中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (3): 557-567 DOI: 10.7536/PC210616 Previous Articles   Next Articles

• Review •

Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum

Hui Zhang, Wei Xiong, Jianchen Lu(), Jinming Cai()   

  1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology,Kunming 650093, China
  • Received: Revised: Online: Published:
  • Contact: Jianchen Lu, Jinming Cai
  • Supported by:
    National Natural Science Foundation of China(61901200); National Recruitment Program for Young Professionals(132310976002); Yunnan Province Science and Technology Plan Project(2019FD041); Yunnan Province Science and Technology Plan Project(202101AV070008); Yunnan Province Science and Technology Plan Project(202101AW070010); Yunnan Province Science and Technology Plan Project(202101AU070043); Strategic Priority Research Program of Chinese Academy of Sciences(XDB30010000); Dongguan Innovation Research Team Program.
Richhtml ( 23 ) PDF ( 270 ) Cited
Export

EndNote

Ris

BibTeX

Due to the existence of unsaturated electrons, it is difficult to synthesize magnetic nanographene directly by the wet chemical method. With the help of surface catalysis in ultra-high vacuum, designed precursor molecules can be transformed into magnetic nanographene. Magnetism of carbon nanomaterials or nanographene possess high magnitudes of spin-wave stiffness, weak spin-orbit coupling, hyperfine couplings and large spin coherence lifetimes comparing with the transition metal, which hold the promise for spintronics construction and basic research. Due to the existence of unsaturated electrons, it is difficult to synthesize magnetic nanographene directly by the wet chemical method. With the help of surface catalysis in ultra-high vacuum, the synthesis of magnetic nanographene by artificial designed precursor molecules has been exploding. Except for the fabrication the magnetic nanographene, the investigation of magnetic ground state of nanographene itself and the magnetic engineering by tip-manipulation and construction of spin chains have been attracting much attentions. The atomic precise chemical and electronic structure and magnetic ground state could be identified by scanning tunneling spectroscopy and CO-decorated tip scanning tunneling microscope image. In this review, based on the recent research on nanographene, we introduce magnetic generations, structural and magnetism characterizations of nanographene as well as the magnetic order control by scanning tunneling microscopy in ultra-high vacuum.

Contents

1 Introduction

2 Magnetism of nanographene

2.1 Sublattice imbalance

2.2 Non-Kekulé structure due to topology constraints

2.3 Non-Kekulé structure due to size

3 Engineering of magnetic nanographene

3.1 Tip manipulation

3.2 Alternation of homo-coupling positions

4 Conclusion and outlook

Fig.1 Schematic diagram of Kondo resonance produced by spin flip of single magnetic impurity through two intermediate states[26]
Fig.2 Magnetic properties of terminal fused chiral graphene nanoribbon[28]. (a) The structure formula of precursor molecule; (b) The structure of (3,1)-chiral graphene nanoribbon; (c) The constant height STM image of terminal fused chiral graphene nanoribbon; (d) BR-STM image obtained by CO modified needle tip; (e) The corresponding structure diagram of (d); (f, g) Two distribution types of electronic states at the junction (illustrations) and the corresponding STS information with high energy resolution; (h) STS information at different temperatures; (i) STS information at different external magnetic fields
Fig.3 Structural analysis of nanographene 1a and 1b[31]. (a) Reaction diagram of NG 1a and 1b; (b) Large scale STM image containing both NG 1a and 1b; (c) High resolution STM image of NG 1a; (d) Bond-resolved STM image of NG 1a modified with CO tip; (e,f) BR-STM image of the terminals on both sides of NG 1a; (g) High resolution STM image of NG 1b; (h) Bond-resolved STM image of NG 1b modified with CO tip; (i,j) BR-STM image of the terminals on both sides of NG 1b
Fig.4 Magnetic analysis of nanographene 1a and 1b[31]. (a,b) Energy level distributions of NG 1b calculated by TB and MFH model; (c) Wave function distribution of frontier orbital; (d) Calculated distribution of spin density of states; (e) High resolution STM image of NG 1b; (f) High energy resolution spectra at different temperatures; (g) Half width at half maximum extracted from (f) and the corresponding temperature change
Fig.5 Artificially constructed sublattice imbalanced structure. (a~c) S =1[31,35,37]; (d) S = 3 /2[32]; (e) S = 3[33]
Fig.6 Sublattice imbalanced nanographene[36]. (a) Chemical structural of precursor molecule; (b) Large size STM image containing NG 2a; (c) Constant height STM image with modified CO Tip; (d) dI/dV spectra of variable temperature; (e) dI/dV spectra of variable magnetic field
Fig.7 Clar goblet with NA=NB[10]
Fig.8 Size-dependence of the magnetism of NG[8,48,49]. (a, b) Chemical structure of NG 4a, 4b and their precursors synthetic pathway; (c, d) Chemical structure of NG 5a, 5b and their precursors synthetic pathway; (e, f) HR-STM (left) and BR-STM (right) of NG 5a and 5b; (g) dI/dV spectrum of NG 5a (left) and NG 5b (middle) and dI2/dV2 spectrum of NG 5b (right)
Fig.9 Ferromagnetic ground state of NA=NB[54]. (a) Chemical structure and synthesis path of precursor molecule; (b) PorA2 (2H) obtained after annealing (left, middle and right corresponding to chemical structure, constant current STM image and NC-AFM image, respectively); (c) PorA2 (H) obtained after manipulation of PorA2 (2H) (left, middle and right corresponding to structural diagram, constant current STM diagram and NC-AFM diagram respectively); (d) PorA2 after the tip manipulation (left, middle and right corresponding to the structure diagram, constant current STM diagram and NC-AFM diagram); (e) The dI/dV spectra of PorA2 in the small energy range
Fig.10 Adjusting the magnetic exchange energy by the distance between spins[42]. (a) Schematic diagram of the defect NG 7 of the five-membered-ring formed by rapid annealing of precursor molecules for further annealing; (b~e) NC-AFM images of structures C1 ~ C4; (f) Small energy range dI/dV spectra of structures C1 ~ C4; (g) Variation of spin exchange energy J with the distance; (H) The calculated exchange energy J with the spin distance
Fig.11 Diagram of magnetic coupling the regular magnetic NG ring and chain
[1]
Madhavan V, Chen W, Jamneala T, Crommie M F, Wingreen N S. Science, 1998, 280(5363): 567.

pmid: 9554843
[2]
Li J T, Schneider W D, Berndt R, Delley B. Phys. Rev. Lett., 1998, 80(13): 2893.

doi: 10.1103/PhysRevLett.80.2893
[3]
Nagaoka K, Jamneala T, Grobis M, Crommie M F. Phys. Rev. Lett., 2002, 88(7): 077205.

doi: 10.1103/PhysRevLett.88.077205
[4]
Gao L, Ji W, Hu Y B, Cheng Z H, Deng Z T, Liu Q, Jiang N, Lin X, Guo W, Du S X, Hofer W A, Xie X C, Gao H J. Phys. Rev. Lett., 2007, 99(10): 106402.

doi: 10.1103/PhysRevLett.99.106402
[5]
Liu L W, Yang K, Jiang Y H, Song B Q, Xiao W D, Li L F, Zhou H T, Wang Y L, Du S X, Ouyang M, Hofer W A, Castro Neto A H, Gao H J. Sci. Rep., 2013, 3(1): 1210.

doi: 10.1038/srep01210
[6]
Sánchez-Grande A, Urgel J I, Cahlík A, Santos J, Edalatmanesh S, Rodríguez-Sánchez E, Lauwaet K, Mutombo P, Nachtigallová D, Nieman R, Lischka H, Torre B, Miranda R, Gröning O, Martín N, Jelínek P, Écija D. Angew. Chem. Int. Ed., 2020, 59(40): 17594.

doi: 10.1002/anie.202006276
[7]
Mishra S, Yao X, Chen Q, Eimre K, Groening O, Ortiz R, Di Giovannantonio M, Sancho-Garcia J C, Fernandez-Rossier J, Pignedoli C A, Muellen K, Ruffieux P, Narita A, Fasel R. Giant magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery, 2020, arXiv:2003.03577. https://ui.adsabs.harvard.edu/abs/2020arXiv200303577M (accessed March 01, 2020).
[8]
Mishra S, Melidonie J, Eimre K, Obermann S, Gröning O, Pignedoli C A, Ruffieux P, Feng X L, Fasel R. Chem. Commun., 2020, 56(54): 7467.

doi: 10.1039/D0CC02513E
[9]
Wang W L, Yazyev O V, Meng S, Kaxiras E. Phys. Rev. Lett., 2009, 102(15): 157201.

doi: 10.1103/PhysRevLett.102.157201
[10]
Mishra S, Beyer D, Eimre K, Kezilebieke S, Berger R, Gröning O, Pignedoli C A, Müllen K, Liljeroth P, Ruffieux P, Feng X L, Fasel R. Nat. Nanotechnol., 2020, 15(1): 22.

doi: 10.1038/s41565-019-0577-9
[11]
Yazyev O V. Rep. Prog. Phys., 2010, 73(5): 056501.

doi: 10.1088/0034-4885/73/5/056501
[12]
Yazyev O V. Nano Lett., 2008, 8(4): 1011.

doi: 10.1021/nl072667q pmid: 18321077
[13]
Trauzettel B, Bulaev D V, Loss D, Burkard G. Nat. Phys., 2007, 3(3): 192.
[14]
Edwards D M, Katsnelson M I. J. Phys. Condens. Matter, 2006, 18(31): 7209.

doi: 10.1088/0953-8984/18/31/016
[15]
Yazyev O V, Katsnelson M I. Phys. Rev. Lett., 2008, 100(4): 047209.

doi: 10.1103/PhysRevLett.100.047209
[16]
Han W, Kawakami R K, Gmitra M, Fabian J. Nat. Nanotechnol., 2014, 9(10): 794.

doi: 10.1038/nnano.2014.214
[17]
Warner M, Din S, Tupitsyn I S, Morley G W, Stoneham A M, Gardener J A, Wu Z L, Fisher A J, Heutz S, Kay C W M, Aeppli G. Nature, 2013, 503(7477): 504.

doi: 10.1038/nature12597
[18]
Bader K, Dengler D, Lenz S, Endeward B, Jiang S D, Neugebauer P, van Slageren J. Nat. Commun., 2014, 5(1): 1.
[19]
Atzori M, Tesi L, Morra E, Chiesa M, Sorace L, Sessoli R. J. Am. Chem. Soc., 2016, 138(7): 2154.

doi: 10.1021/jacs.5b13408
[20]
Zhu L J, Zhao J H. Physics, 2016, 45: 458.
(朱礼军, 赵建华, 物理 2016, 45: 458.).
[21]
Shen J J, Han Y, Dong S Q, Phan H, Herng T S, Xu T T, Ding J, Chi C Y. Angew. Chem. Int. Ed., 2021, 60(9): 4464.

doi: 10.1002/anie.202012328
[22]
Konishi A, Hirao Y, Nakano M, Shimizu A, Botek E, Champagne B, Shiomi D, Sato K, Takui T, Matsumoto K, Kurata H, Kubo T. J. Am. Chem. Soc., 2010, 132(32): 11021.

doi: 10.1021/ja1049737
[23]
Konishi A, Hirao Y, Matsumoto K, Kurata H, Kishi R, Shigeta Y, Nakano M, Tokunaga K, Kamada K, Kubo T. J. Am. Chem. Soc., 2013, 135(4): 1430.

doi: 10.1021/ja309599m
[24]
Hao Z L, Ruan Z L, Yang X T, Cai Y T, Lu J C, Cai J M. Acta Chimica Sinica, 2018, 76(8): 585.

doi: 10.6023/A18040164
(郝振亮, 阮子林, 杨孝天, 蔡逸婷, 卢建臣, 蔡金明. 化学学报, 2018, 76(8): 585.).

doi: 10.6023/A18040164
[25]
Zhang H, Cai X M, Hao Z L, Ruan Z L, Lu J C, Cai J M. Acta Physica Sinica, 2017, 66(21):218103.

doi: 10.7498/aps.66.218103
(张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明. 物理学报, 2017, 66(21):218103.).
[26]
Liu L W. Doctoral Dissertation of University of Chinese Academy of Sciences, 2013.
(刘立巍. 中国科学院大学博士论文, 2013.).
[27]
Lieb E H. Phys. Rev. Lett., 1989, 62(10): 1201.

doi: 10.1103/PhysRevLett.62.1201
[28]
Li J C, Sanz S, Corso M, Choi D J, Peña D, Frederiksen T, Pascual J I. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8
[29]
Zhang Y H, Kahle S, Herden T, Stroh C, Mayor M, Schlickum U, Ternes M, Wahl P, Kern K. Nat. Commun., 2013, 4(1): 1.
[30]
Frota H O. Phys. Rev. B, 1992, 45(3): 1096.

doi: 10.1103/PhysRevB.45.1096
[31]
Mishra S, Beyer D, Berger R, Liu J Z, Gröning O, Urgel J I, Müllen K, Ruffieux P, Feng X L, Fasel R. J. Am. Chem. Soc., 2020, 142(3): 1147.

doi: 10.1021/jacs.9b09212
[32]
Cai J M, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X L, Müllen K, Fasel R. Nature, 2010, 466(7305): 470.

doi: 10.1038/nature09211
[33]
Mishra S, Lohr T G, Pignedoli C A, Liu J Z, Berger R, Urgel J I, Müllen K, Feng X L, Ruffieux P, Fasel R. ACS Nano, 2018, 12(12): 11917.

doi: 10.1021/acsnano.8b07225
[34]
Su X L, Li C, Du Q Y, Tao K, Wang S Y, Yu P. Nano Lett., 2020, 20(9): 6859.

doi: 10.1021/acs.nanolett.0c02939
[35]
Pavliček N, Mistry A, Majzik Z, Moll N, Meyer G, Fox D J, Gross L. Nat. Nanotechnol., 2017, 12(4): 308.

doi: 10.1038/nnano.2016.305 pmid: 28192389
[36]
Li J C, Sanz S, Castro-Esteban J, Vilas-Varela M, Friedrich N, Frederiksen T, Peña D, Pascual J I. Phys. Rev. Lett., 2020, 124(17): 177201.

doi: 10.1103/PhysRevLett.124.177201
[37]
Mishra S, Beyer D, Eimre K, Liu J, Berger R, Groning O, Pignedoli C A, Mullen K, Fasel R, Feng X, Ruffieux P. J. Am. Chem. Soc., 2019, 141(27): 10621.

doi: 10.1021/jacs.9b05319
[38]
Mishra S, Xu K, Eimre K, Komber H, Ma J, Pignedoli C A, Fasel R, Feng X L, Ruffieux P. Nanoscale, 2021, 13(3): 1624.

doi: 10.1039/D0NR08181G
[39]
Su J, Fan W, Mutombo P, Peng X N, Song S T, Ondráček M, Golub P, Brabec J, Veis L, Telychko M, Jelínek P, Wu J S, Lu J. Nano Lett., 2021, 21(1): 861.

doi: 10.1021/acs.nanolett.0c04627
[40]
Friedrich N, Brandimarte P, Li J C, Saito S, Yamaguchi S, Pozo I, Peña D, Frederiksen T, Garcia-Lekue A, Sánchez-Portal D, Pascual J I. Phys. Rev. Lett., 2020, 125(14): 146801.

doi: 10.1103/PhysRevLett.125.146801
[41]
Sola M. Front. Chem., 2013, (22): 1.
[42]
Zheng Y Q, Li C, Zhao Y, Beyer D, Wang G Y, Xu C Y, Yue X L, Chen Y P, Guan D D, Li Y Y, Zheng H, Liu C H, Luo W D, Feng X L, Wang S Y, Jia J F. Phys. Rev. Lett., 2020, 124(14): 147206.

doi: 10.1103/PhysRevLett.124.147206
[43]
Mishra S, Beyer D, Eimre K, Ortiz R, Fernández-Rossier J, Berger R, Gröning O, Pignedoli C A, Fasel R, Feng X L, Ruffieux P. Angew. Chem. Int. Ed., 2020, 59(29): 12041.

doi: 10.1002/anie.202002687
[44]
Zuzak R, Dorel R, Kolmer M, Szymonski M, Godlewski S, Echavarren A M. Angew. Chem. Int. Ed., 2018, 57(33): 10500.

doi: 10.1002/anie.201802040
[45]
Urgel J I, Mishra S, Hayashi H, Wilhelm J, Pignedoli C A, Di Giovannantonio M, Widmer R, Yamashita M, Hieda N, Ruffieux P, Yamada H, Fasel R. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8
[46]
Tönshoff C, Bettinger H F. Angew. Chem. Int. Ed., 2010, 49(24): 4125.

doi: 10.1002/anie.200906355
[47]
Rogers C, Chen C, Pedramrazi Z, Omrani A A, Tsai H Z, Jung H S, Lin S, Crommie M F, Fischer F R. Angew. Chem. Int. Ed., 2015, 54(50): 15143.

doi: 10.1002/anie.201507104
[48]
Mishra S, Yao X L, Chen Q, Eimre K, Gröning O, Ortiz R, Giovannantonio M, Sancho-García J C, Fernández-Rossier J, Pignedoli C A, Müllen K, Ruffieux P, Narita A, Fasel R. Nat. Chem., 2021, 13(6): 581.

doi: 10.1038/s41557-021-00678-2
[49]
Turco E, Mishra S, Melidonie J, Eimre K, Obermann S, Pignedoli C A, Fasel R, Feng X, Ruffieux P. Synthesis and characterization of super-nonazethrene, 2021, arXiv:2105.12166. https://ui.adsabs.harvard.edu/abs/2021arXiv210512166T (accessed May 01, 2021).
[50]
Wang S Y, Talirz L, Pignedoli C A, Feng X L, Müllen K, Fasel R, Ruffieux P. Nat. Commun., 2016, 7(1): 11507.

doi: 10.1038/ncomms11507
[51]
Jung J, MacDonald A H. Phys. Rev. B, 2010, 81(19): 195408.

doi: 10.1103/PhysRevB.81.195408
[52]
Ruffieux P, Wang S Y, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X L, Müllen K, Fasel R. Nature, 2016, 531(7595): 489.

doi: 10.1038/nature17151
[53]
Ajayakumar M R, Fu Y B, Ma J, Hennersdorf F, Komber H, Weigand J J, Alfonsov A, Popov A A, Berger R, Liu J Z, Müllen K, Feng X L. J. Am. Chem. Soc., 2018, 140(20): 6240.

doi: 10.1021/jacs.8b03711 pmid: 29738244
[54]
Sun Q, Mateo L M, Robles R, Ruffieux P, Lorente N, Bottari G, Torres T, Fasel R. J. Am. Chem. Soc., 2020, 142(42): 18109.

doi: 10.1021/jacs.0c07781
[55]
van der Lit J, Boneschanscher M P, Vanmaekelbergh D, Ijäs M, Uppstu A, Ervasti M, Harju A, Liljeroth P, Swart I. Nat. Commun., 2013, 4(1): 1.
[56]
Kumar A, Banerjee K, Dvorak M, Schulz F, Harju A, Rinke P, Liljeroth P. ACS Nano, 2017, 11(5): 4960.

doi: 10.1021/acsnano.7b01599
[57]
Zhao Y, Jiang K, Li C, Liu Y, Xu C, Zheng W, Guan D, Li Y, Zheng H, Liu C, Luo W, Jia J, Zhuang X, Wang S. J. Am. Chem. Soc., 2020, 142(43): 18532.

doi: 10.1021/jacs.0c07791 pmid: 32959653
[58]
Mishra S, Catarina G, Wu F, Ortiz R, Jacob D, Eimre K, Ma J, Pignedoli C A, Feng X, Ruffieux P, Fernandez-Rossier J, Fasel R. Observation of fractional edge excitations in nanographene spin chains, 2021, arXiv:2105.09102. https://ui.adsabs.harvard.edu/abs/2021arXiv210509102M (accessed May 01, 2021).
[59]
Wang S Y, Zhao Y, Jiang K Y, Li C, Liu Y F, Zhu G C, Guan D D, Li Y Y, Zheng H, Liu C H, Jia J F, Zhuang X D. Nature Portfolio, 2021, DOI: 10.21203/rs.3.rs-579482/v1.

doi: 10.21203/rs.3.rs-579482/v1
[1] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[2] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[3] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[4] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[5] Zhao Ding, Weijie Yang, Kaifu Huo, Leon Shaw. Thermodynamics and Kinetics Tuning of LiBH4 for Hydrogen Storage [J]. Progress in Chemistry, 2021, 33(9): 1586-1597.
[6] Jiangjiexing Wu, Hui Wei. Efficient Design Strategies for Nanozymes [J]. Progress in Chemistry, 2021, 33(1): 42-51.
[7] Wei Li, Ziyu Yang, Yanglong Hou, Song Gao. Controllable Preparation and Magnetism Control of Two-Dimensional Magnetic Nanomaterials [J]. Progress in Chemistry, 2020, 32(10): 1437-1451.
[8] Xueyan Shan, Shimao Wang, Gang Meng, Xiaodong Fang. Interface Engineering of Electron Transport Layer/Light Absorption Layer of Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(5): 714-722.
[9] Rui Sun, Lin Yao, Junhui He, Jie Liang. Thermochromic Smart Coatings [J]. Progress in Chemistry, 2019, 31(12): 1712-1728.
[10] Xingang Zuo, Haolan Zhang, Tong Zhou, Changyou Gao. Biomaterials for Regulating Cell Migration and Tissue Regeneration [J]. Progress in Chemistry, 2019, 31(11): 1576-1590.
[11] Lishan Peng, Zidong Wei*. Design and Product Engineering of High-Performance Electrode Catalytic Materials for Water Electrolysis [J]. Progress in Chemistry, 2018, 30(1): 14-28.
[12] Rui Zhang, Xuan Liu, Hongbing Ji*. Nano-Microcapsule Intermediate of Natural Flavor [J]. Progress in Chemistry, 2018, 30(1): 29-43.
[13] Xinjuan Zeng, Li Wang, Pihui Pi, Jiang Cheng, Xiufang Wen, Yu Qian. Development and Research of Special Wettability Materials for Oil/Water Separation [J]. Progress in Chemistry, 2018, 30(1): 73-86.
[14] Dekai Ye, Xiaolei Zuo, Chunhai Fan. DNA Nanostructure-Based Engineering of the Biosensing Interface for Biomolecular Detection [J]. Progress in Chemistry, 2017, 29(1): 36-46.
[15] Mei Pan, Zhangwen Wei, Yaowei Xu, Cheng-Yong Su. Coordination Assembly of Metal-Organic Materials [J]. Progress in Chemistry, 2017, 29(1): 47-74.