中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (1): 105-118 DOI: 10.7536/PC220622 Previous Articles   Next Articles

• Review •

Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons

Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu(), Jinming Cai()   

  1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology,Kunming 650093, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: jclu@kust.edu.cn(Jianchen Lu); j.cai@kust.edu.cn(Jinming Cai)
  • Supported by:
    National Natural Science Foundation of China(62271238); National Natural Science Foundation of China(61901200); Yunnan Fundamental Research Projects(202101AV070008); Yunnan Fundamental Research Projects(202101AW070010); Yunnan Fundamental Research Projects(202201AT070078); Strategic Priority Research Program of Chinese Academy of Sciences(XDB30000000); Dongguan Innovation Research Team Program
Richhtml ( 42 ) PDF ( 1428 ) Cited
Export

EndNote

Ris

BibTeX

Atomically precise bottom-up synthesis of graphene nanoribbons under ultra-high vacuum condition is an important tool to open band gap of graphene. Rational design of precursor molecules with heteroatoms (boron, nitrogen, oxygen, sulfur, etc.) allows the synthesis of heteroatoms-doped graphene nanoribbons. Furthermore, heteroatoms-dopant can precisely tune the electrical, magnetic, and other physicochemical properties of graphene nanoribbons. The doping effect is closely related to the type, location and density of heteroatoms. In this review, we summarize the recent research progress on the synthesis and application prospects of heteroatoms-doped graphene nanoribbons based on the molecular beam epitaxy method. The applications of doped graphene nanoribbon are also propected.

Contents

1 Introduction

2 Armchair GNRs doped with heteroatoms

2.1 Sing-heteroatom doped Armchair GNRs

2.2 Multiple-heteroatom doped Armchair GNRs

2.3 Other doped AGNRs

3 Chiral GNRs doped with heteroatoms

4 Chevron GNRs doped with heteroatoms

4.1 Sing-heteroatom doped Chevron GNRs

4.2 Multiple-heteroatom doped Chevron GNRs

4.3 Chevron GNR heterojunctions

5 Zigzag GNRs doped with heteroatoms

6 Conclusion and outlook

Fig. 1 Reaction schemes for bottom-up fabrications of atomically precise GNRs and four main types of GNRs
Table 1 Different precursors and synthesized corresponding width of GNRs
Fig. 2 Theoretical and experimental band gap of AGNRs. (a) Variation of band gaps with the width of AGNRs. The three families of AGNRs are represented by different symbols. The open symbols are LDA band gaps while the solid symbols are the corresponding GW band gaps[11]; (b,c) The STM image and the corresponding STS spectra of 3p AGNRs[7]; (d~f) STS spectra of 3p+1 AGNRs[3,8,20]; (g~i) STS spectra of 3p+2 AGNRs[3,20,22]
Fig. 3 (a) Schematic drawing of the on-surface synthesis of BB-GNRs[23]; (b) NC-AFM image of BB-GNR; (c) Differential conductance (dI/dV) spectra taken at four different sites of BB-GNR and one Au(111) site; (d) STM topography of BB-GNRs with NO molecules. Blue, red and yellow arrows indicate NO molecules attached at the elbow of herringbone structure on Au(111), the armchair edge, and the boron site of the BB-GNRs, respectively; (e) Schematic drawing of the on-surface synthesis of 2B-GNRs[14]; (f) STM image of 2B-GNR; (g) dI/dV maps of two doping states induced by two B atoms; (h) Band structures calculated of 2B-GNR by DFT within LDA[24]
Fig. 4 Effects of different kinds of N atoms on the structure and electrical properties of GNRs[29]: (a) The synthetic strategy for the N=9 N-doped AGNRs; (b,c) STM images, BR-STM images and structural model images of different kinds of N atoms, respectively; (d) dI/dV spectra taken at different N-doped sites of the N-9-AGNR obtained with a CO functionalized tip; (e,f) Calculated electronic structures and charge distributions of two different periodic N-doped GNRs, respectively
Fig. 5 (a) Reaction scheme for bottom-up synthesis of N=13 S-AGNRs; (b) STM image of a fully cyclized N=13 S-AGNR; (c) dI/dV spectra of S-AGNRs at different spatial positions; (d) Computed band structures of a S-AGNR and a pristine AGNR; (e) Experimental dI/dV spectra compared to the calculated density of states (DOS)[30]
Fig. 6 Synthesis of multiple heteroatom-substituted AGNRs[31]. (a) The structure formula of precursor molecule; (b~d) NC-AFM images formed by three different coupling paths; (e) Simulated atomic structure and NC-AFM images; (f) Force spectroscopic measurements taken at different elements in the BN-GNR; (g) Analysis of the bond lengths in the NC-AFM image; (h) Calculated valence electron density of BN-GNR; (i~l) dI/dV spectra taken at different sites of BN-GNR
Fig. 7 (a) Reaction scheme for bottom-up synthesis of porous GNRs; (b,c) STM image and NC-AFM image of porous GNRs; (d) dI/dV spectra of porous GNR; (e) Band structure of porous GNR[17]
Fig. 8 (a) Reaction scheme for bottom-up synthesis of chGNRs; (b) STM image of the reacted chGNRs; (d) dI/dV spectra of chGNR[12]
Fig. 9 OBO-doped chGNRs[39]. (a) Reaction route for bottom-up synthesis of OBO-chGNRs; (b,c) STM image of the reacted OBO-chGNRs and corresponding NC-AFM image; (d) dI/dV spectra of OBO-chGNR; (e) Band structure of the oxygen 2p orbital weight (orange) of the bands, the boron 2p orbital weight (green) and the pristine chGNR
Fig. 10 N-doped chGNRs[40]. (a) Reaction route for bottom-up synthesis of N-chGNRs; (b) STM image of the reacted N-chGNRs; (c,d) XPS image of the reacted N-chGNRs; (e~h) The angle-resolved ultraviolet photoelectron spectroscopy characterization of bare gold, the precursor polymers, and the GNRs
Table 2 On-synthesis different bandwidths VGNRs by different precursor molecules[6,8,15,41? ~43]
Fig. 11 (a~c) STM image of the N-VGNRs, 2N-VGNRs and S-VGNRs; (d) dI/dV spectra of N-VGNR[44]; (e) dI/dV spectra of NN-VGNR at different spatial positions[45]; (f) Schematic structures and the corresponding calculated PDOS of S-VGNR composed of distinct segments[46]
Fig. 12 (a) Structure profile of three different precursor molecules; (b~d) STM image and NC-AFM image of three doped VGNRs; (e) dI/dV spectra of three doped VGNRs and pristine VGNR; (f) Calculated energy levels at the Γ point of three doped VGNRs and pristine VGNR near the band gap[48]
Fig. 13 Different types of semiconductor heterojunctions[49]
Fig. 14 Bottom-up fabrication of p-N-VGNRs heterojunctions[18]. (a) Reaction route for bottom-up synthesis of p-N-VGNRs heterojunctions; (b) STM image of p-N-VGNRs heterojunctions; (c) Differential conductance dI/dV maps of p-N-VGNRs heterojunctions; (d,e) Computed band structures of p-VGNR and N-VGNR; (g) The change in electrostatic potential across the interface region of p-N-VGNRs heterojunctions; (f~h) The LDOS across the p-N-VGNRs heterojunction.
Fig. 15 Bottom-up fabrication of ZGNRs[2]. (a) Structure profile of precursor molecule; (b) NC-AFM image of ZGNRs; (c) STM image of a ZGNR bridging between two NaCl monolayer islands; (d) dI/dV spectra of ZGNR; (e,f) dI/dV maps of ZGNR taken at different bias and corresponding LDOS of ZGNR
Fig. 16 Bottom-up fabrication of two kinds of NBN-ZGNRs[51]. (a~e) Precursor molecules, STM image and NC-AFM image of two kinds of NBN-ZGNRs; (f~i) dI/dV maps and corresponding DOS of two kinds of NBN-ZGNRs; (j~m) DFT calculated band structures of NBN-ZGNR1 radical cations and NBN-ZGNR2 radical cations, in which each NBN unit loses one electron
Fig. 17 Bottom-up fabrication of ZGNRs[52]. (a) Structure profile of precursor molecule; (b) STM topographic image of fully cyclized N-ZGNRs; (c) dI/dV spectra of N-ZGNR; (d) Band structure of freestanding ZGNR (grey) and N-ZGNR (red) calculated using the same dimension unit cell
[1]
Yang L, Park C H, Son Y W, Cohen M L, Louie S G. Phys. Rev. Lett., 2007, 99(18): 186801.

doi: 10.1103/PhysRevLett.99.186801
[2]
Ruffieux P, Wang S Y, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X L, Müllen K, Fasel R. Nature, 2016, 531(7595): 489.

doi: 10.1038/nature17151
[3]
Yamaguchi J, Hayashi H, Jippo H, Shiotari A, Ohtomo M, Sakakura M, Hieda N, Aratani N, Ohfuchi M, Sugimoto Y, Yamada H, Sato S. Commun. Mater., 2020, 1: 36.

doi: 10.1038/s43246-020-0039-9
[4]
Han P, Akagi K, Federici Canova F, Mutoh H, Shiraki S, Iwaya K, Weiss P S, Asao N, Hitosugi T. ACS Nano, 2014, 8(9): 9181.

doi: 10.1021/nn5028642
[5]
Liu M Z, Liu M X, She L M, Zha Z Q, Pan J L, Li S C, Li T, He Y Y, Cai Z Y, Wang J B, Zheng Y, Qiu X H, Zhong D Y. Nat. Commun., 2017, 8: 14924.

doi: 10.1038/ncomms14924
[6]
Panighel M, Quiroga S, Brandimarte P, Moreno C, Garcia-Lekue A, Vilas-Varela M, Rey D, Sauthier G, Ceballos G, Peña D, Mugarza A. ACS Nano, 2020, 14(9): 11120.

doi: 10.1021/acsnano.0c01837 pmid: 32804481
[7]
Merino-Díez N, Garcia-Lekue A, Carbonell-Sanromà E, Li J C, Corso M, Colazzo L, Sedona F, Sánchez-Portal D, Pascual J I, de Oteyza D G. ACS Nano, 2017, 11(11): 11661.

doi: 10.1021/acsnano.7b06765 pmid: 29049879
[8]
Cai J M, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X L, Müllen K, Fasel R. Nature, 2010, 466(7305): 470.

doi: 10.1038/nature09211
[9]
Jiao L Y, Zhang L, Wang X R, Diankov G, Dai H J. Nature, 2009, 458(7240): 877.

doi: 10.1038/nature07919
[10]
Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Nature, 2009, 458(7240): 872.

doi: 10.1038/nature07872
[11]
Houtsma R S K, de la Rie J, Stöhr M. Chem. Soc. Rev., 2021, 50(11): 6541.

doi: 10.1039/d0cs01541e pmid: 34100034
[12]
Jacobse P H, Mangnus M J J, Zevenhuizen S J M, Swart I. ACS Nano, 2018, 12(7): 7048.

doi: 10.1021/acsnano.8b02770 pmid: 29939719
[13]
di Giovannantonio M, Deniz O, Urgel J I, Widmer R, Dienel T, Stolz S, Sánchez-Sánchez C, Muntwiler M, Dumslaff T, Berger R, Narita A, Feng X L, Müllen K, Ruffieux P, Fasel R. ACS Nano, 2018, 12(1): 74.

doi: 10.1021/acsnano.7b07077 pmid: 29200262
[14]
Friedrich N, Brandimarte P, Li J C, Saito S, Yamaguchi S, Pozo I, Peña D, Frederiksen T, Garcia-Lekue A, Sánchez-Portal D, Pascual J I. Phys. Rev. Lett., 2020, 125(14): 146801.

doi: 10.1103/PhysRevLett.125.146801
[15]
Nguyen G D, Tsai H Z, Omrani A A, Marangoni T, Wu M, Rizzo D J, Rodgers G F, Cloke R R, Durr R A, Sakai Y, Liou F, Aikawa A S, Chelikowsky J R, Louie S G, Fischer F R, Crommie M F. Nat. Nanotechnol., 2017, 12(11): 1077.

doi: 10.1038/nnano.2017.155 pmid: 28945240
[16]
Carbonell-Sanromà E, Hieulle J, Vilas-Varela M, Brandimarte P, Iraola M, Barragán A, Li J C, Abadia M, Corso M, Sánchez-Portal D, Peña D, Pascual J I. ACS Nano, 2017, 11(7): 7355.

doi: 10.1021/acsnano.7b03522 pmid: 28636331
[17]
Pawlak R, Liu X S, Ninova S, D’Astolfo P, Drechsel C, Sangtarash S, Häner R, Decurtins S, Sadeghi H, Lambert C J, Aschauer U, Liu S X, Meyer E. J. Am. Chem. Soc., 2020, 142(29): 12568.

doi: 10.1021/jacs.0c03946 pmid: 32589029
[18]
Cai J M, Pignedoli C A, Talirz L, Ruffieux P, Söde H, Liang L B, Meunier V, Berger R, Li R J, Feng X L, Müllen K, Fasel R. Nat. Nanotechnol., 2014, 9(11): 896.

doi: 10.1038/nnano.2014.184
[19]
Jacobse P H, McCurdy R D, Jiang J W, Rizzo D J, Veber G, Butler P, Zuzak R, Louie S G, Fischer F R, Crommie M F. J. Am. Chem. Soc., 2020, 142(31): 13507.

doi: 10.1021/jacs.0c05235 pmid: 32640790
[20]
Sun K W, Ji P H, Zhang J J, Wang J X, Li X C, Xu X, Zhang H M, Chi L F. Small, 2019, 15(15): 1804526.

doi: 10.1002/smll.201804526
[21]
Chen Y C, de Oteyza D G, Pedramrazi Z, Chen C, Fischer F R, Crommie M F. ACS Nano, 2013, 7(7): 6123.

doi: 10.1021/nn401948e
[22]
Kimouche A, Ervasti M M, Drost R, Halonen S, Harju A, Joensuu P M, Sainio J, Liljeroth P. Nat. Commun., 2015, 6: 10177.

doi: 10.1038/ncomms10177 pmid: 26658960
[23]
Kawai S, Saito S, Osumi S, Yamaguchi S, Foster A S, Spijker P, Meyer E. Nat. Commun., 2015, 6: 8098.

doi: 10.1038/ncomms9098
[24]
Pedramrazi Z, Chen C, Zhao F Z, Cao T, Nguyen G D, Omrani A A, Tsai H Z, Cloke R R, Marangoni T, Rizzo D J, Joshi T, Bronner C, Choi W W, Fischer F R, Louie S G, Crommie M F. Nano Lett., 2018, 18(6): 3550.

doi: 10.1021/acs.nanolett.8b00651 pmid: 29851493
[25]
Cloke R R, Marangoni T, Nguyen G D, Joshi T, Rizzo D J, Bronner C, Cao T, Louie S G, Crommie M F, Fischer F R. J. Am. Chem. Soc., 2015, 137(28): 8872.

doi: 10.1021/jacs.5b02523 pmid: 26153349
[26]
Ruffieux P, Cai J M, Plumb N C, Patthey L, Prezzi D, Ferretti A, Molinari E, Feng X L, Müllen K, Pignedoli C A, Fasel R. ACS Nano, 2012, 6(8): 6930.

doi: 10.1021/nn3021376 pmid: 22853456
[27]
Biel B, Blase X, Triozon F, Roche S. Phys. Rev. Lett., 2009, 102(9): 096803.

doi: 10.1103/PhysRevLett.102.096803
[28]
da Costa Azevêdo A S, Saraiva-Souza A, Meunier V, Girão E C. Phys. Chem. Chem. Phys., 2021, 23(23): 13204.

doi: 10.1039/D1CP00197C
[29]
Zhang Y, Lu J C, Li Y, Li B J, Ruan Z L, Zhang H, Hao Z L, Sun S J, Xiong W, Gao L, Chen L, Cai J M. Angewandte. Chemie. Int. Ed., 2022, 61(28): e202204736.
[30]
Nguyen G D, Toma F M, Cao T, Pedramrazi Z, Chen C, Rizzo D J, Joshi T, Bronner C, Chen Y C, Favaro M, Louie S G, Fischer F R, Crommie M F. J. Phys. Chem. C, 2016, 120(5): 2684.

doi: 10.1021/acs.jpcc.5b09986
[31]
Kawai S, Nakatsuka S, Hatakeyama T, Pawlak R, Meier T, Tracey J, Meyer E, Foster A S. Sci. Adv., 2018, 4(4): eaar7181.
[32]
Chong M C, Reecht G, Bulou H, Boeglin A, Scheurer F, Mathevet F, Schull G. Phys. Rev. Lett., 2016, 116(3): 036802.

doi: 10.1103/PhysRevLett.116.036802
[33]
Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K. Phys. Rev. Lett., 2008, 100(18): 189905.

doi: 10.1103/PhysRevLett.100.189905
[34]
Tan H X, Liu T Q, Zhang X, Shan Q, Chen J, Li Z, Ihara H, Qiu H D. Anal. Chem., 2020, 92(20): 13630.

doi: 10.1021/acs.analchem.0c02446
[35]
Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache M V, Paradinas M, Panighel M, Ceballos G, Valenzuela S O, Peña D, Mugarza A. Science, 2018, 360(6385): 199.

doi: 10.1126/science.aar2009 pmid: 29650671
[36]
Talirz L, Söde H, Dumslaff T, Wang S Y, Sanchez-Valencia J R, Liu J, Shinde P, Pignedoli C A, Liang L B, Meunier V, Plumb N C, Shi M, Feng X L, Narita A, Müllen K, Fasel R, Ruffieux P. ACS Nano, 2017, 11(2): 1380.

doi: 10.1021/acsnano.6b06405
[37]
Akatyeva E, Dumitrică T. J. Chem. Phys., 2012, 137(23): 234702.

doi: 10.1063/1.4770002
[38]
Keerthi A, Sánchez-Sánchez C, Deniz O, Ruffieux P, Schollmeyer D, Feng X L, Narita A, Fasel R, Müllen K. Chem. Asian J., 2020, 15(22): 3807.

doi: 10.1002/asia.202001008
[39]
Wang X Y, Urgel J I, Barin G B, Eimre K, di Giovannantonio M, Milani A, Tommasini M, Pignedoli C A, Ruffieux P, Feng X L, Fasel R, Müllen K, Narita A. J. Am. Chem. Soc., 2018, 140(29): 9104.

doi: 10.1021/jacs.8b06210
[40]
Feng Z J, Mazaheripour A, Dibble D J, Wagner P, Czap G, Kladnik G, Cossaro A, Verdini A, Floreano L, Bavdek G, Ho W, Comelli G, Cvetko D, Morgante A, Gorodetsky A A. Carbon, 2020, 170: 677.

doi: 10.1016/j.carbon.2020.07.018
[41]
Shekhirev M, Zahl P, Sinitskii A. ACS Nano, 2018, 12(8): 8662.

doi: 10.1021/acsnano.8b04489 pmid: 30085655
[42]
Teeter J D, Zahl P, Mehdi Pour M, Costa P S, Enders A, Sinitskii A. ChemPhysChem, 2019, 20(18): 2281.

doi: 10.1002/cphc.201900445 pmid: 31185134
[43]
Marangoni T, Haberer D, Rizzo D J, Cloke R R, Fischer F R. Chem. Eur. J., 2016, 22(37): 13037.

doi: 10.1002/chem.201603497
[44]
Zhang Y, Zhang Y F, Li G, Lu J C, Lin X, Du S X, Berger R, Feng X L, Müllen K, Gao H J. Appl. Phys. Lett., 2014, 105(2): 023101.

doi: 10.1063/1.4884359
[45]
Vo T H, Perera U G E, Shekhirev M, Mehdi Pour M, Kunkel D A, Lu H D, Gruverman A, Sutter E, Cotlet M, Nykypanchuk D, Zahl P, Enders A, Sinitskii A, Sutter P. Nano Lett., 2015, 15(9): 5770.

doi: 10.1021/acs.nanolett.5b01723
[46]
Zhang Y F, Zhang Y, Li G, Lu J C, Que Y D, Chen H, Berger R, Feng X L, Müllen K, Lin X, Zhang Y Y, Du S X, Pantelides S T, Gao H J. Nano Res., 2017, 10(10): 3377.

doi: 10.1007/s12274-017-1550-2
[47]
Cao Y, Qi J, Zhang Y F, Huang L, Zheng Q, Lin X, Cheng Z H, Zhang Y Y, Feng X L, Du S X, Pantelides S T, Gao H J. Nano Res., 2018, 11(12): 6190.

doi: 10.1007/s12274-018-2136-3
[48]
Durr R A, Haberer D, Lee Y L, Blackwell R, Kalayjian A M, Marangoni T, Ihm J, Louie S G, Fischer F R. J. Am. Chem. Soc., 2018, 140(2): 807.

doi: 10.1021/jacs.7b11886
[49]
Marschall R. Adv. Funct. Mater., 2014, 24(17): 2421.

doi: 10.1002/adfm.201303214
[50]
Lu Y, Guo J. Nano Res., 2010, 3(3): 189.

doi: 10.1007/s12274-010-1022-4
[51]
Fu Y B, Yang H, Gao Y X, Huang L, Berger R, Liu J Z, Lu H L, Cheng Z H, Du S X, Gao H J, Feng X L. Angew. Chem. Int. Ed., 2020, 59(23): 8873.

doi: 10.1002/anie.202000488
[52]
Blackwell R E, Zhao F Z, Brooks E, Zhu J M, Piskun I, Wang S K, Delgado A, Lee Y L, Louie S G, Fischer F R. Nature, 2021, 600(7890): 647.

doi: 10.1038/s41586-021-04201-y
[53]
Shi G Q, Zhou J F, Li Z, Sun Y, Kantorovich L N, Fang Q, Besenbacher F, Yu M. Angew. Chem. Int. Ed., 2020, 59(37): 15958.

doi: 10.1002/anie.202006176
[54]
Zhang H, Xiong W, Lu J C, Cai J M. Prog. Chem., 2021, 34(3): 557.
(张辉, 熊玮, 卢建臣, 蔡金明. 化学进展, 2021, 34(3): 557. ).
[55]
Hao Z L, Ruan Z L, Yang X T, Cai Y T, Lu J C, Cai J M. Acta. Chimica. Sinica., 2017, 66(21): 218103.
(郝振亮, 阮子林, 杨孝天, 蔡逸婷, 卢建臣, 蔡金明. 化学学报, 2017, 66(21): 218103. ).
[1] Jingjing Li, Hongji Li, Qiang Huang, Zhe Chen. Study on the Mechanism of the Influence of Doping on the Properties of Cathode Materials of Sodium Ion Batteries [J]. Progress in Chemistry, 2022, 34(4): 857-869.
[2] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[3] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[4] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.
[5] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[6] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[7] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[8] Xiujun Cao, Lei Zhang, Yuanxin Zhu, Xin Zhang, Chaonan Lv, Changmin Hou. Design and Synthesis of Sillenite-Based Micro/Nanomaterials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2020, 32(2/3): 262-273.
[9] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[10] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.
[11] Yijia Shao, Bin Huang, Quanbing Liu, Shijun Liao. Preparation and Modification of Ni-Co-Mn Ternary Cathode Materials [J]. Progress in Chemistry, 2018, 30(4): 410-419.
[12] Rong Yang, Lan Li, Bing Ren, Dan Chen, Liping Chen, Yinglin Yan. Doped-Graphene in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2018, 30(11): 1681-1691.
[13] Min Li, Yanli Wang, Xiaoyan Wu, Lei Duan, Chunming Zhang, Dannong He. The Mechanism of Ion-Doping, Surface Coating, Surface Oxygen Vacancy Modification and Their Joint Mechanism in Lithium-Rich Material for Li-Ion Battery [J]. Progress in Chemistry, 2017, 29(12): 1526-1536.
[14] Fu Xianbiao, Yu Guipeng. Covalent Organic Frameworks Catalysts [J]. Progress in Chemistry, 2016, 28(7): 1006-1015.
[15] Chen Xiaoyan, Sun Yiran, Yu Fei, Chen Junhong, Ma Jie. The Catalytic Properties for Reduction of Graphene-Based Aerogels and Their Applications [J]. Progress in Chemistry, 2015, 27(11): 1542-1554.