中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (8): 1734-1747 DOI: 10.7536/PC211013 Previous Articles   Next Articles

• Review •

Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal

Meng Wang(), He Song, Yewen Li   

  1. School of Mechanical Electronic and Information Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
  • Received: Revised: Online: Published:
  • Contact: Meng Wang
  • Supported by:
    National Natural Science Foundation of China(52003293); National Natural Science Foundation of China(51927806); Fundamental Research Funds for the Central Universities(2021YQJD16); Training Program of Innovation and Entrepreneurship for Undergraduates of Beijing(202011413133)
Richhtml ( 19 ) PDF ( 360 ) Cited
Export

EndNote

Ris

BibTeX

Blue phase (BP) liquid crystals have been regarded as one kind of the most promising candidates for tunable three-dimensional photonic crystals due to their unique 3D self-assembly nanostructures, photonic bandgaps in visible light range and characteristics of soft matter. They exhibit great potential in numerous applications such as next-generation ultra-fast displays, reflection-mode displays, tunable lasers and optical communication devices. Herein, we provide the research advancement in the self-assembly structures of blue phase liquid crystals in recent years. First, the latest research on the hierarchical self-assembly of three-dimensional micro/nano structural and phase transition behaviors between three sub-phases are introduced. Then, the control methods of their self-assembly behavior or three-dimensional periodic lattice structures are demonstrated in detail. The lattice nucleation growth and lattice orientation of BPI and BPII can be modulated by substrate surface orientation treatment or nano patterning treatment. Owing to the response characteristics of BPs to external electric field, monodomain cubic crystals of BP or new sub-phase with non-cubic nanostructure can be obtained by controlling applied electric field. Besides, BP photonic crystals with different plane orientations can be obtained in a short time by appropriate heat treatment. These studies provide theoretical foundation for the appreciable application of BP materials in three-dimensional photonic crystals and functional devices. For example, the applications of blue phase liquid crystalline photonic crystal materials in optical fields such as tunable laser and tunable grating are shown. At the end of this review, the challenges and possible development direction of blue phase liquid crystalline photonic crystal is prospected briefly.

Contents

1 Introduction

2 Self-assembled structures and phase transition processes of blue phases

2.1 Self-assembled structures and their characteristics

2.2 Phase transition processes between three sub-phases

3 Control methods of 3D self-assembled crystal structures of blue phases

3.1 Crystal orientation induced by substrate surface

3.2 Effects of electric field on blue phases

3.3 Crystal orientation induced by heat treatment

4 Applications of blue phase liquid crystalline photonic crystal in optical field

5 Conclusion

Fig. 1 (a) Schematic arrangement of the double twist cylinders. Copyright 2008, Springer Science and Business Media. (b) The body-centered cubic structures, defect mode and typical POM texture of BPI. (c) The sample cubic structures, defect mode and typical POM texture of BPII. (d) The amorphous structure and typical POM texture of BPIII
Fig. 2 (a) Schematic illustration, POM images and reflection spectra of the five stage for the phase-transition process of BPLCs before and after polymerization. (b) TEM images and syn-SAXS analysis of the BP samples in Stage III[53]. Copyright 2021, Nature Publishing Group
Fig. 3 POM textures and corresponding Kossel diagrams under different temperature of the BP samples in two different LC cells. (a) Untreated cell. (b) PI-coated homogeneous cell with parallel rubbing alignment[54]. Copyright 2011, Optical Society of America
Fig. 4 Possible mechanism diagrams of crystal growth of BPLCs with different surface treatment[58]. Copyright 2016, Optical Society of America
Fig. 5 POM images and corresponding Kossel pattern for monocrystalline BP prepared by rapid cooling in the nylon-coated parallel orientation LC cell[61]. Copyright 2020, Optical Society of America
Fig. 6 The BP samples with crystallographic orientation pattern can be erased and rewritten by sequential UV-irradiation and electric-field stimulation[63]. Copyright 2017, Wiley-VCH
Fig. 7 POM images and Kossel diagrams of BP samples during cooling processes prepared using rubbing cell and photoalignment cell respectively[64]. Copyright 2018, IOP Publishing
Fig. 8 (a) Influence of patterned surfaces on the orientation of different liquid crystal phases[65]. Copyright 2017, Nature Publishing Group. (b) POM images of the BP samples with different chemical stripe patterned surface[67]. Copyright 2019, American Chemical Society. (c) POM images and Kossel diagrams of the BP sample with surface pattern orientation controlled by temperature or electric field[68]. Copyright 2019, American Association for the Advancement of Science
Fig. 9 (a) Schematic diagram of Kerr effect. (b) POM images of BP samples reoriented by electric field[78]. (c) Schematics and Kossel diagrams of BPI lattice structure induced by electrostriction[78]. Copyright 2020, Nature Publishing Group. (d) POM images and Kossel diagrams of BPII during field-induced phase transition process[78]. Copyright 2020, Nature Publishing Group
Fig. 10 (a) POM images of BP samples in the untreated LC cell. (b) POM images of BP samples oriented by electric field by electric field. (c) Photos of BP samples at different view angles after electric field orientation[74]. Copyright 2013, AIP Publishing LLC
Fig. 11 Strategy to achieve large distortion and non-cubic lattice of BPI with multiple applications of electric field[78]. Copyright 2020, Nature Publishing Group
Fig. 12 (a) Formation of large BPI single crystals by gradient-temperature scanning (GTS). (b) Microscope image of a 3 mm-long BPI single crystal fabricated by GTS. (c) picture of the samples prepared by GTS[83]. Copyright 2017, Nature Publishing Group
Fig. 13 (a) Lasing spectra of BPII sample measured in the three orthogonal directions. (b) The configuration used in measurements and schematics of lasing in BPII[39]. Copyright 2002, Nature Publishing Group
Fig. 14 (a) Schematics for the voltage-polarity-controlled selective reflection light of the PSBP sample[86]. Copyright 2017, Wiley-VCH. (b) SEM images of the templated BP samples after polymerization under different electric field. (c) POM images of the template BP laser under different DC field strength. (d) Reflection spectra, fluorescence spectra and laser emission spectra under different electric field of the template BP laser[87]. Copyright 2018, Wiley-VCH
Fig. 15 (a) Diffraction effects of BP sample with reflection wavelength in 532 nm under no applied bias to incident light in different wavelength. (b) Diffraction effects of BP sample with reflection wavelength red-shifted to 587 nm under applied bias to incident light in different wavelength[63]. Copyright 2017, Wiley-VCH
[1]
Baba T. Nat. Photonics, 2008, 2(8): 465.

doi: 10.1038/nphoton.2008.146
[2]
Beeckman J. Opt. Eng, 2011, 50(8): 081202.
[3]
Mysliwiec J, Szukalska A, Szukalski A, Sznitko L. Nanophotonics, 2021, 10(9): 2309.

doi: 10.1515/nanoph-2021-0096
[4]
Zhang H J, Wang S R, Xiao Y, Li X G. Prog. Chem., 2014, 26(10): 1690.
张慧捷, 王世荣, 肖殷, 李祥高. 化学进展, 2014, 26(10): 1690.).

doi: 10.7536/PC140515
[5]
Ford A D, Morris S M, Coles H J. Mater. Today, 2006, 9(7/8): 36.
[6]
Coles H, Morris S. Nat. Photonics, 2010, 4(10): 676.

doi: 10.1038/nphoton.2010.184
[7]
Kato T. Liquid crystalline functional assemblies and their supramolecular structures. Berlin: Springer Berlin Heidelberg, 2008..
[8]
Coates D, Gray G W. Phys. Lett. A, 1973, 45(2): 115.

doi: 10.1016/0375-9601(73)90448-9
[9]
Kikuchi H, Yokota M, Hisakado Y, Yang H, Kajiyama T. Nat. Mater., 2002, 1(1): 64.

doi: 10.1038/nmat712
[10]
Zheng Z G, Wang H F, Zhu G, Lin X W, Li J N, Hu W, Cui H Q, Shen D, Lu Y Q. J. Soc. Inf. Display, 2012, 20(6): 326.

doi: 10.1889/JSID20.6.326
[11]
Li X, Yang W Q, Yuan C L, Liu Z, Zhou K, Wang X Q, Shen D, Zheng Z G. Sci. Rep., 2017, 7: 10383.
[12]
Coles H J, Pivnenko M N. Nature, 2005, 436(7053): 997.

doi: 10.1038/nature03932
[13]
Hu W, Wang L, Wang M, Zhong T J, Wang Q, Zhang L Y, Chen F W, Li K X, Miao Z C, Yang D K, Yang H. Nat. Commun., 2021, 12: 1440.

doi: 10.1038/s41467-021-21564-y
[14]
Nakata M, Takanishi Y, Watanabe J, Takezoe H. Phys. Rev. E, 2003, 68(4): 041710.
[15]
Yoshizawa A, Sato M, Rokunohe J. J. Mater. Chem., 2005, 15(32): 3285.

doi: 10.1039/b506167a
[16]
Zheng Z G, Shen D, Huang P. New J. Phys., 2010, 12(11): 113018.
[17]
Wang L, He W L, Xiao X, Wang M, Wang M, Yang P, Zhou Z J, Yang H, Yu H F, Lu Y F. J. Mater. Chem., 2012, 22(37): 19629.
[18]
He W L, Pan G H, Yang Z, Zhao D Y, Niu G G, Huang W, Yuan X T, Guo J B, Cao H, Yang H. Adv. Mater., 2009, 21(20): 2050.

doi: 10.1002/adma.200802927
[19]
Yoshida H, Tanaka Y, Kawamoto K, Kubo H, Tsuda T, Fujii A, Kuwabata S, Kikuchi H, Ozaki M. Appl. Phys. Express, 2009, 2(12): 121501.
[20]
Karatairi E, Rožič B, Kutnjak Z, Tzitzios V, Nounesis G, Cordoyiannis G, Thoen J, Glorieux C, Kralj S. Phys. Rev. E, 2010, 81(4): 041703.
[21]
Yan J, Wu S T. Opt. Mater. Express, 2011, 1(8): 1527.

doi: 10.1364/OME.1.001527
[22]
Yoshizawa A. RSC Adv., 2013, 3(48): 25475.
[23]
Chen Y, Wu S T. J. Appl. Polym. Sci., 2014, 131(15): 40780.
[24]
Rahman M D A, Mohd Said S, Balamurugan S. Sci. Technol. Adv. Mater., 2015, 16(3): 033501.
[25]
Yang J J, Zhao W D, He W L, Yang Z, Wang D, Cao H. J. Mater. Chem. C, 2019, 7(43): 13352.
[26]
He W L, Wang L, Wang L, Cui X P, Xie M W, Yang H. Prog. Chem., 2012, 24(1): 182.
何万里, 王玲, 王乐, 崔晓鹏, 谢谟文, 杨槐. 化学进展, 2012, 24(1): 182.).
[27]
Wang L, Li Q. Advanced Functional Materials, 2016, 26: 10.

doi: 10.1002/adfm.201502071
[28]
Bisoyi H K, Li Q. Acc. Chem. Res., 2014, 47(10): 3184.

doi: 10.1021/ar500249k
[29]
Wang L, Urbas A M, Li Q. Adv. Mater., 2020, 32(41): 1801335.
[30]
Liu Z, Shen D, Wang X Q, Zheng Z G. Chin. J. Liq. Cryst. Disp., 2017, 32(5): 325.
刘桢, 沈冬, 王骁乾, 郑致刚. 液晶与显示, 2017, 32(5): 325.).
[31]
Yang M Y, Yang X, Feng W, Wang L. Chin. J. Liq. Cryst. Disp., 2020, 35(7): 631.
杨梦园, 杨潇, 封伟, 王玲. 液晶与显示, 2020, 35(7): 631.).
[32]
Xu X W, Liu Y J, Luo D. Chin. J. Liq. Cryst. Disp., 2020, 35(7): 685.
续晓婉, 刘言军, 罗丹. 液晶与显示, 2020, 35(7): 685.).
[33]
Cui H R, Lu M L, Zhao D Y. Chin. J. Liq. Cryst. Disp., 2021, 36(4): 493.
崔化若, 逯孟丽, 赵东宇. 液晶与显示, 2021, 36(4): 493.).
[34]
Zhou K, Bisoyi H K, Jin J Q, Yuan C L, Liu Z, Shen D, Lu Y Q, Zheng Z G, Zhang W A, Li Q. Adv. Mater., 2018, 30(26): 1800237.
[35]
Yang J J, Zhao W D, Yang Z, He W L, Wang J X, Ikeda T, Jiang L. J. Mater. Chem. C, 2019, 7(44): 13764.
[36]
Zheng Z G, Lu Y Q, Li Q. Adv. Mater., 2020, 32(41): 1905318.
[37]
Chen K M, Gauza S, Xianyu H Q, Wu S T. J. Display Technol., 2010, 6(2): 49.

doi: 10.1109/JDT.2009.2037981
[38]
Huang Y G, Chen H W, Tan G J, Tobata H, Yamamoto S I, Okabe E, Lan Y F, Tsai C Y, Wu S T. Opt. Mater. Express, 2017, 7(2): 641.

doi: 10.1364/OME.7.000641
[39]
Cao W Y, Muñoz A, Palffy-Muhoray P, Taheri B. Nat. Mater., 2002, 1(2): 111.

doi: 10.1038/nmat727
[40]
Yokoyama S, Mashiko S, Kikuchi H, Uchida K, Nagamura T. Adv. Mater., 2006, 18(1): 48.

doi: 10.1002/adma.200501355
[41]
Castles F, Day F V, Morris S M, Ko D H, Gardiner D J, Qasim M M, Nosheen S, Hands P J W, Choi S S, Friend R H, Coles H J. Nat. Mater., 2012, 11(7): 599.

doi: 10.1038/nmat3330 pmid: 22581313
[42]
Yan J, Li Y, Wu S T. Opt. Lett., 2011, 36(8): 1404.

doi: 10.1364/OL.36.001404
[43]
Li Y, Wu S T. Opt. Express, 2011, 19(9): 8045.

doi: 10.1364/OE.19.008045
[44]
Ravnik M, Alexander G P, Yeomans J M, Žumer S. PNAS, 2011, 108(13): 5188.

doi: 10.1073/pnas.1015831108 pmid: 21368186
[45]
Henrich O, Stratford K, Cates M E, Marenduzzo D. Phys. Rev. Lett., 2011, 106(10): 107801.
[46]
Dierking I. Textures of Liquid Crystals. Weinheim Germany: Wiley-VCH Verlag, 2003.
[47]
Hornreich R M, Shtrikman S, Sommers C. Phys. Rev. E, 1993, 47(3): 2067.

pmid: 9960227
[48]
Miller R J, Gleeson H F. Journal of Physics B: Atomic & Molecular Physics, 1996, 6: 909.
[49]
Kikuchi H, Izena S, Higuchi H, Okumura Y, Higashiguchi K. Soft Matter, 2015, 11(23): 4572.

doi: 10.1039/c5sm00711a pmid: 25947305
[50]
Tanaka S, Yoshida H, Kawata Y, Kuwahara R, Nishi R, Ozaki M. Sci. Rep., 2015, 5: 16180.
[51]
Yang J J, Zhao W D, Yang Z, He W L, Wang J X, Ikeda T, Jiang L. ACS Appl. Mater. Interfaces, 2019, 11(49): 46124.
[52]
Higashiguchi K, Yasui K, Kikuchi H. J. Am. Chem. Soc., 2008, 130(20): 6326.

doi: 10.1021/ja801553g pmid: 18439009
[53]
Liu J, Liu W Z, Guan B, Wang B, Shi L, Jin F, Zheng Z G, Wang J X, Ikeda T, Jiang L. Nat. Commun., 2021, 12: 3477.

doi: 10.1038/s41467-021-23631-w
[54]
Liu H Y, Wang C T, Hsu C Y, Lin T H. Appl. Opt., 2011, 50(11): 1606.

doi: 10.1364/AO.50.001606
[55]
Joshi P, Shang X B, de Smet J, Islamai E, Cuypers D, van Steenberge G, van Vlierberghe S, Dubruel P, de Smet H. Appl. Phys. Lett., 2015, 106(10): 101105.
[56]
Kim S, Kim K, Jo S Y, Choi S W. Mol. Cryst. Liq. Cryst., 2015, 611(1): 186.

doi: 10.1080/15421406.2015.1030255
[57]
Yamamoto S I, Haseba Y, Higuchi H, Okumura Y, Kikuchi H. Liq. Cryst., 2013, 40(5): 639.

doi: 10.1080/02678292.2013.772664
[58]
Chen P J, Chen M, Ni S Y, Chen H S, Lin Y H. Opt. Mater. Express, 2016, 6(4): 1003.

doi: 10.1364/OME.6.001003
[59]
Orzechowski K, Sierakowski M W, Sala-Tefelska M, Joshi P, Woliński T R, de Smet H. Opt. Mater., 2017, 69: 259.

doi: 10.1016/j.optmat.2017.04.051
[60]
Nayek P, Jeong H, Park H R, Kang S W, Lee S H, Park H S, Lee H J, Kim H S. Appl. Phys. Express, 2012, 5(5): 051701.
[61]
Otón E, Morawiak P, Gaładyk K, Otón J M, Piecek W. Opt. Express, 2020, 28(12): 18202.
[62]
Yan J, Wu S T, Cheng K L, Shiu J W. Appl. Phys. Lett., 2013, 102(8): 081102.
[63]
Zheng Z G, Yuan C L, Hu W, Bisoyi H K, Tang M J, Liu Z, Sun P Z, Yang W Q, Wang X Q, Shen D, Li Y N, Ye F F, Lu Y Q, Li G Q, Li Q. Adv. Mater., 2017, 29(42): 1703165.
[64]
Takahashi M, Ohkawa T, Yoshida H, Fukuda J I, Kikuchi H, Ozaki M. J. Phys. D: Appl. Phys., 2018, 51(10): 104003.
[65]
Martínez-González J A, Li X, Sadati M, Zhou Y, Zhang R, Nealey P F, de Pablo J J. Nat. Commun., 2017, 8: 15854.
[66]
Li X, Armas-Perez J C, Martinez-Gonzalez J A, Liu X Y, Xie H L, Bishop C, Hernandez-Ortiz J P, Zhang R, de Pablo J J, Nealey P F. Soft Matter, 2016, 12(41): 8595.

doi: 10.1039/C6SM01733A
[67]
Li X, Martínez-González J A, Park K, Yu C, Zhou Y, de Pablo J J, Nealey P F. ACS Appl. Mater. Interfaces, 2019, 11(9): 9487.

doi: 10.1021/acsami.8b18078
[68]
Li X, Martínez-González J A, Guzmán O, Ma X D, Park K, Zhou C, Kambe Y, Jin H M, Dolan J A, Nealey P F, de Pablo J J. Sci. Adv., 2019, 5(11): eaax9112.
[69]
Li X, Park K, Guzmán O, Martínez-González J A, Dolan J A, de Pablo J J, Nealey P F. Mol. Syst. Des. Eng., 2021, 6(7): 534.

doi: 10.1039/D1ME00044F
[70]
Chen N R, Ho J T. Phys. Rev. A, 1987, 35(11): 4886.

doi: 10.1103/PhysRevA.35.4886
[71]
Yang D K, Crooker P P. Phys. Rev. A, 1988, 37(10): 4001.

doi: 10.1103/PhysRevA.37.4001
[72]
Hisakado Y, Kikuchi H, Nagamura T, Kajiyama T. Adv. Mater., 2005, 17(1): 96.

doi: 10.1002/adma.200400639
[73]
Yan J, Cheng H C, Gauza S, Li Y, Jiao M Z, Rao L H, Wu S T. Appl. Phys. Lett., 2010, 96(7): 071105.
[74]
Chen Y, Wu S T. Appl. Phys. Lett., 2013, 102(17): 171110.
[75]
Kitzerow H S. Mol. Cryst. Liq. Cryst., 1991, 202(1): 51.

doi: 10.1080/00268949108035659
[76]
Alexander G P, Marenduzzo D. Europhys. Lett., 2008, 81(6): 66004.
[77]
Yabu S H, Yoshida H, Lim G, Kaneko K, Okumura Y, Uehara N, Kikuchi H, Ozaki M. Opt. Mater. Express, 2011, 1(8): 1577.

doi: 10.1364/OME.1.001577
[78]
Guo D Y, Chen C W, Li C C, Jau H C, Lin K H, Feng T M, Wang C T, Bunning T J, Khoo I C, Lin T H. Nat. Mater., 2020, 19(1): 94.

doi: 10.1038/s41563-019-0512-3
[79]
Claus H, Willekens O, Chojnowska O, Dᶏbrowski R, Beeckman J, Neyts K. Liq. Cryst., 2016, 43(5): 688.

doi: 10.1080/02678292.2016.1139199
[80]
Tiribocchi A, Gonnella G, Marenduzzo D, Orlandini E, Salvadore F. Phys. Rev. Lett., 2011, 107(23): 237803.
[81]
Alexander G P, Yeomans J M. Liq. Cryst., 2009, 36(10/11): 1215.

doi: 10.1080/02678290903057390
[82]
Chen H S, Lin Y H, Wu C H, Chen M, Hsu H K. Opt. Mater. Express, 2012, 2(8): 1149.

doi: 10.1364/OME.2.001149
[83]
Chen C W, Hou C T, Li C C, Jau H C, Wang C T, Hong C L, Guo D Y, Wang C Y, Chiang S P, Bunning T J, Khoo I C, Lin T H. Nat. Commun., 2017, 8: 727.

doi: 10.1038/s41467-017-00822-y
[84]
Hou D S, Cao J X, Li X, Zhu J L, Han W M. Liq. Cryst., 2021, 48(2): 233.

doi: 10.1080/02678292.2020.1773001
[85]
Petriashvili G, Hamdi R, Chanishvili A, Zurabishvili T, Chubinidze K, Ponjavidze N. ACS Appl. Electron. Mater., 2020, 2(6): 1724.

doi: 10.1021/acsaelm.0c00279
[86]
Wang M, Zou C, Sun J, Zhang L Y, Wang L, Xiao J M, Li F S, Song P, Yang H. Adv. Funct. Mater., 2017, 27(46): 1702261.
[87]
Wang M, Zou C, Li C Y, Sun J, Wang L, Hu W, Zhang C H, Zhang L Y, He W L, Yang H. Adv. Opt. Mater., 2018, 6(16): 1800409.
[88]
Tian L L, Chu F, Duan W, Li R, Gu X Q, Li L, Wang Q H. Opt. Commun., 2021, 481: 126525.
[89]
Dou H, Wang L, Chu F, Zhang S D, Wang Q H. Liq. Cryst., 2021, 48(5): 607.

doi: 10.1080/02678292.2020.1799444
[90]
Yan J, Xing Y F, Li Q. Opt. Lett., 2015, 40(19): 4520.

doi: 10.1364/OL.40.004520
[91]
Yuan Y C, Li Y, Chen C P, Liu S X, Rong N, Li W H, Li X, Zhou P C, Lu J G, Liu R L, Su Y K. Opt. Express, 2015, 23(15): 20007.
[92]
Ge S J, Chen P, Ma L L, Liu Z, Zheng Z G, Shen D, Hu W, Lu Y Q. Opt. Mater. Express, 2016, 6(4): 1087.

doi: 10.1364/OME.6.001087
[93]
Manda R, Pagidi S, Heo Y J, Lim Y J, Kim M S, Lee S H. Adv. Mater. Interfaces, 2020, 7(9): 1901923.
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[3] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[4] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[5] Meng Wang, He Song, Yifei Zhu. Stimuli-Responsive Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(12): 2588-2603.
[6] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[7] Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo. Fabrication and Application of Photonic Crystal Biochemical Sensor [J]. Progress in Chemistry, 2021, 33(7): 1126-1137.
[8] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[9] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[10] Xiaoyang Liu. Condensed Matter Chemistry under High Pressure [J]. Progress in Chemistry, 2020, 32(8): 1184-1202.
[11] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[12] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[13] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[14] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[15] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.