中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (2): 274-286 DOI: 10.7536/PC220716 Previous Articles   Next Articles

• Review •

Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels

Liangchun Li1(), Renlin Zheng1, Yi Huang1, Rongqin Sun2   

  1. 1 School of Life Science and Engineering, Southwest University of Science and Technology,Mianyang 621010, China
    2 School of Materials Science and Engineering, Southwest University of Science and Technology,Mianyang 621010, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: lilc76@gmail.com
Richhtml ( 23 ) PDF ( 361 ) Cited
Export

EndNote

Ris

BibTeX

Multicomponent assembly includes multiple components that can form self-assemblies, which is a common phenomenon in natural processes. We can analyze the structural characteristics embedded in the natural supramolecular structure and design innovative materials according to the predicted molecular interactions. However, due to the limited understanding of the nature of the molecules, the design of low molecular weight hydrogels (LMWGs) with controllable hierarchical structure is still facing certain difficulties, and it is far from the naturally formed high-level complex living system. In the field of multicomponent supramolecular chemistry, it is necessary for us to study the structure and function of multicomponent self-assembly networks by using the method of system theory. In addition to understanding the properties of component molecular monomers, we also need to study the chemical networks formed by component molecules for the better understanding of nature. When self-assembly is triggered in a multicomponent system, there are usually three assembly pathways, namely, co-assembly, self-sorting and multidimensional hierarchical combination of assemblies or heterojunction. These three assembly systems compete with each other but may also coexist, resulting in the complexity and multiple responsiveness of the multicomponent assembly system. Therefore, the design and assembly structure prediction of the multicomponent assembly building blocks or assembly systems are also very challenging. The high-level and multicomponent assembly process allows multiple self-assemblies to operate cooperatively and orthogonally, and has precise spatial control. The self-sorting is the basis of many related (biological) chemical processes (such as phase separation, kinetic analysis or self-replication), which can be narcissistic or social. The study of self-sorting assembly in multicomponent assembly system is of great significance for deepening the understanding of the relationship between components and molecules, realizing the control of the network, and realizing the controllable construction of high-level complex assembly system. In this paper, the characteristics and research methods of multicomponent assembly are reviewed, and the research results of self-sorting in the fields of self-assembly characteristics and control of multicomponent assembly are displayed and discussed, in order to promote the understanding and in-depth research in this field.

Contents

1 Introduction

2 Characteristics of multicomponent assembly system

3 Study on multicomponent self-assembly from the viewpoint of system theory

4 Study on self-sorting assembly of multicomponent self-assembly hydrogels and their control factors

4.1 Utilizing the difference and complementarity of structures to achieve control

4.2 Utilizing the chiral inductions to achieve control

4.3 Utilizing the dynamic process to achieve control

5 Image research method in the researches of self-sorting assembled hydrogels

6 Conclusion and outlook

Fig.1 Schematic illustration of multicomponent self-assemblies
Fig.2 The chemical structures of PA-E3 and DBS-COOH[54]
Fig.3 The chemical structures of pH tunable n-type and p-type gelators[91]
Fig.4 (a) Molecular structures of Fmoc-IKVAV and Fmoc-YIGSR; (b) Schematic representation of molecular self-assembly of the two peptides showing differential fibrous morphology, while their composite gels showing coexistence of self-sorted fibrous morphology of both the peptides. Reprinted with permission from [95]. Copyright 2020 American Chemical Society
Fig.5 Different pH conditions show different assembly systems (from self-sorting to co-assembly). Reprinted with permission from [42].? 2021 The Authors. Published by Wiley-VCH GmbH
Fig.6 The chemical structures of SucVal8 and two derivatives of L-proline (ProValDoc and ProVal8)[98].
Fig.7 The chemical structures of chirality induced self-assemblies of trans-1,2-disubstituted cyclohexane derivatives and the schematic illustrations[101]
Fig.8 The chemical structures of gelators with different substitutions (LPF and LPFEG)[104]
Fig.9 (a) The chemical structures of the multicomponent hydrogelators based on hydrazine; (b) schematic diagram of different multi-level self-sorting assembly pathways. Reprinted with permission from [105]. ?2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig.10 Schematic illustration of the transformation from the interpenetrated self-sorting double network (SDN) to the parallel SDN by the oxime-exchange protocol. Reprinted with permission from [108]. Copyright ? 2020, The Authors.
[1]
Das A K, Gavel P K. Soft Matter, 2020, 16(44): 10065.

doi: 10.1039/D0SM01136C
[2]
Feng X Y, Luo Y N, Li F J, Jian X T, Liu Y. Gels, 2021, 7(3): 105.

doi: 10.3390/gels7030105
[3]
Li L C, Sun R Q, Zheng R L, Huang Y. Mater. Des., 2021, 205: 109759.

doi: 10.1016/j.matdes.2021.109759
[4]
Li L C, Sun R Q, Zheng R L. Mater. Des., 2021, 197: 109209.

doi: 10.1016/j.matdes.2020.109209
[5]
Jiang Y X, Zhang W, Yang F D, Wan C, Cai X, Liu J B, Zhang Q L, Li Z G, Han W. Sci. Adv., 2021, 7(4): eabd0492.

doi: 10.1126/sciadv.abd0492
[6]
Liang J Q, Guo P P, Qin X J, Gao X H, Ma K, Zhu X F, Jin X, Xu W W, Jiang L X, Duan P F. ACS Nano, 2020, 14(3): 3190.

doi: 10.1021/acsnano.9b08408
[7]
Li C X, Sang Y T, Jin X, Duan P F, Liu M H. Angew. Chem. Int. Ed., 2022, 61(38): e202206332.
[8]
Ji W, Tang Y M, Makam P, Yao Y F, Jiao R R, Cai K Y, Wei G H, Gazit E. J. Am. Chem. Soc., 2021, 143(42): 17633.

doi: 10.1021/jacs.1c07915 pmid: 34647727
[9]
Bera S, Chakraborty A, Karak S, Halder A, Chatterjee S, Saha S, Banerjee R. Chem. Mater., 2018, 30(14): 4755.

doi: 10.1021/acs.chemmater.8b01698
[10]
Li L C, Xie L, Zheng R L, Sun R Q. Front. Chem., 2021, 9: 739791.

doi: 10.3389/fchem.2021.739791
[11]
Pang X L, Xie D Y, Ge X T, Li Y J, Zhen X L, Yu X D. Supramol. Chem., 2016, 28(3/4): 335.

doi: 10.1080/10610278.2015.1102262
[12]
Chu C W, Schalley C A. Org. Mater., 2021, 3(1): 25.
[13]
Chen J F, Lin Q, Yao H, Zhang Y M, Wei T B. Mater. Chem. Front., 2018, 2(5): 999.

doi: 10.1039/C8QM00065D
[14]
Chen J, Li Q, Wu P C, Liu J, Wang D, Yuan X H, Zheng R L, Sun R Q, Li L C. Front. Chem., 2020, 8: 368.

doi: 10.3389/fchem.2020.00368 pmid: 32426330
[15]
Basak S, Singh I, Kraatz H B. Chemistryselect, 2017, 2: 451.

doi: 10.1002/slct.201601278
[16]
Mondal B, Bairagi D, Nandi N, Hansda B, Das K S, Edwards-Gayle C J C, Castelletto V, Hamley I W, Banerjee A. Langmuir, 2020, 36(43): 12942.

doi: 10.1021/acs.langmuir.0c02205
[17]
Okesola B O, Smith D K. Chem. Soc. Rev., 2016, 45(15): 4226.

doi: 10.1039/C6CS00124F
[18]
Giuri D, D’Agostino S, Ravarino P, Faccio D, Falini G, Tomasini C. ChemNanoMat, 2022, 8: e202200093.
[19]
Wang C, Zhang J J. ACS Appl. Bio Mater., 2022, 5(5): 1934.

doi: 10.1021/acsabm.1c01197
[20]
Yuan L, Liu L. Sens. Actuat. B Chem., 2021, 344: 130232.

doi: 10.1016/j.snb.2021.130232
[21]
Zhu J, Zhang Z, Wang R, Zhong K, Zhang K, Zhang N, Liu W, Feng F, Qu W. ACS Appl. Nano Mater., 2022, 5: 3146.

doi: 10.1021/acsanm.2c00056
[22]
Xie Y, Ma C, Yang X, Wang J C, Long G, Zhou J B. Adv. Drug Deliv. Rev., 2021, 176: 113868.

doi: 10.1016/j.addr.2021.113868
[23]
Li X, Zhang H J, Liu L Y, Cao C Y, Wei P, Yi X, Zhou Y F, Lv Q Y, Zhou D F, Yi T. J. Mater. Chem. B, 2021, 9(41): 8686.

doi: 10.1039/D1TB01628H
[24]
Cheng H B, Zhang S C, Qi J, Liang X J, Yoon J. Adv. Mater., 2021, 33(26): 2007290.

doi: 10.1002/adma.v33.26
[25]
Olivieri E, Quintard G, Naubron J V, Quintard A. J. Am. Chem. Soc., 2021, 143(32): 12650.

doi: 10.1021/jacs.1c05183 pmid: 34351739
[26]
Zeng L, Song M M, Gu J, Xu Z Y, Xue B, Li Y, Cao Y. Biomimetics, 2019, 4(2): 36.

doi: 10.3390/biomimetics4020036
[27]
Du H, Liu J, Pan B Y, Yang H Y, Liu G B, Lu K. Food Hydrocoll., 2022, 131: 107751.

doi: 10.1016/j.foodhyd.2022.107751
[28]
Rajasekar M, Lavanya M. RSC Adv., 2022, 12(25): 15925.

doi: 10.1039/d2ra00924b pmid: 35733685
[29]
Chen H M, Cai X X, Cheng J, Wang S Y. Trends Food Sci. Technol., 2022, 120: 212.

doi: 10.1016/j.tifs.2021.12.027
[30]
Zhou P, Wang J Q, Wang M, Hou J, Lu J R, Xu H. J. Colloid Interface Sci., 2019, 548: 244.

doi: 10.1016/j.jcis.2019.04.019
[31]
Bondoc R. Self-assembling biomaterials: molecular design, characterization and application in biology and medicine. Focus on Catalysts, 2018, 371.
[32]
Chakraborty P, Adler-Abramovich L, Gazit E. Multifunctional Hydrogels for Biomedical Applications. John Wiley & Sons, Ltd, 2022, 127.
[33]
Sikdar P, Uddin M M, Dip T M, Islam S, Hoque M S, Dhar A K, Wu S Y. Mater. Adv., 2021, 2(14): 4532.

doi: 10.1039/D1MA00193K
[34]
Ract J N R, da Cruz R G, Pereira C G. Thermodynamics of Phase Equilibria in Food Engineering. Amsterdam: Elsevier, 2019, 563.
[35]
Ben Messaoud G, Le Griel P, Hermida-Merino D, Roelants S L K W, Soetaert W, Stevens C V, Baccile N. Chem. Mater., 2019, 31(13): 4817.

doi: 10.1021/acs.chemmater.9b01230
[36]
Scarel E, Bellotto O, Rozhin P, Kralj S, Tortora M, Vargiu A V, de Zorzi R, Rossi B, Marchesan S. Soft Matter, 2022, 18(11): 2129.

doi: 10.1039/D1SM01824H
[37]
Sharma A, Gupta A, Khan N, DuttKonar A. New J. Chem., 2020, 44(22): 9213.

doi: 10.1039/D0NJ01583K
[38]
Levine M S, Ghosh M, Hesser M, Hennessy N, DiGuiseppi D M, Adler-Abramovich L, Schweitzer-Stenner R. Soft Matter, 2020, 16(33): 7860.

doi: 10.1039/D0SM00035C
[39]
Kadeeja A, Joseph S, Abraham J N. Soft Matter, 2020, 16(27): 6294.

doi: 10.1039/d0sm00670j pmid: 32462156
[40]
Li L C, Chen J, Wang Z, Xie L, Feng C, He G, Hu H L, Sun R Q, Zhu H J. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 628: 127289.

doi: 10.1016/j.colsurfa.2021.127289
[41]
Panja S, Seddon A, Adams D J. Chem. Sci., 2021, 12(33): 11197.

doi: 10.1039/D1SC02854E
[42]
Panja S, Dietrich B, Shebanova O, Smith A J, Adams D J. Angew. Chem. Int. Ed., 2021, 60(18): 9973.

doi: 10.1002/anie.v60.18
[43]
Rosa E, Diaferia C, Gianolio E, Sibillano T, Gallo E, Smaldone G, Stornaiuolo M, Giannini C, Morelli G, Accardo A. Macromol. Biosci., 2022, 22(7): 2200128.

doi: 10.1002/mabi.v22.7
[44]
Draper E R, Adams D J. Chem. Soc. Rev., 2018, 47(10): 3395.

doi: 10.1039/c7cs00804j pmid: 29419826
[45]
Chivers P R A, Smith D K. Nat. Rev. Mater., 2019, 4(7): 463.

doi: 10.1038/s41578-019-0111-6
[46]
Raeburn J, Adams D J. Chem. Commun., 2015, 51(25): 5170.

doi: 10.1039/C4CC08626K
[47]
Ahmadi Z, Yadav S, Kar A K, Jha D, Gautam H K, Patnaik S, Kumar P, Sharma A K. Biomater. Adv., 2022, 133: 112633.

doi: 10.1016/j.msec.2021.112633
[48]
Xing P Y, Tham H P, Li P Z, Chen H Z, Xiang H J, Zhao Y L. Adv. Sci., 2018, 5(1): 1700552.

doi: 10.1002/advs.201700552
[49]
Aida T, Meijer E W, Stupp S I. Science, 2012, 335(6070): 813.

doi: 10.1126/science.1205962 pmid: 22344437
[50]
Cartwright J H E. Philos. Trans. R. Soc. Math. Phys. Eng. Sci., 2016, 374: 20150449.
[51]
Wang C, Wang Z Q, Zhang X. Acc. Chem. Res., 2012, 45(4): 608.

doi: 10.1021/ar200226d
[52]
Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn R V. Chem. Rev., 2021, 121(22): 13869.

doi: 10.1021/acs.chemrev.1c00089
[53]
Lu H Y, Wang X, Hao J C. Chin. Sci. Bull., 2021, 66(14): 1733.

doi: 10.1360/TB-2020-1418
[54]
Okesola B O, Wu Y H, Derkus B, Gani S, Wu D S, Knani D, Smith D K, Adams D J, Mata A. Chem. Mater., 2019, 31(19): 7883.

doi: 10.1021/acs.chemmater.9b01882
[55]
Khalily M A, Bakan G, Kucukoz B, Topal A E, Karatay A, Yaglioglu H G, Dana A, Guler M O. ACS Nano, 2017, 11(7): 6881.

doi: 10.1021/acsnano.7b02025
[56]
Xing P Y, Zhao Y L. Acc. Chem. Res., 2018, 51(9): 2324.

doi: 10.1021/acs.accounts.8b00312
[57]
Colquhoun C, Draper E R, Eden E G B, Cattoz B N, Morris K L, Chen L, McDonald T O, Terry A E, Griffiths P C, Serpell L C, Adams D J. Nanoscale, 2014, 6(22): 13719.

doi: 10.1039/C4NR04039B
[58]
Draper E R, Eden E G B, McDonald T O, Adams D J. Nat. Chem., 2015, 7(10): 848.

doi: 10.1038/nchem.2347 pmid: 26391086
[59]
Alakpa E V, Jayawarna V, Lampel A, Burgess K V, West C C, Bakker S C J, Roy S, Javid N, Fleming S, Lamprou D A, Yang J L, Miller A, Urquhart A J, Frederix P W J M, Hunt N T, PÉault B, Ulijn R V, Dalby M J. Chem, 2016, 1(3): 512.

doi: 10.1016/j.chempr.2016.08.001
[60]
Wu D D, Lei H, Xie X, Zhou L, Zheng P, Cao Y, Zhang Y. Nano Res., 2022, 15(5): 4294.

doi: 10.1007/s12274-022-4089-9
[61]
Xu J W, Qi G Y, Wang W Q, Sun X S. Npj Sci. Food, 2021, 5: 14.

doi: 10.1038/s41538-021-00096-1
[62]
Noblett A D, Baek K, Suggs L J. ACS Biomater. Sci. Eng., 2021, 7(6): 2605.

doi: 10.1021/acsbiomaterials.0c01658
[63]
Shigemitsu H, Fujisaku T, Tanaka W, Kubota R, Minami S, Urayama K, Hamachi I. Nat. Nanotechnol., 2018, 13(2): 165.

doi: 10.1038/s41565-017-0026-6 pmid: 29311611
[64]
Mayoral M J, Rest C, Schellheimer J, Stepanenko V, Fernández G. Chem. Eur. J., 2012, 18(49): 15607.

doi: 10.1002/chem.201202367
[65]
Zhao X T, Wang H, Li B Y, Zheng B, Yang D, Xu W H, Li X P, Yang X J, Wu B. Chem. Commun., 2021, 57(49): 6078.

doi: 10.1039/D1CC01652K
[66]
Tomimasu N, Kanaya A, Takashima Y, Yamaguchi H, Harada A. J. Am. Chem. Soc., 2009, 131(34): 12339.

doi: 10.1021/ja903988c pmid: 19705917
[67]
Huang Z H, Chen X Y, Wu G L, Metrangolo P, Whitaker D, McCune J A, Scherman O A. J. Am. Chem. Soc., 2020, 142(16): 7356.

doi: 10.1021/jacs.0c02275
[68]
Giraud T, Bouguet-Bonnet S, StÉbÉ M J, Richaudeau L, Pickaert G, Averlant-Petit M C, Stefan L. Nanoscale, 2021, 13(23): 10566.

doi: 10.1039/D1NR02417E
[69]
Halperin-Sternfeld M, Ghosh M, Sevostianov R, Grigoriants I, Adler-Abramovich L. Chem. Commun., 2017, 53(69): 9586.

doi: 10.1039/C7CC04187J
[70]
Has C, Sunthar P. J. Liposome Res., 2020, 30(4): 336.

doi: 10.1080/08982104.2019.1668010
[71]
Qiu H B, Hudson Z M, Winnik M A, Manners I. Science, 2015, 347(6228): 1329.

doi: 10.1126/science.1261816
[72]
Wang J, Liu K, Xing R R, Yan X H. Chem. Soc. Rev., 2016, 45(20): 5589.

doi: 10.1039/C6CS00176A
[73]
Juan W, Qianli Z, Xuehai Y. ACTA Chim. Sin., 2017, 75: 933.
[74]
Raymond D M, Nilsson B L. Chem. Soc. Rev., 2018, 47(10): 3659.

doi: 10.1039/C8CS00115D
[75]
Fuentes-CaparrÓs A M, de Paula GÓmez-Franco F, Dietrich B, Wilson C, Brasnett C, Seddon A, Adams D J. Nanoscale, 2019, 11(7): 3275.

doi: 10.1039/c8nr09423c pmid: 30720823
[76]
Lin Y Y, Penna M, Thomas M R, Wojciechowski J P, Leonardo V, Wang Y, Pashuck E T, Yarovsky I, Stevens M M. ACS Nano, 2019, 13(2): 1900.
[77]
Nitschke J R. Nature, 2009, 462: 736.

doi: 10.1038/462736a
[78]
Ashkenasy G, Hermans T M, Otto S, Taylor A F. Chem. Soc. Rev., 2017, 46(9): 2543.

doi: 10.1039/c7cs00117g pmid: 28418049
[79]
Serrano-Molina D, Montoro-García C, Mayoral M J, de Juan A, González-Rodríguez D. J. Am. Chem. Soc., 2022, 144(12): 5450.

doi: 10.1021/jacs.1c13295 pmid: 35311263
[80]
He Z F, Jiang W, Schalley C A. Chem. Soc. Rev., 2015, 44(3): 779.

doi: 10.1039/C4CS00305E
[81]
Panja S, Dietrich B, Smith A J, Seddon A, Adams D J. ChemSystemsChem, 2022, 4(4): e202200008.
[82]
Chatterjee A, Reja A, Pal S, Das D. Chem. Soc. Rev., 2022, 51(8): 3047.

doi: 10.1039/D1CS01178B
[83]
Mattia E, Otto S. Nat. Nanotechnol., 2015, 10(2): 111.

doi: 10.1038/nnano.2014.337 pmid: 25652169
[84]
Islam S, Powner M W. Chem, 2017, 2(4): 470.

doi: 10.1016/j.chempr.2017.03.001
[85]
Das K, Gabrielli L, Prins L J. Angew. Chem. Int. Ed., 2021, 60(37): 20120.

doi: 10.1002/anie.v60.37
[86]
Safont-Sempere M M, Fernández G, Würthner F. Chem. Rev., 2011, 111(9): 5784.

doi: 10.1021/cr100357h pmid: 21846150
[87]
Boekhoven J, Brizard A M, Stuart M C A, Florusse L, Raffy G, del Guerzo A, van Esch J H. Chem. Sci., 2016, 7(9): 6021.

doi: 10.1039/c6sc01021k pmid: 30034743
[88]
Morris K L, Chen L, Raeburn J, Sellick O R, Cotanda P, Paul A, Griffiths P C, King S M, O’Reilly R K, Serpell L C, Adams D J. Nat. Commun., 2013, 4: 1480.

doi: 10.1038/ncomms2499 pmid: 23403581
[89]
Smith M M, Smith D K. Soft Matter, 2011, 7(10): 4856.

doi: 10.1039/c1sm05316g
[90]
Nuthanakanti A, Walunj M B, Torris A, Badiger M V, Srivatsan S G. Nanoscale, 2019, 11(24): 11956.

doi: 10.1039/c9nr01863h pmid: 31188377
[91]
Draper E R, Dietrich B, Adams D J. Chem. Commun., 2017, 53: 1868.

doi: 10.1039/C6CC08337D
[92]
Cross E R, Sproules S, Schweins R, Draper E R, Adams D J. J. Am. Chem. Soc., 2018, 140(28): 8667.

doi: 10.1021/jacs.8b05359
[93]
Draper E R, Lee J R, Wallace M, Jäckel F, Cowan A J, Adams D J. Chem. Sci., 2016, 7(10): 6499.

doi: 10.1039/c6sc02644c pmid: 28451108
[94]
Castilla A M, Draper E R, Nolan M C, Brasnett C, Seddon A, Mears L L E, Cowieson N, Adams D J. Sci. Rep., 2017, 7: 8380.

doi: 10.1038/s41598-017-08644-0 pmid: 28827598
[95]
Jain R, Roy S. ACS Biomater. Sci. Eng., 2020, 6(5): 2832.

doi: 10.1021/acsbiomaterials.9b01998
[96]
Sahoo J K, VandenBerg M A, Ruiz Bello E E, Nazareth C D, Webber M J. Nanoscale, 2019, 11(35): 16534.

doi: 10.1039/C9NR03440D
[97]
Wakabayashi R, Imatani R, Katsuya M, Higuchi Y, Noguchi H, Kamiya N, Goto M. Chem. Commun., 2022, 58(4): 585.

doi: 10.1039/D1CC05560G
[98]
Singh N, Zhang K, Angulo-Pachon C A, Mendes E, van Esch J H, Escuder B. Chem. Sci., 2016, 7(8): 5568.

doi: 10.1039/C6SC01268J
[99]
He H W, Zheng H, Ma M, Shi Y Q, Gao Z L, Chen S, Wang X. Chem. Commun., 2020, 56(20): 2983.

doi: 10.1039/C9CC09816J
[100]
Gupta D, Sasmal R, Singh A, Joseph J P, Miglani C, Agasti S S, Pal A. Nanoscale, 2020, 12(36): 18692.

doi: 10.1039/D0NR04581K
[101]
Kulkarni C, Berrocal J A, Lutz M, Palmans A R A, Meijer E W. J. Am. Chem. Soc., 2019, 141(15): 6302.

doi: 10.1021/jacs.9b00452
[102]
Basak S, Singh I, Ferranco A, Syed J, Kraatz H B. Angew. Chem. Int. Ed., 2017, 56(43): 13288.

doi: 10.1002/anie.201706162
[103]
Li Y X, Xu L, Kang S M, Zhou L, Liu N, Wu Z Q. Angew. Chem. Int. Ed., 2021, 60(13): 7174.

doi: 10.1002/anie.v60.13
[104]
Liu G F, Zhou C, Teo W L, Qian C, Zhao Y L. Angew. Chem. Int. Ed., 2019, 58(28): 9366.

doi: 10.1002/anie.v58.28
[105]
Wang Y M, Piskorz T K, Lovrak M, Mendes E, Guo X H, Eelkema R, van Esch J H. Adv. Sci., 2020, 7(7): 1902487.

doi: 10.1002/advs.v7.7
[106]
Wang Y M, Lovrak M, Liu Q, Maity C, Le Sage V A A, Guo X H, Eelkema R, van Esch J H. J. Am. Chem. Soc., 2019, 141(7): 2847.

doi: 10.1021/jacs.8b09596
[107]
Wang H C, Liu L Q, Bai S Y, Guo X H, Eelkema R, van Esch J H, Wang Y M. Soft Matter, 2020, 16(41): 9406.

doi: 10.1039/D0SM01584A
[108]
Kubota R, Nagao K, Tanaka W, Matsumura R, Aoyama T, Urayama K, Hamachi I. Nat. Commun., 2020, 11: 4100.

doi: 10.1038/s41467-020-17984-x pmid: 32796855
[109]
Dhiman S, Andrian T, Gonzalez B S, Tholen M M E, Wang Y Y, Albertazzi L. Chem. Sci., 2022, 13(8): 2152.

doi: 10.1039/D1SC05506B
[110]
Pujals S, Feiner-Gracia N, Delcanale P, Voets I, Albertazzi L. Nat. Rev. Chem., 2019, 3(2): 68.

doi: 10.1038/s41570-018-0070-2
[111]
Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen G P C. Nat. Cell Biol., 2019, 21(1): 72.

doi: 10.1038/s41556-018-0251-8 pmid: 30602772
[112]
Onogi S, Shigemitsu H, Yoshii T, Tanida T, Ikeda M, Kubota R, Hamachi I. Nat. Chem., 2016, 8(8): 743.

doi: 10.1038/nchem.2526
[113]
Kubota R, Liu S, Shigemitsu H, Nakamura K, Tanaka W, Ikeda M, Hamachi I. Bioconjugate Chem., 2018, 29(6): 2058.

doi: 10.1021/acs.bioconjchem.8b00260 pmid: 29742348
[114]
Kubota R, Nakamura K, Torigoe S, Hamachi I. ChemistryOpen, 2020, 9(1): 67.

doi: 10.1002/open.201900328 pmid: 31988842
[115]
Cao X H, Gao A P, Hou J T, Yi T. Coord. Chem. Rev., 2021, 434: 213792.

doi: 10.1016/j.ccr.2021.213792
[116]
Makiguchi W, Tanabe J, Yamada H, Iida H, Taura D, Ousaka N, Yashima E. Nat. Commun., 2015, 6: 7236.

doi: 10.1038/ncomms8236 pmid: 26051291
[117]
Mayoral M J, Guilleme J, Calbo J, AragÓ J, Aparicio F, Ortí E, Torres T, González-Rodríguez D. J. Am. Chem. Soc., 2020, 142(50): 21017.

doi: 10.1021/jacs.0c07291 pmid: 33186011
[118]
Klein M L, Shinoda W. Science, 2008, 321(5890): 798.

doi: 10.1126/science.1157834
[119]
Ghosh M, Bera S, Schiffmann S, Shimon L J W, Adler-Abramovich L. ACS Nano, 2020, 14(8): 9990.

doi: 10.1021/acsnano.0c03085
[120]
Chakraborty P, Tang Y M, Guterman T, Arnon Z A, Yao Y F, Wei G H, Gazit E. Angew. Chem. Int. Ed., 2020, 59(52): 23731.

doi: 10.1002/anie.v59.52
[121]
Yang X J, Lu H L, Tao Y H, Zhang H Y, Wang H M. J. Nanobiotechnology, 2022, 20: 77.

doi: 10.1186/s12951-022-01285-0
[122]
Piras C C, Smith D K. Chem. Eur. J., 2019, 25(48): 11318.
[123]
Ong L L, Hanikel N, Yaghi O K, Grun C, Strauss M T, Bron P, Lai-Kee-Him J, Schueder F, Wang B, Wang P F, Kishi J Y, Myhrvold C, Zhu A, Jungmann R, Bellot G, Ke Y G, Yin P. Nature, 2017, 552(7683): 72.

doi: 10.1038/nature24648
[124]
Patra J K, Das G, Fraceto L F, Campos E V R, Rodriguez-Torres M D P, Acosta-Torres L S, Diaz-Torres L A, Grillo R, Swamy M K, Sharma S, Habtemariam S, Shin H S. J. Nanobiotechnology, 2018, 16: 71.

doi: 10.1186/s12951-018-0392-8
[125]
Yan C X, Li Q L, Gong Z Q, Cheng Y Z, Wang L N. Progress in Chemistry, 2021, 33: 1917.
(闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 化学进展,2021, 33: 1917.).
[126]
Baig N, Kammakakam I, Falath W. Mater. Adv., 2021, 2(6): 1821.

doi: 10.1039/D0MA00807A
[127]
Liu X, Li M M, Liu J Z, Song Y Q, Hu B B, Wu C X, Liu A A, Zhou H, Long J F, Shi L Q, Yu Z L. J. Am. Chem. Soc., 2022, 144(21): 9312.

doi: 10.1021/jacs.2c01025
[128]
Mueller M, Rasoulinejad S, Garg S, Wegner S V. Nano Lett., 2020, 20(4): 2257.

doi: 10.1021/acs.nanolett.9b04160 pmid: 31751141
[129]
Wang H, Liu C H, Wang K, Wang M H, Yu H, Kandapal S, Brzozowski R, Xu B Q, Wang M, Lu S, Hao X Q, Eswara P, Nieh M P, Cai J F, Li X P. J. Am. Chem. Soc., 2019, 141(40): 16108.

doi: 10.1021/jacs.9b08484
[130]
Ayme J F, Lehn J M. Chem. Sci., 2020, 11(4): 1114.

doi: 10.1039/C9SC04988F
[131]
Nguyen M, Vaikuntanathan S. Proc. Natl. Acad. Sci., 2016, 113(50): 14231.

doi: 10.1073/pnas.1609983113
[132]
Nguyen M, Qiu Y Q, Vaikuntanathan S. Annu. Rev. Condens. Matter Phys., 2021, 12: 273.

doi: 10.1146/conmatphys.2021.12.issue-1
[133]
Mendes A C, Baran E T, Reis R L, Azevedo H S. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnology, 2013, 5(6): 582.
[134]
Pavc D, Sebastian N, Spindler L, Drevenšek-Olenik I, Podboršek G K, Plavec J, Šket P. Nat. Commun., 2022, 13: 1062.

doi: 10.1038/s41467-022-28726-6
[135]
Singh N, Lopez-Acosta A, Formon G J M, Hermans T M. J. Am. Chem. Soc., 2022, 144(1): 410.

doi: 10.1021/jacs.1c10282
[136]
Boruah A, Roy A. Biomater. Sci., 2022, 10(17): 4694.

doi: 10.1039/D2BM00775D
[1] Zhao Jun, Huang Renliang, Qi Wei, Wang Yuefei, Su Rongxin, He Zhimin. Self-Assembly of Diphenylalanine Based Peptides:Molecular Design, Structural Control and Applications [J]. Progress in Chemistry, 2014, 26(09): 1445-1459.