C, Hu H, Jiang L, Cheng Q F. ACS Nano, 2015, 9(10): 9830.

pmid: 26352293
[34]
Yan N, Capezzuto F, Buonocore G G, Lavorgna M, Xia H S, Ambrosio L. ACS Appl. Mater. Interfaces, 2015, 7(40): 22678.

pmid: 26406566
[35]
Chen D, Wang X Y, Liu T X, Wang X D, Li J. ACS Appl. Mater. Interfaces, 2010, 2(7): 2005.
[36]
Park S, Dikin D A, Nguyen S T, Ruoff R S. J. Phys. Chem. C, 2009, 113(36): 15801.
[37]
Cui W, Li M Z, Liu J Y, Wang B, Zhang C, Jiang L, Cheng Q F. ACS Nano, 2014, 8(9): 9511.

doi: 10.1021/nn503755c pmid: 25106494
[38]
Qi X D, Yao X L, Deng S, Zhou T N, Fu Q. J. Mater. Chem. A, 2014, 2(7): 2240.
[39]
Compton O C, Cranford S W, Putz K W, An Z, Brinson L C, Buehler M J, Nguyen S T. ACS Nano, 2012, 6(3): 2008.

pmid: 22188595
[40]
Shin M K, Lee B, Kim S H, Lee J A, Spinks G M, Gambhir S, Wallace G G, Kozlov M E, Baughman R H, Kim S J. Nat. Commun., 2012, 3: 650.

doi: 10.1038/ncomms1661 pmid: 22337128
[41]
Li Y Q, Yu T, Yang T Y, Zheng L X, Liao K. Adv. Mater., 2012, 24(25): 3426.

pmid: 22730223
[42]
Priolo M A, Holder K M, Gamboa D, Grunlan J C. Langmuir, 2011, 27(19): 12106.

pmid: 21859104
[43]
Park S, Lee K S, Bozoklu G, Cai W W, Nguyen S T, Ruoff R S. ACS Nano, 2008, 2(3): 572.

pmid: 19206584
[44]
Xu Y, Bai H, Lu G, Li C, Shi G. J. Am. Chem. Soc., 2008, 130(18): 5856.

pmid: 18399634
[45]
Lam D V, Gong T, Won S, Kim J H, Lee H J, Lee C, Lee S M. Chem. Commun., 2015, 51(13): 2671.
[46]
Hwang J, Yoon T, Jin S H, Lee J, Kim T S, Hong S H, Jeon S. Adv. Mater., 2013, 25(46): 6724.

pmid: 23983045
[47]
Zhang Q, Wan S J, Jiang L, Cheng Q F. Sci. China Technol. Sci., 2017, 60(5): 758.
[48]
Jiang X, Ma Y W, Li J J, Fan Q L, Huang W. J. Phys. Chem. C, 2010, 114(51): 22462.
[49]
Zheng W G, Tan R, Zhao L L, Chen Y J, Xiong C W, Yin D H. RSC Adv., 2014, 4(23): 11732.
[50]
Liu Y L, Xie B, Xu Z P. J. Mater. Chem., 2011, 21(18): 6707.
[51]
Medhekar N V, Ramasubramaniam A, Ruoff R S, Shenoy V B. ACS Nano, 2010, 4(4): 2300.

pmid: 20380417
[52]
Putz K W, Compton O C, Palmeri M J, Nguyen S T, Brinson L C. Adv. Funct. Mater., 2010, 20(19): 3322.
[53]
Zhang J Z, Xu Y H, Cui L, Fu A P, Yang W R, Barrow C, Liu J Q. Compos. Part A: Appl. Sci. Manuf., 2015, 71: 1.
[54]
Zhou T, Wu C, Wang Y, Tomsia A P, Li M, Saiz E, Fang S, Baughman R H, Jiang L, Cheng Q. Nat. Commun., 2020, 11(1): 2077.

pmid: 32350273
[55]
Tian Y, Cao Y W, Wang Y, Yang W L, Feng J C. Adv. Mater., 2013, 25(21): 2980.

pmid: 23636928
[56]
Satti A, Larpent P, Gun’ko Y. Carbon, 2010, 48(12): 3376.
[57]
Xiong R, Hu K S, Grant A M, Ma R L, Xu W N, Lu C H, Zhang X X, Tsukruk V V. Adv. Mater., 2016, 28(7): 1501.

doi: 10.1002/adma.201504438 pmid: 26643976
[58]
Yeh C N, Raidongia K, Shao J, Yang Q H, Huang J. Nat. Chem., 2014, 7(2): 166.

pmid: 25615671
[59]
Zhao H, Yue Y, Zhang Y, Li L, Guo L. Adv. Mater., 2016, 28(10): 2037.

pmid: 26780718
[60]
Wang J R, Qiao J L, Wang J F, Zhu Y, Jiang L. ACS Appl. Mater. Interfaces, 2015, 7(17): 9281.

pmid: 25867752
[61]
He G W, Xu M Z, Zhao J, Jiang S T, Wang S F, Li Z, He X Y, Huang T, Cao M Y, Wu H, Guiver M D, Jiang Z Y. Adv. Mater., 2017, 29(28): 1605898.
[62]
Liu L Q, Gao Y, Liu Q, Kuang J, Zhou D, Ju S T, Han B H, Zhang Z. Small, 2013, 9(14): 2466.

pmid: 23853125
[1] Aobo Geng, Qiang Zhong, Changtong Mei, Linjie Wang, Lijie Xu, Lu Gan. Applications of Wet-Functionalized Graphene in Rubber Composites [J]. Progress in Chemistry, 2019, 31(5): 738-751.
[2] Ma Mengjia, Chen Yuyun, Yan Zhiqiang, Ding Jian, He Dannong*, Zhong Jian*. Applications of Atomic Force Microscopy in Nanobiomaterials Research [J]. Progress in Chemistry, 2013, 25(01): 135-144.
[3] Men Weiwei,Lu Zaijun*. High Performance Polybenzoxazines [J]. Progress in Chemistry, 2007, 19(05): 779-786.