中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (4): 568-580 DOI: 10.7536/PC200811 Previous Articles   Next Articles

• Review •

Application of Graphene in Neural Activity Recording

Suye Lv1,2,3, Liang Zou1,2,3, Shouliang Guan1,2,3, Hongbian Li1,2()   

  1. 1 CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology,Beijing 100190, China
    2 CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology,Beijing 100190, China
    3 University of Chinese Academy of Sciences,Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: Hongbian Li
  • Supported by:
    the National Natural Science Foundation of China(51972073)
Richhtml ( 18 ) PDF ( 1467 ) Cited
Export

EndNote

Ris

BibTeX

As a powerful tool for monitoring brain activities, neural electrodes have been playing a crucial role in the understanding of brain functions and the treatment of neurological disorders. In particular, the construction of a stable electrode-neural interface is critical for the stable chronic neural recording. However, conventional neural electrodes are mainly constructed with rigid materials, whose Young’s moduli are several orders of magnitude higher than that of the brain tissue. This large mechanical mismatch causes the micromotion of the neural electrodes, which elicits inflammatory response of the brain tissue and thus limits the stable chronic neural recording. With the one-atom thickness, graphene has been considered as a promising active material for neural electrodes with stable electrode-neural interfaces for its high conductivity, excellent flexibility and good biocompatibility. In this review, we provide an overview of graphene for neural activity recording, from their modulation on the growth of neurons to applications in bothin vitro and in vivo neural activity recording. At last, challenges and prospects of graphene for neural activity recording are proposed.

Contents

1 Introduction

2 Graphene microelectrodes for cell culture and in vitro neural activity recording

2.1 Graphene for cell growth and modulation

2.2 Graphene microelectrodes for in vitro neural activity recording

3 Graphene microelectrodes for in vivo neural activity recording

3.1 Graphene-based electrocorticography(ECoG) electrodes for neural activity recording

3.2 Graphene-based intracortical electrodes for neural activity recording

4 Conclusion and prospects

Fig.1 Graphene for cell culture and modulation. (a) The differentiation of hNSCs on glass(left) and graphene(right)[45]. Copyright 2011, Wiley-VCH.(b) Schematic illustration of patterned fluorinated graphene(FG) substrates;(c) Aligned growth of stem cell on patterned FG[47]. Copyright 2012, Wiley -VCH.(d) SEM image of a three-dimensional graphene foam(3D GF);(e) The results of hNSCs differentiated on 3D GF and 2D graphene film[54]. Copyright 2013, Nature Publishing Group.(f) Schematic illustration of graphene/polymer micro-roll for cell encapsulation;(g) Schematic illustration of the formation of a neuronal network connected with neuron-laden micro-rolls[58]. Copyright 2019, The Royal Society of Chemistry.(h) Schematic illustration of a graphene nerve conduit;(i) Staining image for regenerated nerves[59], Copyright 2018, Nature Publishing Group.(j) Representative traces of the spontaneous network activity of neurons grown on different substrates[61]. Copyright 2018, Nature Publishing Group.
Fig.2 Graphene microelectrodes for in vitro neural activity recording.(a) Structure of a 60-channel graphene MEA;(b) Schematic illustration of the setup for action potential recording;(c) Spontaneous active potentials and noises recorded from graphene microelectrodes[71]. Copyright 2015, Nature Publishing Group.(d) A schematic illustration of the graphene-VACNT neural electrode;(e) FE-SEM images of the interface between rat cortical neurons and the graphene-VACNT electrode;(f) Comparison of the spike amplitude recorded with TiN electrode and VACNT electrode[73]. Copyright 2017, The Royal Society of Chemistry.(g) Schematic illustration of an inverted microscope setup using transparent graphene microelectrodes;(h) Immuno-fluorescence micrographs of the neurons cultured on the G-FETs;(i) The extracellular potentials obtained from the G-FETs;(j) The waveforms of extracellular spikes calibrated from(i)[75]. Copyright 2017, Frontiers Media S.A
Fig.3 Graphene ECoG electrodes for neural activity recording.(a) Schematic of the layered structure of the transparent graphene μECoG microelectrode array.(b) Fluorescence image of the cortical vasculature under transparent graphene site.(c) Optical evoked potentials recorded by the transparent graphene μECoG microelectrode array [78]. Copyright 2014, Nature Publishing Group.(d) Optical image of the graphene microelectrode array;(e) and(f) Under the direct illumination of the graphene electrode with laser, no artifact was observed[82]. Copyright 2018, Nature Publishing Group.(g) Optical image of a graphene SGFET array;(h) Spontaneous oscillatory activity recorded by graphene SGFET and platinum black electrodes;(i) Signal-to-noise ratio versus frequency for graphene SGFETs(light redlines) and platinum black electrodes[88]. Copyright 2017, Wiley-VCH
Fig.4 Graphene-based implantable electrodes.(a) Schematic illustration of the G-Cu implanted neural electrodes;(b) Comparison of the normalized viability of PC12 cells cultured with G-Cu and bare Cu microwire samples;(c) Representative acute recording of high-frequency electrophysiological signal using a G-Cu microelectrode[95]. Copyright 2016, American Chemical Society.(d) Schematic illustration of graphene fiber probe;(e) Cross-section SEM image of graphene fiber probe;(f) Neural activities recorded from the graphene fiber probe[97]. Copyright 2019, Wiley-VCH.(g) Microscope image of a dual-modality graphene SGFET electrode array;(h) Schematic and optical images of dual-modality recording setup;(i) Representative signals of surface and depth recording and time lag between surface and depth spikes[98]. Copyright 2018, Elsevier
[1]
Chen R, Canales A, Anikeeva P. Nat. Rev. Mater., 2017, 2(2): 16093.

pmid: 31448131
[2]
Moxon K A, Foffani G. Neuron, 2015, 86(1): 55.

pmid: 25856486
[3]
Fattahi P, Yang G, Kim G, Abidian M R. Adv. Mater., 2014, 26(12): 1846. aa825286-9c0c-4033-b1a2-63ab30956d17

doi: 10.1002/adma.201304496
[4]
Nicolelis M A L. Nat. Rev. Neurosci., 2003, 4(5): 417.

pmid: 12728268
[5]
Stacey W C, Litt B. Nat. Clin. Pract. Neurol., 2008, 4(4): 190.

pmid: 18301414
[6]
Du Z H, Lu Y, Wei P F, Deng C S, Li X J. Acta Phys. -Chim. Sin., 2020, 36(12): 2007004.
都展宏, 鲁艺, 蔚鹏飞, 邓春山, 李骁健. 物理化学学报, 2020, 36(12): 2007004.
[7]
Lacour S P, Courtine G, Guck J. Nat. Rev. Mater., 2016, 1(10): 16063.

doi: 10.1038/natrevmats.2016.63
[8]
Bouton C E, Shaikhouni A, Annetta N V, Bockbrader M A, Friedenberg D A, Nielson D M, Sharma G, Sederberg P B, Glenn B C, Mysiw W J, Morgan A G, Deogaonkar M, Rezai A R. Nature, 2016, 533(7602): 247.

doi: 10.1038/nature17435 pmid: 27074513
[9]
Wallace G G, Moulton S E, Clark G M. Science, 2009, 324(5924): 185.

pmid: 19359568
[10]
Cody P A, Eles J R, Lagenaur C F, Kozai T D Y, Cui X T. Biomaterials, 2018, 161: 117.

doi: 10.1016/j.biomaterials.2018.01.025 pmid: 29421549
[11]
Rousche P J, Normann R A. J. Neurosci. Methods, 1998, 82(1): 1.

doi: 10.1016/s0165-0270(98)00031-4 pmid: 10223510
[12]
Xie F, Xi Y, Xu Q D, Liu J Q. Acta Phys. -Chim. Sin., 2020, 36: 2003014.
谢凡, 奚野, 徐庆达, 刘景全. 物理化学学报. 2020, 36: 2003014.
[13]
Jun J J, Steinmetz N A, Siegle J H, Denman D J, Bauza M, Barbarits B, Lee A K, Anastassiou C A, Andrei A, Aydın Ç, Barbic M, Blanche T J, Bonin V, Couto J, Dutta B, Gratiy S L, Gutnisky D A, Häusser M, Karsh B, Ledochowitsch P, Lopez C M, Mitelut C, Musa S, Okun M, Pachitariu M, Putzeys J, Rich P D, Rossant C, Sun W L, Svoboda K, Carandini M, Harris K D, Koch C, O’Keefe J, Harris T D. Nature, 2017, 551(7679): 232.

doi: 10.1038/nature24636 pmid: 29120427
[14]
Csicsvari J, Henze D A, Jamieson B, Harris K D, Sirota A, BarthÓ P, Wise K D, Buzsáki G. J. Neurophysiol., 2003, 90(2): 1314.

doi: 10.1152/jn.00116.2003 pmid: 12904510
[15]
Gray C M, Maldonado P E, Wilson M, McNaughton B. J. Neurosci. Methods, 1995, 63(1/2): 43.

doi: 10.1016/0165-0270(95)00085-2
[16]
He G W, Dong X F, Qi M. J. Funct. Mater., 2019, 50(12): 12026.
贺光伟, 董旭峰, 齐民. 功能材料, 2019, 50(12): 12026.
[17]
Brummer S B, Turner M J. IEEE Trans. Biomed. Eng., 1977, BME-24(1): 59.
[18]
McCreery D B, Agnew W F, Yuen T G H, Bullara L. IEEE Trans. Biomed. Eng., 1990, 37(10): 996.

pmid: 2249872
[19]
Brunton E K, Winther-Jensen B, Wang C, Yan E B, Hagh Gooie S, Lowery A J, Rajan R. Front. Neurosci., 2015, 9: 265.

pmid: 26283905
[20]
Cogan S F. Annu. Rev. Biomed. Eng., 2008, 10(1): 275.
[21]
Nick C, Quednau S, Sarwar R, Schlaak H F, Thielemann C. Microsyst. Technol., 2014, 20: 1849.
[22]
Im C, Seo J M. Biomed. Eng. Lett., 2016, 6(3): 104.
[23]
Polikov V S, Tresco P A, Reichert W M. J. Neurosci. Methods, 2005, 148(1): 1.

pmid: 16198003
[24]
Salatino J W, Ludwig K A, Kozai T D Y, Purcell E K. Nat. Biomed. Eng., 2017, 1(11): 862.

pmid: 30505625
[25]
Wang J F, Tian H H, Fang Y. Chin. J. Anal. Chem., 2019, 47(10): 1549.
王晋芬, 田慧慧, 方英. 分析化学, 2019, 47(10): 1549.
[26]
McConnell G C, Rees H D, Levey A I, Gutekunst C A, Gross R E, Bellamkonda R V. J. Neural Eng., 2009, 6(5): 056003.
[27]
Liu Y, Duan X J. Acta Phys. -Chim. Sin., 2020, 36: 2007066.
刘杨, 段小洁. 物理化学学报, 2020, 36: 2007066.
[28]
Gimsa J, Habel B, Schreiber U, van Rienen U, Strauss U, Gimsa U. J. Neurosci. Methods, 2005, 142(2): 251.

pmid: 15698665
[29]
Rivnay J, Wang H L, Fenno L, Deisseroth K, Malliaras G G. Sci. Adv., 2017, 3(6): e1601649.

doi: 10.1126/sciadv.1601649 pmid: 28630894
[30]
Xu K, Wang J F. Acta Phys. -Chim. Sin., 2020, 36: 2003050.
许可, 王晋芬. 物理化学学报, 2020, 36: 2003050.
[31]
Huang X, Yin Z Y, Wu S X, Qi X Y, He Q Y, Zhang Q C, Yan Q Y, Boey F, Zhang H. Small, 2011, 7(14): 1876.

pmid: 21630440
[32]
Guan S L, Wang J F, Fang Y. Nano Today, 2019, 26: 13.
[33]
Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K. Nano Lett., 2011, 11(6): 2396.

pmid: 21574627
[34]
Geim A K, Novoselov K S. Nat. Mater., 2007, 6(3): 183.

doi: 10.1038/nmat1849 pmid: 17330084
[35]
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Science, 2008, 320(5881): 1308.

pmid: 18388259
[36]
Buzsáki G, Anastassiou C A, Koch C. Nat. Rev. Neurosci., 2012, 13(6): 407.

pmid: 22595786
[37]
Yang K, Zhang S, Zhang G X, Sun X M, Lee S T, Liu Z. Nano Lett., 2010, 10(9): 3318.

pmid: 20684528
[38]
Wen H Y, Dong C Y, Dong H Q, Shen A J, Xia W J, Cai X J, Song Y Y, Li X Q, Li Y Y, Shi D L. Small, 2012, 8(5): 760.
[39]
Yang K, Wan J M, Zhang S, Zhang Y J, Lee S T, Liu Z. ACS Nano, 2011, 5(1): 516.

pmid: 21162527
[40]
Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Langmuir, 2009, 25(20): 12030.

doi: 10.1021/la903265p pmid: 19769343
[41]
Gollavelli G, Ling Y C. Biomaterials, 2012, 33(8): 2532.

pmid: 22206596
[42]
Li N, Zhang X M, Song Q, Su R G, Zhang Q, Kong T, Liu L W, Jin G, Tang M L, Cheng G S. Biomaterials, 2011, 32(35): 9374.

pmid: 21903256
[43]
Agarwal S, Zhou X Z, Ye F, He Q Y, Chen G C K, Soo J, Boey F, Zhang H, Chen P. Langmuir, 2010, 26(4): 2244.

doi: 10.1021/la9048743 pmid: 20099791
[44]
Kanayama I, Miyaji H, Takita H, Nishida E, Tsuji M, Fugetsu B, Sun L, Inoue K, Ibara A, Akasaka T, Sugaya T, Kawanami M. Int. J. Nanomed., 2014, 9(1): 3363.
[45]
Park S Y, Park J, Sim S H, Sung M G, Kim K S, Hong B H, Hong S. Adv. Mater., 2011, 23: H263.

pmid: 21823178
[46]
Zuidema J M, Hyzinski-García M C, van Vlasselaer K, Zaccor N W, Plopper G E, Mongin A A, Gilbert R J. Biomaterials, 2014, 35(5): 1439.

pmid: 24246642
[47]
Wang Y, Lee W C, Manga K K, Ang P K, Lu J, Liu Y P, Lim C T, Loh K P. Adv. Mater., 2012, 24(31): 4285.
[48]
Kim J, Park S, Kim Y J, Jeon C S, Lim K T, Seonwoo H, Cho S P, Chung T D, Choung P H, Choung Y H, Hong B H, Chung J H. J. Biomed. Nanotechnol., 2015, 11(11): 2024.

pmid: 26554160
[49]
Bendali A, Hess L H, Seifert M, Forster V, Stephan A F, Garrido J A, Picaud S. Adv. Healthc. Mater., 2013, 2(7): 929.

doi: 10.1002/adhm.201200347 pmid: 23300024
[50]
Fabbro A, Scaini D, LeÓn V, Vázquez E, Cellot G, Privitera G, Lombardi L, Torrisi F, Tomarchio F, Bonaccorso F, Bosi S, Ferrari A C, Ballerini L, Prato M. ACS Nano, 2016, 10(1): 615.

pmid: 26700626
[51]
Veliev F, Briançon-Marjollet A, Bouchiat V, Delacour C. Biomaterials, 2016, 86: 33.

pmid: 26878439
[52]
Pasca S P. Nature, 2018, 553(7689): 437.

pmid: 29364288
[53]
Ma Q Q, Yang L Y, Jiang Z Y, Song Q, Xiao M, Zhang D, Ma X, Wen T Q, Cheng G S. ACS Appl. Mater. Interfaces, 2016, 8(50): 34227.

pmid: 27998102
[54]
Li N, Zhang Q, Gao S, Song Q, Huang R, Wang L, Liu L W, Dai J W, Tang M L, Cheng G S. Sci. Rep., 2013, 3: 1604.

pmid: 23549373
[55]
Song Q, Jiang Z Y, Li Ning, Liu P, Liu L W, Tang M L, Cheng G S. Biomaterials, 2014, 35: 6930.

pmid: 24875763
[56]
Fang Q J, Zhang Y H, Chen X B, Li H, Cheng L Y, Zhu W J, Zhang Z, Tang M L, Liu W, Wang H, Wang T, Shen T, Chai R J. Front. Bioeng. Biotechnol., 2020, 7: 436.

pmid: 31998703
[57]
Guo W B, Qiu J C, Liu J Q, Liu H. Sci. Rep., 2017, 7: 5678.

doi: 10.1038/s41598-017-06051-z pmid: 28720867
[58]
Sakai K, Teshima T F, Nakashima H, Ueno Y. Nanoscale, 2019, 11(28): 13249.

pmid: 31149690
[59]
Qian Y, Zhao X T, Han Q X, Chen W, Li H, Yuan W E. Nat. Commun., 2018, 9: 323.

pmid: 29358641
[60]
Tang M L, Song Q, Li N, Jiang Z Y, Huang R, Cheng G S. Biomaterials, 2013, 34(27): 6402.

doi: 10.1016/j.biomaterials.2013.05.024 pmid: 23755830
[61]
Pampaloni N P, Lottner M, Giugliano M, Matruglio A, D’Amico F, Prato M, Garrido J A, Ballerini L, Scaini D. Nat. Nanotechnol., 2018, 13(8): 755.

pmid: 29892019
[62]
Cohen-Karni T, Qing Q, Li Q, Fang Y, Lieber C M. Nano Lett., 2010, 10(3): 1098.

pmid: 20136098
[63]
Hess L H, Jansen M, Maybeck V, Hauf M V, Seifert M, Stutzmann M, Sharp I D, Offenhäusser A, Garrido J A. Adv. Mater., 2011, 23(43): 5045.

pmid: 21953832
[64]
Blaschke B M, Lottner M, Drieschner S, Calia A B, Stoiber K, Rousseau L, Lissourges G, Garrido J A. 2D Mater., 2016, 3(2): 025007.
[65]
Cheng Z G, Hou J F, Zhou Q Y, Li T Y, Li H B, Yang L, Jiang K L, Wang C, Li Y C, Fang Y. Nano Lett., 2013, 13(6): 2902.

pmid: 23638876
[66]
Kireev D, Zadorozhnyi I, Qiu T, Sarik D, Brings F, Wu T R, Seyock S, Maybeck V, Lottner M, Blaschke B M, Garrido J, Xie X M, Vitusevich S, Wolfrum B, Offenhäusser A. IEEE Trans. Nanotechnol., 2017, 16(1): 140.
[67]
Kireev D, Seyock S, Ernst M, Maybeck V, Wolfrum B, Offenhäusser A. Biosensors, 2017, 7(1): 1.
[68]
Rastogi S K, Bliley J, Shiwarski D J, Raghavan G, Feinberg A W, Cohen-Karni T. Cel. Mol. Bioeng., 2018, 11(5): 407.
[69]
Chen C H, Lin C T, Chen J J, Hsu W L, Chang Y C, Yeh S R, Li L J, Yao D J. 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2011: 1883.
[70]
Chen C H, Lin C T, Hsu W L, Chang Y C, Yeh S R, Li L J, Yao D J. Nanomed.: Nanotechnol. Biol. Med., 2013, 9(5): 600.
[71]
Du X W, Wu L, Cheng J, Huang S L, Cai Q, Jin Q H, Zhao J L. J. Biol. Phys., 2015, 41(4): 339.
[72]
Kireev D, Seyock S, Lewen J, Maybeck V, Wolfrum B, Offenhäusser A. Adv. Healthcare Mater., 2017, 6(12): 1601433.
[73]
Jeong D W, Kim G H, Kim N Y, Lee Z, Jung S D, Lee J O. RSC Adv., 2017, 7(6): 3273.
[74]
Cheng J, Wu L, Du X W, Jin Q H, Zhao J L, Xu Y S. J. Microelectromech. Syst., 2014, 23(6): 1311.
[75]
Veliev F, Han Z, Kalita D, Briançon-Marjollet A, Bouchiat V, Delacour C. Front. Neurosci., 2017, 11: 466.

pmid: 28894412
[76]
Kireev D, Brambach M, Seyock S, Maybeck V, Fu W Y, Wolfrum B, Offenhäusser A. Sci. Rep., 2017, 7: 6658.

pmid: 28751775
[77]
Schaefer N, Garcia C R, Calia A B, Mavredakis N, Illa X, Masvidal C E, Cruz J, Corro E, Rodriguez L, Prats A E, Bousquet J, Martinez A J, Perez M A P, Hebert C, Villa R, Jimenez D, Guimera B A, Garrido J A. Carbon, 2020, 161: 647.
[78]
Park D W, Schendel A A, Mikael S, Brodnick S K, Richner T J, Ness J P, Hayat M R, Atry F, Frye S T, Pashaie R, Thongpang S, Ma Z Q, Williams J C. Nat. Commun., 2014, 5: 5258.

pmid: 25327513
[79]
Park D W, Brodnick S K, Ness J P, Atry F, Krugner-Higby L, Sandberg A, Mikael S, Richner T J, Novello J, Kim H, Baek D H, Bong J, Frye S T, Thongpang S, Swanson K I, Lake W, Pashaie R, Williams J C, Ma Z Q. Nat. Protoc., 2016, 11(11): 2201.
[80]
Park D W, Ness J P, Brodnick S K, Esquibel C, Novello J, Atry F, Baek D H, Kim H, Bong J, Swanson K I, Suminski A J, Otto K J, Pashaie R, Williams J C, Ma Z Q. ACS Nano, 2018, 12(1): 148.

pmid: 29253337
[81]
Kuzum D, Takano H, Shim E, Reed J C, Juul H, Richardson A G, de Vries J, Bink H, Dichter M A, Lucas T H, Coulter D A, Cubukcu E, Litt B. Nat. Commun., 2014, 5: 5259.

doi: 10.1038/ncomms6259 pmid: 25327632
[82]
Thunemann M, Lu Y C, Liu X, Kılıç K, Desjardins M, Vandenberghe M, Sadegh S, Saisan P A, Cheng Q, Weldy K L, Lyu H M, Djurovic S, Andreassen O A, Dale A M, Devor A, Kuzum D. Nat. Commun., 2018, 9: 2035.

pmid: 29789548
[83]
Liu X, Lu Y C, Iseri E, Shi Y H, Kuzum D. Front. Neurosci., 2018, 12: 132.

doi: 10.3389/fnins.2018.00132 pmid: 29559885
[84]
Lu Y C, Liu X, Hattori R, Ren C, Zhang X W, Komiyama T, Kuzum D. Adv. Funct. Mater., 2018, 28(31): 1800002.
[85]
Lu Y C, Lyu H M, Richardson A G, Lucas T H, Kuzum D. Sci. Rep., 2016, 6: 33526.

pmid: 27642117
[86]
Kireev D, Offenhäusser A. 2D Mater., 2018, 5(4): 042004.
[87]
Blaschke B M, Tort-Colet N, Guimerà-Brunet A, Weinert J, Rousseau L, Heimann A, Drieschner S, Kempski O, Villa R, Sanchez-Vives M V, Garrido J A. 2D Mater., 2017, 4(2): 025040.
[88]
HÉbert C, Masvidal-Codina E, Suarez-Perez A, Calia A B, Piret G, Garcia-Cortadella R, Illa X, del Corro Garcia E, de la Cruz Sanchez J M, Casals D V, Prats-Alfonso E, Bousquet J, Godignon P, Yvert B, Villa R, Sanchez-Vives M V, Guimerà-Brunet A, Garrido J A. Adv. Funct. Mater., 2018, 28(12): 1703976.
[89]
Masvidal-Codina E, Illa X, Dasilva M, Calia A B, Dragojević T, Vidal-Rosas E E, Prats-Alfonso E, Martínez-Aguilar J, de la Cruz J M, Garcia-Cortadella R, Godignon P, Rius G, Camassa A, del Corro E, Bousquet J, HÉbert C, Durduran T, Villa R, Sanchez-Vives M V, Garrido J A, Guimerà-Brunet A. Nat. Mater., 2019, 18(3): 280.

pmid: 30598536
[90]
Shi E Z, Li H B, Yang L, Hou J F, Li Y C, Li L, Cao A Y, Fang Y. Adv. Mater., 2015, 27(4): 682.

doi: 10.1002/adma.201403722 pmid: 25607917
[91]
Yang L, Zhao Y, Xu W J, Shi E Z, Wei W J, Li X M, Cao A Y, Cao Y P, Fang Y. Nano Lett., 2017, 17(1): 71.

pmid: 27958757
[92]
Schaefer N, Garcia-Cortadella R, Martínez-Aguilar J, Schwesig G, Illa X, Moya Lara A, Santiago S, HÉbert C, Guirado G, Villa R, Sirota A, Guimerà-Brunet A, Garrido J A. 2D Mater., 2020, 7(2): 025046.
[93]
Garcia-Cortadella R, Masvidal-Codina E, de la Cruz J M, Schäfer N, Schwesig G, Jeschke C, Martinez-Aguilar J, Sanchez-Vives M V, Villa R, Illa X, Sirota A, Guimerà A, Garrido J A. Small, 2020, 16(16): 1906640.
[94]
Bourrier A, Shkorbatova P, Bonizzato M, Rey E, Barraud Q, Courtine G, Othmen R, Reita V, Bouchiat V, Delacour C. Adv. Healthcare Mater., 2019, 8(18): 1970075.
[95]
Zhao S Y, Liu X J, Xu Z, Ren H Y, Deng B, Tang M, Lu L L, Fu X F, Peng H L, Liu Z F, Duan X J. Nano Lett., 2016, 16(12): 7731.

pmid: 27802387
[96]
Apollo N V, Maturana M I, Tong W, Nayagam D A X, Shivdasani M N, Foroughi J, Wallace G G, Prawer S, Ibbotson M R, Garrett D J. Adv. Funct. Mater., 2015, 25(23): 3551.
[97]
Wang K Z, Frewin C L, Esrafilzadeh D, Yu C C, Wang C Y, Pancrazio J J, Romero-Ortega M, Jalili R, Wallace G. Adv. Mater., 2019, 31(15): 1805867.
[98]
Du M D, Xu X C, Yang L, Guo Y C, Guan S L, Shi J D, Wang J F, Fang Y. Biosens. Bioelectron., 2018, 105: 109.

pmid: 29358111
[1] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[2] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[3] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[4] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[5] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[6] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[7] Xiangrui Kong, Jing Dou, Shuzhen Chen, Bingbing Wang, Zhijun Wu. Progress of Synchrotron-Based Research on Atmospheric Science [J]. Progress in Chemistry, 2022, 34(4): 963-972.
[8] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[9] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[10] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[11] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[12] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[13] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[14] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[15] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.