中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (5): 802-817 DOI: 10.7536/PC200677 Previous Articles   Next Articles

• Original article •

Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes

Lei Wu1, Lihui Liu1,*(), Shufen Chen1,*()   

  1. 1 Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Contact: Lihui Liu, Shufen Chen
  • Supported by:
    National Key Research and Development Program of China(2017YFB0404501); National Foundation for Science and Technology Development of China(973 project,2015CB932203); National Major Fundamental Research Program of China(91833306); National Natural Science Foundation of China(61705111); National Natural Science Foundation of China(61704091); Science Fund for Distinguished Young Scholars of Jiangsu Province of China(BK20160039); Synergetic Innovation Center for Organic Electronics and Information Displays, the Startup Foundation of Nanjing University of Posts and Telecommunications(NY217010)
Richhtml ( 37 ) PDF ( 872 ) Cited
Export

EndNote

Ris

BibTeX

Due to the consuming upgrade and development of 5G technology, the future display technology focuses on ultra-high resolution, large-area, light weight, flexibility and low-cost. Organic light-emitting diodes(OLEDs) have attracted considerable attention as one of the most promising next-generation display technologies due to the advantages of self-emitting, ultra-thin thickness, low electric power consumption, large-area, and high flexibility. Flexible transparent conducting electrodes(TCEs) are primary to achieve the flexible, foldable and wearable OLEDs. However, novel TCEs are required to replace traditional indium tin oxide(ITO), due to its inherent brittle nature and steadily rising price. Carbon-based materials are the most promising alternate flexible TCEs because of their abundant resources and simple, cost-effective fabrication processes. Among the carbon-based materials, one-dimensional(1D) carbon nanotubes, 2D graphene and 3D interpenetrating network conducting polymers are drawing extensive interest owning to the excellent optical transparency, conductivity, flexibility and chemical functionalization characteristics, leading to remarkable achievements in optoelectronic devices as TCEs. In this review, carbon-based flexible TCEs, including carbon nanotubes, graphene and conducting polymers, are introduced, including the basic optoelectronic properties, preparation methods, and pattern technologies. Furthermore, a comprehensive overview of recent research progress for the flexible OLEDs using carbon-based TCEs are presented and summarized. Finally, we address the key challenges in current scale production and applications, and provide some potential proposals for future flexible OLEDs.

Contents

1 Introduction

2 Carbon-based flexible transparent electrodes

2.1 Carbon nanotube electrode

2.2 Graphene electrode

2.3 Conductive polymer electrode

2.4 Pattern methods

3 Research progress of FOLEDs using carbon-based electrodes

3.1 FOLED based on carbon nanotube electrode

3.2 FOLED based on graphene electrode

3.3 FOLED based on conductive polymer electrode

3.4 FOLED based on composite electrode

4 Conclusion and outlook

Fig. 1 (a) SEM image of ultralong carbon nanotube sheet electrode[28]. Copyright 2005, American Association for the Advancement of Science;(b) Snake-shaped CNT electrode with a vertical array[23]. Copyright 2017, Wiley-VCH;(c) Schematic diagram of preparation of hexagonal meshed CNT electrode using PDMS template[30];(d) Schematic diagram of CNT electrode prepared on textile by spraying[32]. Copyright 2020, American Chemical Society;(e) Schematic diagram of activated carbon roller cleaning graphene surface;(f) AFM graph of graphene surface before and after cleaning[33]. Copyright 2019, Wiley-VCH
Table 1 Comparison of the performance, advantages and disadvantages of different transparent conducting electrode materials
Fig. 2 (a) Schematic diagram of screen printing;(b) Screen-printed grid-like PEDOT:PSS electrode diagram and schematic[70]. Copyright 2018, Wiley-VCH;(c) Patterned capacitor based on screen-printed honeycomb AgNW electrode[71]. Copyright 2019, Wiley-VCH;(d) Patterned electrodes prepared by 3D printing[72]. Copyright 2020, Springer Nature
Fig.3 (a) Patterned OLED prepared by inkjet printing electrode[73];(b) Patterned PEDOT:PSS electrodes transferred to the skin[83]. Copyright 2019, Wiley-VCH;(c) Patterned electrodes transferred to different substrates[84]. Copyright 2015, Wiley-VCH;(d) schematic diagram of directional wetting technology;(e) PEDOT: PSS stripe pattern formed by directional wetting[79]. Copyright 2019, Springer Nature;(f) SEM images of PEDOT: PSS arrays with different patterns[78]. Copyright 2011, Royal Society of Chemistry;(g) mask spraying process diagram and patterned devices[82]. Copyright 2018, Wiley-VCH
Fig. 4 (a) OLED device structure based on graphene electrode;(b) Photographs of OLED devices based on graphene electrodes during operation[87]. Copyright 2009, Royal Society of Chemistry;(c) OLED device structure based on four-layer graphene electrode;(d) J-V curves of OLED devices before and after PFSA doping[88]. Copyright 2018, Springer Nature;(e) Ultra-clean large-size transparent graphene electrode;(f) Large-size OLED based on ultra-clean graphene electrode[89]. Copyright 2017, Springer Nature;(g) SEM images of graphene electrodes with stripe arrays of different widths;(h) Schematic diagram of the prepared OLED device structure;(i) J-V curve of graphene OLED with different layers[90]. Copyright 2018, Wiley-VCH
Fig. 5 (a) Schematic diagram of the PEDOT:PSS film acting as a conductive electrode and a hole injection layer(AnoHIL);(b) Structure diagram of green OLED based on AnoHIL electrode[49]. Copyright 2017, Springer Nature;(c) The working picture of full-solution prepared double PEDOT: PSS electrode OLED;(d) OLED device structure of double PEDOT:PSS electrode prepared by full-solution methods[64]. Copyright 2017, Wiley-VCH;(e) OLED device structure based on graphene and CNT composite electrodes[95]. Copyright 1991, Royal Society of Chemistry
Table 2 Performance parameters of OLED devices based on different carbon-based electrodes
[1]
Pope M, Kallmann H P, Magnante P. J. Chem. Phys., 1963, 38(8):2042.

doi: 10.1063/1.1733929
[2]
Tang C W, VanSlyke S A. Appl. Phys. Lett., 1987, 51(12):913.

doi: 10.1063/1.98799
[3]
Gustafsson G, Cao Y, Treacy G M, Klavetter F, Colaneri N, Heeger A J. Nature, 1992, 357(6378):477.

doi: 10.1038/357477a0
[4]
Jou J H, Kumar S, Agrawal A, Li T H, Sahoo S. J. Mater. Chem. C, 2015, 3(13):2974.

doi: 10.1039/C4TC02495H
[5]
Ma D G. Chin. J. Liq. Cryst. Displays, 2016, 31(3):229.
( 马东阁. 液晶与显示, 2016, 31(3):229.)
[6]
Li W Z. Technol. Innov. Appli., 2020,(08):135.
( 李伟章. 科技创新与应用. 2020,(8):135.).
[7]
Xu X J. Doctoral Dissertation of Institute of Chemistry Chinese Academy of Sciences, 2007.
( 徐新军. 中国科学院化学研究所博士论文, 2007.).
[8]
Giovanni L, Giovanni F C, Aurelio B, Nicolas Z M, Giuseppe C, Björn K, Wang Q, Norbert K, Stefan H, Emil J W L, Franco C. Nanoscale, 2012, 12(9):5444.

doi: 10.1039/D0NR00724B
[9]
Han J W, Jung B, Kim D W, Lim K T, Jeong S Y, Kim Y H. Org. Electron., 2019, 73:13.

doi: 10.1016/j.orgel.2019.05.018
[10]
Wang B H, Facchetti A. Adv. Mater., 2019, 31(28):1901408.

doi: 10.1002/adma.v31.28
[11]
Chen Z H, Fang R, Li W, Guan J G. Adv. Mater., 2019, 31(35):1900756.

doi: 10.1002/adma.v31.35
[12]
Hao X M. Sens. World, 2019, 25(12):39.
( 郝晓明. 传感器世界, 2019, 25(12):39.)
[13]
Koo J H, Kim D C, Shim H J, Kim T H, Kim D H. Adv. Funct. Mater., 2018, 28(35):1801834.

doi: 10.1002/adfm.v28.35
[14]
Tao J S, Wang R P, Yu H, Chen L L, Fang D J, Tian Y, Xie J Y, Jia D M, Liu H, Wang J S, Tang F C, Song L, Li H B. ACS Appl. Mater. Interfaces, 2020, 12(8):9701.

doi: 10.1021/acsami.0c01048
[15]
Lim M S, Nam M, Choi S, Jeon Y, Son Y H, Lee S M, Choi K C. Nano Lett., 2020, 20(3):1526.

doi: 10.1021/acs.nanolett.9b03657
[16]
Kim K, Park Y G, Hyun B G, Choi M, Park J U. Adv. Mater., 2019, 31(20):1804690.

doi: 10.1002/adma.v31.20
[17]
Wei B W, Wu X K, Lian L, Yang S, Dong D, Feng D X, He G F. Org. Electron., 2017, 43:182.

doi: 10.1016/j.orgel.2017.01.030
[18]
Iijima S, Ichihashi T. Nature, 1993, 363(6430):603.

doi: 10.1038/363603a0
[19]
Guo X Q, Bai Y Q, Bai Q Z, Wen N, Nie N. Carbon, 2018, (2):40.
( 郭晓琦, 白云起, 白青子, 温楠, 聂宁. 炭素, 2018, (2):40.).
[20]
Qu T Y, Sun Y, Chen M L, Liu Z B, Zhu Q B, Wang B W, Zhao T Y, Liu C, Tan J, Qiu S, Li Q W, Han Z, Wang W, Cheng H M, Sun D M. Adv. Mater., 2020, 32(9):1907288.

doi: 10.1002/adma.v32.9
[21]
Li X L. Mod. Manuf. Technol. Equip., 2019, (4): 106,114.
( 李晓丽. 现代制造技术与装备, 2019, (4): 106,114.).
[22]
Su W G, Zhang C. Mod. Chem. Ind., 2019, 39(7):89.
( 苏暐光, 张策. 现代化工, 2019, 39(7):89.)
[23]
Hong S, Lee J, Do K, Lee M, Kim J H, Lee S, Kim D H. Adv. Funct. Mater., 2017, 27(48):1704353.

doi: 10.1002/adfm.v27.48
[24]
Yue C. Sci. Technol. Rev., 2012, 30(26):8.
( 岳臣. 科技导报, 2012, 30(26):8.)
[25]
Shen Q J, Liu X B, Jin W J. New Carbon Mater., 2013, 28(2):94.
( 申前进, 刘新斌, 晋卫军. 新型炭材料, 2013, 28(2):94.)
[26]
Zhang Y, Liu R N, Deng J H. Acad. J ZNU(Nat. Sci.), 2019, 39(2):21.

doi: 10.1007/BF00591920
( 张燕, 刘瑞楠, 邓建华. 天津师范大学学报(自然科学版), 2019, 39(2):21.)
[27]
de Volder M F L, Tawfick S H, Baughman R H, Hart A J. Science, 2013, 339(6119):535.

doi: 10.1126/science.1222453
[28]
Zhang M, Fang S, Zakhidov A A, Lee S B, Aliev A E, Williams C D, Atkinson K R, Baughman R H. Science, 2005, 309(5738):1215.

doi: 10.1126/science.1115311
[29]
Lipomi D J, Vosgueritchian M, Tee B C K, Hellstrom S L, Lee J A, Fox C H, Bao Z N. Nat. Nanotechnol., 2011, 6(12):788.

doi: 10.1038/nnano.2011.184
[30]
Min H, Jang S, Kim D W, Kim J, Baik S, Chun S, Pang C. ACS Appl. Mater. Interfaces, 2020, 12(12):14425.

doi: 10.1021/acsami.9b23400
[31]
Sadi M S, Pan J J, Xu A C, Cheng D S, Cai G M, Wang X. Cellulose, 2019, 26(12):7569.

doi: 10.1007/s10570-019-02628-1
[32]
Gao Y, Guo F Y, Cao P, Liu J C, Li D M, Wu J, Wang N, Su Y W, Zhao Y. ACS Nano, 2020, 14(3):3442.

doi: 10.1021/acsnano.9b09533
[33]
Sun L Z, Lin L, Wang Z H, Rui D R, Yu Z W, Zhang J C, Li Y, Liu X T, Jia K C, Wang K X, Zheng L M, Deng B, Ma T B, Kang N, Xu H Q, Novoselov K S, Peng H L, Liu Z F. Adv. Mater., 2019, 31(43):1970303.

doi: 10.1002/adma.v31.43
[34]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696):666.

doi: 10.1126/science.1102896
[35]
Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Röhrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B, Seyller T. Nat. Mater., 2009, 8(3):203.

doi: 10.1038/nmat2382
[36]
Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Science, 2009, 324(5932):1312.

doi: 10.1126/science.1171245
[37]
Choucair M, Thordarson P, Stride J A. Nat. Nanotechnol., 2009, 4(1):30.

doi: 10.1038/nnano.2008.365
[38]
Zhao J P, Pei S F, Ren W C, Gao L B, Cheng H M. ACS Nano, 2010, 4(9):5245.

doi: 10.1021/nn1015506
[39]
Ling B K, Que W X, Zhou K, Li S, Zhang T S. Adv. Struct. Mater., 2017, 83:177.
[40]
Ma L P, Ren W C, Cheng H M. Small Methods, 2019, 3(7):1900049.

doi: 10.1002/smtd.v3.7
[41]
Bae S K, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song Y I, Kim Y J, Kim K S, Özyilmaz B, Ahn J H, Hong B H, Iijima S. Nat. Nanotechnol., 2010, 5(8):574.

doi: 10.1038/nnano.2010.132
[42]
Wu T L, Yeh C H, Hsiao W T, Huang P Y, Huang M J, Chiang Y H, Cheng C H, Liu R S, Chiu P W. ACS Appl. Mater. Interfaces, 2017, 9(17):14998.

doi: 10.1021/acsami.7b03597
[43]
Kwon S J, Han T H, Ko T Y, Li N N, Kim Y, Kim D J, Bae S H, Yang Y, Hong B H, Kim K S, Ryu S, Lee T W. Nat. Commun., 2018, 9:2037.

doi: 10.1038/s41467-018-04385-4
[44]
Song J, Lee H, Jeong E G, Choi K C, Yoo S. Adv. Mater., 2020, 32(35):1907539.

doi: 10.1002/adma.v32.35
[45]
Khasim S, Pasha A, Badi N, Lakshmi M, Mishra Y K. RSC Adv., 2020, 10(18):10526.

doi: 10.1039/D0RA01116A
[46]
Sirringhaus H, Kawase T, Friend R H, Shimoda T, Inbasekaran M, Wu W, Woo E P. Science, 2000, 290(5499):2123.

doi: 10.1126/science.290.5499.2123
[47]
Bießmann L, Saxena N, Hohn N, Hossain M A, Veinot J G C, Müller-Buschbaum P. Adv. Electron. Mater., 2019, 5(2):1800654.

doi: 10.1002/aelm.v5.2
[48]
Kim T, Park S, Seo J, Lee C W, Kim J. Org. Electron., 2019, 74:77.

doi: 10.1016/j.orgel.2019.06.033
[49]
Jeong S H, Woo S H, Han T H, Park M H, Cho H, Kim Y H, Cho H, Kim H, Yoo S, Lee T W. NPG Asia Mater., 2017, 9(7):e411.

doi: 10.1038/am.2017.108
[50]
Nardes A M, Kemerink M, de Kok M M, Vinken E, Maturova K, Janssen R A J. Org. Electron., 2008, 9(5):727.

doi: 10.1016/j.orgel.2008.05.006
[51]
Oh J Y, Shin M, Lee J B, Ahn J H, Baik H K, Jeong U. ACS Appl. Mater. Interfaces, 2014, 6(9):6954.

doi: 10.1021/am500769k
[52]
Song W, Fanady B, Peng R X, Hong L, Wu L R, Zhang W X, Yan T T, Wu T, Chen S H, Ge Z Y. Adv. Energy Mater., 2020, 10(15):2000136.

doi: 10.1002/aenm.v10.15
[53]
Kim D H, Park N H, Kim T W. Nano Energy, 2019, 65:104027.

doi: 10.1016/j.nanoen.2019.104027
[54]
Zheng Y Q, Yu J L, Wang C, Yang F, Wei B, Zhang J H, Zeng C H, Yang Y. J. Phys. D: Appl. Phys., 2018, 51(22):225302.

doi: 10.1088/1361-6463/aabf7c
[55]
Teo M Y, Kim N, Kee S, Kim B S, Kim G, Hong S, Jung S, Lee K. ACS Appl. Mater. Interfaces, 2017, 9(1):819.

doi: 10.1021/acsami.6b11988
[56]
Wang Y, Zhu C X, Raphael P, Bao Z N. Sci. Adv., 2017, 3(3):1602076.

doi: 10.1126/sciadv.1602076 pmid: 28345040
[57]
Huseynova G, Hyun Kim Y, Lee J H, Lee J. J. Inf. Disp., 2020, 21(2):71.

doi: 10.1080/15980316.2019.1707311
[58]
Luo R B, Li H B, Du B, Zhou S S, Zhu Y X. Org. Electron., 2020, 76:105451.

doi: 10.1016/j.orgel.2019.105451
[59]
Kim N, Lienemann S, Petsagkourakis I, Alemu Mengistie D, Kee S, Ederth T, Gueskine V, Leclère P, Lazzaroni R, Crispin X, Tybrandt K. Nat. Commun., 2020, 11(1):1.

doi: 10.1038/s41467-019-13993-7
[60]
Zhang H K, Zhang Y K, Yang G, Ren Z W, Yu W, Shen D, Lee C S, Zheng Z J, Li G. Sci. China Chem., 2019, 62(7):875.

doi: 10.1007/s11426-019-9481-3
[61]
Dong Q F, Zhou Y H, Pei J N, Liu Z Y, Li Y W, Yao S Y, Zhang J B, Tian W J. Org. Electron., 2010, 11(7):1327.

doi: 10.1016/j.orgel.2010.04.012
[62]
Kang D J, Cho H H, Lee I, Kim K H, Kim H J, Liao K, Kim T S, Kim B J. ACS Appl. Mater. Interfaces, 2015, 7(4):2668.

doi: 10.1021/am507710p
[63]
Zhong Z M, Ma Y W, Liu H L, Peng F, Ying L, Wang S R, Li X G, Peng J B, Cao Y. ACS Appl. Mater. Interfaces, 2020, 12(18):20750.

doi: 10.1021/acsami.0c03821
[64]
Kee S, Kim N, Park B, Kim B S, Hong S, Lee J, Jeong S, Kim A, Jang S, Lee K. Adv. Mater., 2018, 30(3):1703437.

doi: 10.1002/adma.v30.3
[65]
Woon K L, Wong W S, Chanlek N, Nakajima H, Tunmee S, Lee V S, Ariffin A, Songsiriritthigul P. RSC Adv., 2020, 10(30):17673.

doi: 10.1039/D0RA02575E
[66]
Cai W Z, Österberg T, Jafari M J, Musumeci C, Wang C F, Zuo G Z, Yin X L, Luo X H, Johansson J, Kemerink M, Ouyang L Q, Ederth T, Inganäs O. J. Mater. Chem. C, 2020, 8(1):328.

doi: 10.1039/C9TC05018C
[67]
Chen Y, Zhang N, Li Y F, Bi Y G, Yue Y Y, Feng J, Sun H B. Adv. Opt. Mater., 2018, 6(13):1701348.

doi: 10.1002/adom.v6.13
[68]
Jung W B, Jang S, Cho S Y, Jeon H J, Jung H T. Adv. Mater., 2020, 32(35):1907101.

doi: 10.1002/adma.v32.35
[69]
Cui N, Tang Q X, Ren H, Zhao X L, Tong Y H, Liu Y C. J. Mater. Chem. C, 2019, 7(18):5385.

doi: 10.1039/C9TC01182J
[70]
Zhou L, Yu M J, Chen X L, Nie S H, Lai W Y, Su W M, Cui Z, Huang W. Adv. Funct. Mater., 2018, 28(11):1870072.

doi: 10.1002/adfm.v28.11
[71]
Li D D, Liu X, Chen X, Lai W Y, Huang W. Adv. Mater. Technol., 2019, 4(8):1900196.

doi: 10.1002/admt.v4.8
[72]
Yuk H, Lu B Y, Lin S, Qu K, Xu J K, Luo J H, Zhao X H. Nat. Commun., 2020, 11:1604.

doi: 10.1038/s41467-020-15316-7
[73]
Park J, Yoon H, Kim G, Lee B, Lee S, Jeong S, Kim T, Seo J, Chung S, Hong Y. Adv. Funct. Mater., 2019, 29(34):1902412.

doi: 10.1002/adfm.v29.34
[74]
Yoon D, Kang M Y, Kim J, Kang K T. Appl. Sci., 2018, 8(2):203.

doi: 10.3390/app8020203
[75]
Ding Z C, Xing R B, Fu Q, Ma D G, Han Y C. Org. Electron., 2011, 12(4):703.

doi: 10.1016/j.orgel.2011.01.027
[76]
Fanzio P, Cagliani A, Peterffy K G, Sasso L. Microelectron. Eng., 2017, 176:15.

doi: 10.1016/j.mee.2017.01.011
[77]
Wang S J, Dou X Y, Chen L, Fang Y, Wang A Q, Shen H B, Du Z L. Nanoscale, 2018, 10(24):11651.

doi: 10.1039/C8NR02082E
[78]
Radivo A, Sovernigo E, Caputo M, Zilio S D, Endale T, Pozzato A, Goldoni A, Tormen M. RSC Adv., 2014, 4(64):34014.

doi: 10.1039/C4RA04807E
[79]
Kang S J, Lee B Y, Lee S H, Lee S D. Sci. Rep., 2019, 9:13066.

doi: 10.1038/s41598-019-49322-7
[80]
Zhang M, Höfle S, Czolk J, Mertens A, Colsmann A. Nanoscale, 2015, 7(47):20009.

doi: 10.1039/c5nr05820a pmid: 26566172
[81]
Kim G, Shin D, Lee J, Park J. Org. Electron., 2019, 66:116.

doi: 10.1016/j.orgel.2018.12.033
[82]
Han D, Khan Y, Gopalan K, Pierre A, Arias A C. Adv. Funct. Mater., 2018, 28(37):1802986.

doi: 10.1002/adfm.v28.37
[83]
Zhang S M, Ling H N, Chen Y H, Cui Q Y, Ni J H, Wang X C, Hartel M C, Meng X, Lee K, Lee J, Sun W J, Lin H S, Emaminejad S, Ahadian S, Ashammakhi N, Dokmeci M R, Khademhosseini A. Adv. Funct. Mater., 2020, 30(6):1906016.

doi: 10.1002/adfm.v30.6
[84]
Kim N, Kang H, Lee J H, Kee S, Lee S H, Lee K. Adv. Mater., 2015, 27(14):2317.

doi: 10.1002/adma.v27.14
[85]
Jiang S, Hou P X, Chen M L, Wang B W, Sun D M, Tang D M, Jin Q, Guo Q X, Zhang D D, Du J H, Tai K P, Tan J, Kauppinen E I, Liu C, Cheng H M. Sci. Adv., 2018, 4(5):9264.

doi: 10.1126/sciadv.aap9264 pmid: 29736413
[86]
Yu Z B, Liu Z T, Wang M L, Sun M L, Lei G T, Pei Q B. J. Photon. Energy, 2011, 1(1):11003.

doi: 10.1117/1.3528271
[87]
Jia S, Sun H D, Du J H, Zhang Z K, Zhang D D, Ma L P, Chen J S, Ma D G, Cheng H M, Ren W C. Nanoscale, 2016, 8(20):10714.

doi: 10.1039/c6nr01649a pmid: 27153523
[88]
Kwon S J, Han T H, Ko T Y, Li N N, Kim Y, Kim D J, Bae S H, Yang Y, Hong B H, Kim K S, Ryu S, Lee T W. Nat. Commun., 2018, 9:2037.

doi: 10.1038/s41467-018-04385-4
[89]
Zhang Z K, Du J H, Zhang D D, Sun H D, Yin L C, Ma L P, Chen J S, Ma D G, Cheng H M, Ren W C. Nat. Commun., 2017, 8:14560.

doi: 10.1038/ncomms14560
[90]
Chen Y, Zhang N, Li Y F, Bi Y G, Yue Y Y, Feng J, Sun H B. Adv. Opt. Mater., 2018, 6(13):1701348.

doi: 10.1002/adom.v6.13
[91]
Chen S F, Zhang Q, Shang W J, Liu L H, Yu H T, Zhang S, Deng L L, Wang M, Wang M H, Li X, Mi B X, Huang W. Sci. Rep., 2018, 8:8155.

doi: 10.1038/s41598-018-26464-8
[92]
Wu T L, Yeh C H, Hsiao W T, Huang P Y, Huang M J, Chiang Y H, Cheng C H, Liu R S, Chiu P W. ACS Appl. Mater. Interfaces, 2017, 9(17):14998.

doi: 10.1021/acsami.7b03597
[93]
Liu L H, Shang W J, Han C, Zhang Q, Yao Y, Ma X Q, Wang M H, Yu H T, Duan Y, Sun J, Chen S F, Huang W. ACS Appl. Mater. Interfaces, 2018, 10(8):7289.

doi: 10.1021/acsami.7b19039
[94]
Zhang Q, Chen S F, Zhang S, Shang W J, Liu L H, Wang M H, Yu H T, Deng L L, Qi G Q, Wang L Y, Han S Y, Hu B, Kang Q, Liu Y J, Yi M D, Ma Y W, Yang W J, Feng J, Liu X G, Sun H B, Huang W. J. Mater. Chem. C, 2018, 6(8):1926.

doi: 10.1039/C7TC05148D
[95]
Lee B R, Kim J S, Nam Y S, Jeong H J, Jeong S Y, Lee G W, Han J T, Song M H. J. Mater. Chem., 2012, 22(40):21481.

doi: 10.1039/c2jm34700h
[96]
Kim N, Kee S, Lee S H, Lee B H, Kahng Y H, Jo Y R, Kim B J, Lee K. Adv. Mater., 2014, 26(14):2268.

doi: 10.1002/adma.v26.14
[97]
Fehse K, Walzer K, Leo K, Lövenich W, Elschner A. Adv. Mater., 2007, 19(3):441.

doi: 10.1002/(ISSN)1521-4095
[98]
Seo Y K, Joo C W, Lee J, Han J W, Cho N S, Lim K T, Yu S, Kang M H, Yun C H, Choi B H, Kim Y H. Org. Electron., 2017, 42:348.

doi: 10.1016/j.orgel.2016.12.059
[99]
Hippola C, Kaudal R, Manna E, Xiao T, Peer A, Biswas R, Slafer W D, Trovato T, Shinar J, Shinar R. Adv. Opt. Mater., 2018, 6(4):1701244.

doi: 10.1002/adom.v6.4
[100]
Cai M, Ye Z, Xiao T, Liu R, Chen Y, Mayer R W, Biswas R, Ho K M, Shinar R, Shinar J. Adv. Mater., 2012, 24(31):4337.

doi: 10.1002/adma.v24.31
[101]
Ang P Y, Will P A, Lenk S, Fischer A, Reineke S. Sci. Rep., 2019, 9:18601.

doi: 10.1038/s41598-019-54640-x
[102]
Höfle S, Schienle A, Bruns M, Lemmer U, Colsmann A. Adv. Mater., 2014, 26(17):2750.

doi: 10.1002/adma.201304666
[103]
Chiba T, Pu Y J, Kido J. Adv. Mater., 2015, 27(32):4681.

doi: 10.1002/adma.v27.32
[104]
Liu S H, Yu H W, Zhang Q Y, Qin F S, Zhang X, Zhang L T, Xie W F. J. Mater. Chem. C, 2019, 7(18):5426.

doi: 10.1039/C9TC00648F
[105]
Zhen H Y, Chen Y X, Zhang C L, Zhou Z G, Li K, Zhao Y, Mei X F, Ling Q D. J. Mater. Chem. C, 2017, 5(26):6400.

doi: 10.1039/C7TC01183K
[106]
Zimmermann J, Schlisske S, Held M, Tisserant J N, Porcarelli L, Sanchez-Sanchez A, Mecerreyes D, Hernandez-Sosa G. Adv. Mater. Technol., 2019, 4(3):1800641.

doi: 10.1002/admt.v4.3
[107]
Matyba P, Yamaguchi H, Eda G, Chhowalla M, Edman L, Robinson N D. ACS Nano, 2010, 4(2):637.

doi: 10.1021/nn9018569 pmid: 20131906
[108]
Liang J J, Li L, Niu X F, Yu Z B, Pei Q B. Nat. Photonics, 2013, 7(10):817.

doi: 10.1038/nphoton.2013.242
[109]
Shu Z, Kemper F, Beckert E, Eberhardt R, Tünnermann A. Mater. Today: Proc., 2017, 4(4):5039.
[110]
Li H Y, Liu Y F, Su A Y, Wang J T, Duan Y. Sci. Rep., 2019, 9:17998.

doi: 10.1038/s41598-019-54424-3
[111]
Meng H, Luo J X, Wang W, Shi Z J, Niu Q L, Dai L, Qin G G. Adv. Funct. Mater., 2013, 23(26):3324.

doi: 10.1002/adfm.v23.26
[112]
Gu Z Z, Tian Y, Geng H Z, Rhen D S, Ethiraj A S, Zhang X C, Jing L C, Wang T, Xu Z H, Yuan X T. Appl. Nanosci., 2019, 9(8):1971.

doi: 10.1007/s13204-019-01006-4
[113]
Gan D L, Huang Z Q, Wang X, Jiang L L, Wang C M, Zhu M Y, Ren F Z, Fang L M, Wang K F, Xie C M, Lu X. Adv. Funct. Mater., 2020, 30(5):1907678.

doi: 10.1002/adfm.v30.5
[114]
Nair N M, Pakkathillam J K, Kumar K, Arunachalam K, Ray D, Swaminathan P. ACS Appl. Electron. Mater., 2020, 2(4):1000.

doi: 10.1021/acsaelm.0c00061
[115]
Zhang Q, Lu Y, Liu Z W, Yu H T, Duan Y, Liu L H, Chen S F, Huang W. Org. Electron., 2019, 72:30.

doi: 10.1016/j.orgel.2019.05.046
[1] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[2] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[3] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[4] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[5] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[6] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[7] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[8] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[9] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.
[10] Le Gong, Rong Yang, Rui Liu, Liping Chen, Yinglin Yan, Zufei Feng. Application of Graphene Quantum Dots in Energy Storage Devices [J]. Progress in Chemistry, 2019, 31(7): 1020-1030.
[11] Jie Liu, Yuan Zeng, Jun Zhang, Haijun Zhang, Jianghao Liu. Preparation, Structures and Properties of Three-Dimensional Graphene-Based Materials [J]. Progress in Chemistry, 2019, 31(5): 667-680.
[12] Aobo Geng, Qiang Zhong, Changtong Mei, Linjie Wang, Lijie Xu, Lu Gan. Applications of Wet-Functionalized Graphene in Rubber Composites [J]. Progress in Chemistry, 2019, 31(5): 738-751.
[13] Xiaojuan Wang, Zhenzhen Liu, Qi Chen, Xiaoqiang Wang, Fang Huang. Interactions between Graphene Materials and Proteins [J]. Progress in Chemistry, 2019, 31(2/3): 236-244.
[14] Changyuan Bao, Jiajun Han*, Jinning Cheng, Ruitao Zhang. Electrode Materials Blended with Graphene/Polyaniline for Supercapacitor [J]. Progress in Chemistry, 2018, 30(9): 1349-1363.
[15] Qi-Feng Zhou, Bo Jiang*, Hai-Bo Yang*. Design and Synthesis of Conjugated Aromatic Macrocyclic Rings That Can Serve as Carbon Nanotube Segments [J]. Progress in Chemistry, 2018, 30(5): 628-638.