中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (5): 1166-1180 DOI: 10.7536/PC210513 Previous Articles   Next Articles

• Review •

Graphene-Based Artificial Intelligence Flexible Sensors

Hongji Jiang1(), Meili Wang1, Zhiwei Lu1, Shanghui Ye1, Xiaochen Dong2()   

  1. 1. State Key Laboratory of Organic Electronics and Information Displays, National Jiangsu Synergetic Innovation Center for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications,Nanjing 210023, China
    2. Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
  • Received: Revised: Online: Published:
  • Contact: Hongji Jiang, Xiaochen Dong
  • Supported by:
    Major Basic Research Project of the Ministry of Science and Technology(2012CB933301); General Program of the National Natural Science Foundation of China(21574068); Construction Project of Superior Disciplines in Jiangsu Universities(YX03001)
Richhtml ( 61 ) PDF ( 1153 ) Cited
Export

EndNote

Ris

BibTeX

Skin is the largest organ of the human body and can perceive and respond to complex environmental stimuli. As a 2D atomic layer of sp2-hybridized carbon arranged in a hexagonal network, graphene is regarded as a promising material for nanoelectronics owing to its high crystallinity and interesting semimetal electronic properties. In addition, graphene has extremely strong perception ability and high selectivity for different stimuli, and graphene-based materials have been widely used as key perceiving materials of artificial flexible sensors to imitate the flexibility and stretchability of human skin, which is one of the most promising wearable and sensing materials for potential commercialization. This paper first introduces the main working mechanisms of piezoresistive type, capacitive type, piezoelectric type and transistor type, as well as the key performance evaluation parameters such as sensitivity, detection range, response speed and so on of sensors. At the same time, the advantages and synthesis methods of graphene materials are also briefly summarized. In conjunction of our recent research works of graphene-based composite materials made up of graphene and polyaniline, Ag nanoparticles, carbon nanotubes, Ni(OH)2(Ⅱ) and quantum dots for flexible sensors, this paper then reviews the applications of graphene-based single function flexible sensors in detecting pressure, strain, temperature, humidity, chemical molecules, biomolecules, gas and other fields, as well as several graphene-based multifunctional flexible sensors. Finally, the future development of graphene-based flexible sensors is prospected.

Contents

1 Introduction

2 Flexible sensors

2.1 Flexible sensor features

2.2 The sensing mechanism of flexible sensors

2.3 Performance parameters of flexible sensors

3 Graphene

3.1 Synthesis of graphene-based materials

3.2 Sensing properties of graphene-based materials

4 Graphene-based single function flexible sensors

4.1 Graphene-based flexible pressure sensors

4.2 Graphene-based flexible strain sensors

4.3 Graphene-based flexible humidity sensors

4.4 Graphene-based flexible temperature sensors

4.5 Graphene-based other flexible sensors

5 Graphene-based multifunctional flexible sensors

5.1 Pressure/strain sensors

5.2 Pressure/humidity/temperature sensors

5.3 Strain/humidity/temperature sensors

5.4 Pressure/strain/humidity/temperature sensors

5.5 Graphene-based other multifunctional flexible sensors

6 Conclusion and prospect

Fig. 1 Schematic diagram of four different sensing mechanisms: (a) piezoresistive sensing, (b) capacitive sensing, (c) piezoelectric sensing[9], and (d) air-dielectric field effect transistor sensing[10]
Fig. 2 Preparation process of graphene through Hummer method[33]
Fig. 3 (a) Applications for wrist pulse detection, (b) pulse waveform of the tester, (c) application for respiration detection, (d) response curves for breathing before and after exercise, (e~h) response curves of different actions[50]
Fig. 4 Schematic illustration of piezoresistivity of graphene sheets[64]
Fig. 5 (a) schematic diagram of manufacturing process of strain sensor based on 3D graphene/carbon nanotube full carbon synergistic nano-architecture, (b) photo of bending strain sensor, (c) scanning electron microscope image of 3D graphene/carbon nanotube skeleton, (d) gauge factors under different strains, (e) schematic illustration of the crack bridged in 3D graphene/carbon nanotube[79]
Fig. 6 (a)The resistance of the resistive graphene humidity sensor changes with relative humidity in different humidity environments, (b) interaction of water molecules with surface of graphene[47]
Fig. 7 (a) Schematic diagram of the humidity testing system, (b) schematic of humidity sensing at graphene oxide films[85]
Fig. 8 (a) Schematic diagram of temperature sensing of graphene-based thermal field effect transistors[97]. (b) Preparation process and (c) thermal response/recovery schematic of graphene nanowall/polydimethylsiloxane temperature sensors[45]
Fig. 9 (a) Schematic diagram of preparation process of polydiacetylene/graphene stacked composite film, self-assembling molecular structure of polydiacetylene on graphene: (b) before and (c) after polymerization, and (d) exposure to volatile organic compound vapors, (e) photographs of the polydiacetylene/graphene after exposure to different organic vapors[108]
Fig. 10 Schematic diagram of graphite field-effect transistor biosensor for cytokine biomarker detection[117]
Fig. 11 Relative resistance changes of the graphene porous network-polydimethylsiloxane composites under (a) static compression and (b) tensile, relative resistance changes under (c) pressure and (d) tensile cycle[140]
Fig. 12 (a) Fabrication of a stretchable multi-modal all-graphene electronic skin sensor matrix, (b) schematic diagram of multi-modal electronic skin sensor, (c) the circuit diagram of the sensor matrix, (d) the light transmittance of the sensor matrix[142]
Fig. 13 The current response of the sensors under multiple stimuli of (a) pressure and temperature, (b) pressure and strain, and (c) strain and humidity, (d) schematic of the sensing mechanism of the sensor under different stimuli[146]
[1]
Miao P, Wang J, Zhang C C, Sun M Y, Cheng S S, Liu H. Nano Micro Lett., 2019, 11(1): 1.
[2]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.

pmid: 15499015
[3]
Geim A K. Science, 2009, 324(5934): 1530.

doi: 10.1126/science.1158877 pmid: 19541989
[4]
Huang H J, Zhang J, Jiang L, Zang Z G. J. Alloys Compd., 2017, 718: 112.

doi: 10.1016/j.jallcom.2017.05.132
[5]
Huo Q S, Jin J Q, Wang X Q, Lu S W, Zhang Y W, Ma J C, Wang S. Mater. Res. Express, 2019, 6(7): 075613.

doi: 10.1088/2053-1591/ab17ac
[6]
Le K, Wang Z, Wang F L, Wang Q, Shao Q, Murugadoss V, Wu S D, Liu W, Liu J R, Gao Q, Guo Z H. Dalton Trans., 2019, 48(16): 5193.

doi: 10.1039/C9DT00615J
[7]
Huang X S, Yin R, Qian L, Zhao W, Liu H, Liu C T, Fan J C, Hou H, Zhang J X, Guo Z H. Ceram. Int., 2019, 45(14): 17784.

doi: 10.1016/j.ceramint.2019.05.349
[8]
Zheng Q B, Lee J H, Shen X, Chen X D, Kim J K. Mater. Today, 2020, 36: 158.

doi: 10.1016/j.mattod.2019.12.004
[9]
Zang Y P, Zhang F J, Di C A, Zhu D B. Mater. Horiz., 2015, 2(2): 140.

doi: 10.1039/C4MH00147H
[10]
Shin S H, Ji S, Choi S, Pyo K H, An B W, Park J, Kim J, Kim J Y, Lee K S, Kwon S Y, Heo J, Park B G, Park J U. Nat. Commun., 2017, 8(1): 1.

doi: 10.1038/s41467-016-0009-6
[11]
Cai Y C, Huang W, Dong X C. Chin Sci Bull, 2017, 62(7): 635.

doi: 10.1360/N972015-01445
(蔡依晨, 黄维, 董晓臣. 科学通报, 2017, 62(7): 635.
[12]
Xu M X. Doctoral Dissertation of University of Science and Technology Beijing, 2018.
(徐旻轩. 北京科技大学博士论文, 2018.).
[13]
Hammock M L, Chortos A, Tee B C K, Tok J B H, Bao Z N. Adv. Mater., 2013, 25(42): 5997.

doi: 10.1002/adma.201302240
[14]
Wang Z L. Adv. Mater., 2012, 24(34): 4632.

doi: 10.1002/adma.201104365
[15]
Zhao S, Zhu R. Acta Chim. Sinica, 2019, 77(12): 1250.

doi: 10.6023/A19060227
[16]
Li L Q, Gao P, Baumgarten M, Müllen K, Lu N, Fuchs H, Chi L F. Adv. Mater., 2013, 25(25): 3419.

doi: 10.1002/adma.201301138
[17]
Ren X C, Pei K, Peng B Y, Zhang Z C, Wang Z R, Wang X Y, Chan P K L. Adv. Mater., 2016, 28(24): 4832.

doi: 10.1002/adma.201600040
[18]
Kang B S, Kim J, Jang S, Ren F, Johnson J W, Therrien R J, Rajagopal P, Roberts J C, Piner E L, Linthicum K J, Chu S N G, Baik K, Gila B P, Abernathy C R, Pearton S J. Appl. Phys. Lett., 2005, 86(25): 253502.

doi: 10.1063/1.1952568
[19]
Sun Q J, Kim D H, Park S S, Lee N Y, Zhang Y, Lee J H, Cho K, Cho J H. Adv. Mater., 2014, 26(27): 4735.

doi: 10.1002/adma.201400918
[20]
Lin P, Yan F. Adv. Mater., 2012, 24(1): 34.

doi: 10.1002/adma.201103334
[21]
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K. Rev. Mod. Phys., 2009, 81(1): 109.

doi: 10.1103/RevModPhys.81.109
[22]
He Q Y, Sudibya H G, Yin Z Y, Wu S X, Li H, Boey F, Huang W, Chen P, Zhang H. ACS Nano, 2010, 4(6): 3201.

doi: 10.1021/nn100780v
[23]
Yu C M. Doctoral Dissertation of Shaanxi Normal University, 2015.
(鱼春萌. 陕西师范大学博士论文, 2015.).
[24]
Zheng Q B, Li Z G, Yang J H, Kim J K. Prog. Mater. Sci., 2014, 64: 200.

doi: 10.1016/j.pmatsci.2014.03.004
[25]
Zhao G K, Li X M, Huang M R, Zhen Z, Zhong Y J, Chen Q, Zhao X L, He Y J, Hu R R, Yang T T, Zhang R J, Li C L, Kong J, Xu J B, Ruoff R S, Zhu H W. Chem. Soc. Rev., 2017, 46(15): 4417.

doi: 10.1039/C7CS00256D
[26]
Zheng Y Q, Wang H, Hou S F, Xia D Y. Adv. Mater. Technol., 2017, 2(5): 1600237.

doi: 10.1002/admt.201600237
[27]
Park S, Ruoff R S. Nat. Nanotechnol., 2009, 4(4): 217.

doi: 10.1038/nnano.2009.58
[28]
Schniepp H C, Li J L, McAllister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud’Homme R K, Car R, Saville D A, Aksay I A. J. Phys. Chem. B, 2006, 110(17): 8535.

doi: 10.1021/jp060936f
[29]
Tour J M. Chem. Mater., 2014, 26(1): 163.

doi: 10.1021/cm402179h
[30]
Bai H, Li C, Shi G Q. Adv. Mater., 2011, 23(9): 1089.

doi: 10.1002/adma.201003753
[31]
Jiang H J, Mao B X. Chin. J. Inorg. Chem., 2013, 29(11): 2305.
(姜鸿基, 毛炳雪. 无机化学学报, 2013, 29(11): 2305.)
[32]
Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S. Carbon, 2007, 45(7): 1558.

doi: 10.1016/j.carbon.2007.02.034
[33]
Bai H, Li C, Shi G Q. Adv. Mater., 2011, 23(9): 1089.

doi: 10.1002/adma.201003753
[34]
Singh E, Meyyappan M, Nalwa H S. ACS Appl. Mater. Interfaces, 2017, 9(40): 34544.

doi: 10.1021/acsami.7b07063
[35]
Fu W Y, Jiang L, van Geest E P, Lima L M C, Schneider G F. Adv. Mater., 2017, 29(6): 1603610.

doi: 10.1002/adma.201603610
[36]
Suvarnaphaet P, Pechprasarn S. Sensors, 2017, 17(10): 2161.

doi: 10.3390/s17102161
[37]
Tan R K L, Reeves S P, Hashemi N, Thomas D G, Kavak E, Montazami R, Hashemi N N. J. Mater. Chem. A, 2017, 5(34): 17777.

doi: 10.1039/C7TA05759H
[38]
Yang H G, Xue T Y, Li F Y, Liu W T, Song Y L. Adv. Mater. Technol., 2018: 1800574.
[39]
Chen K, Gao W, Emaminejad S, Kiriya D, Ota H, Nyein H Y Y, Takei K, Javey A. Adv. Mater., 2016, 28(22): 4397.

doi: 10.1002/adma.201504958
[40]
Torrisi F, Carey T. Nano Today, 2018, 23: 73.

doi: 10.1016/j.nantod.2018.10.009
[41]
Yao B, Zhang J, Kou T Y, Song Y, Liu T, Li Y. Adv. Sci., 2017, 4(7): 1700107.

doi: 10.1002/advs.201700107
[42]
Lv L, Zhang P P, Xu T, Qu L T. ACS Appl. Mater. Interfaces, 2017, 9(27): 22885.

doi: 10.1021/acsami.7b07153
[43]
Wang Y, Wang L, Yang T T, Li X, Zang X B, Zhu M, Wang K L, Wu D H, Zhu H W. Adv. Funct. Mater., 2014, 24(29): 4666.

doi: 10.1002/adfm.201400379
[44]
Yang T T, Jiang X, Zhong Y J, Zhao X L, Lin S Y, Li J, Li X M, Xu J L, Li Z H, Zhu H W. ACS Sens., 2017, 2(7): 967.

doi: 10.1021/acssensors.7b00230
[45]
Yang J, Wei D P, Tang L L, Song X F, Luo W, Chu J, Gao T P, Shi H F, Du C L. RSC Adv., 2015, 5(32): 25609.

doi: 10.1039/C5RA00871A
[46]
Hong S Y, Lee Y H, Park H, Jin S W, Jeong Y R, Yun J, You I, Zi G, Ha J S. Adv. Mater., 2016, 28(5): 930.

doi: 10.1002/adma.201504659
[47]
Smith A D, Elgammal K, Niklaus F, Delin A N, Fischer A C, Vaziri S, Forsberg F, Råsander M, Hugosson H, Bergqvist L, Schröder S, Kataria S, Östling M, Lemme M C. Nanoscale, 2015, 7(45): 19099.

doi: 10.1039/C5NR06038A
[48]
Popov V I, Nikolaev D V, Timofeev V B, Smagulova S A, Antonova I V. Nanotechnology, 2017, 28(35): 355501.

doi: 10.1088/1361-6528/aa7b6e
[49]
Yavari F, Koratkar N. J. Phys. Chem. Lett., 2012, 3(13): 1746.

doi: 10.1021/jz300358t pmid: 26291854
[50]
Tao L Q, Zhang K N, Tian H, Liu Y, Wang D Y, Chen Y Q, Yang Y, Ren T L. ACS Nano, 2017, 11(9): 8790.

doi: 10.1021/acsnano.7b02826
[51]
Samad Y A, Li Y Q, Schiffer A, Alhassan S M, Liao K. Small, 2015, 11(20): 2380.

doi: 10.1002/smll.201403532
[52]
Yao H B, Ge J, Wang C F, Wang X, Hu W, Zheng Z J, Ni Y, Yu S H. Adv. Mater., 2013, 25(46): 6692.

doi: 10.1002/adma.201303041
[53]
Huang J K, Zeng J B, Liang B Q, Wu J W, Li T G, Li Q, Feng F, Feng Q W, Rood M J, Yan Z F. ACS Appl. Mater. Interfaces, 2020, 12(14): 16822.

doi: 10.1021/acsami.0c01794
[54]
Ge G, Cai Y C, Dong Q C, Zhang Y Z, Shao J J, Huang W, Dong X C. Nanoscale, 2018, 10(21): 10033.

doi: 10.1039/C8NR02813C
[55]
Zhang X C, Scarpa F, McHale R, Limmack A P, Peng H X. RSC Adv., 2016, 6(83): 80334.

doi: 10.1039/C6RA15868D
[56]
Chen Z F, Wang Z, Li X M, Lin Y X, Luo N Q, Long M Z, Zhao N, Xu J B. ACS Nano, 2017, 11(5): 4507.

doi: 10.1021/acsnano.6b08027
[57]
Pyo S, Choi J, Kim J. Adv. Electron. Mater., 2018, 4(1): 1700427.

doi: 10.1002/aelm.201700427
[58]
Kang M, Kim J, Jang B, Chae Y, Kim J H, Ahn J H. ACS Nano, 2017, 11(8): 7950.

doi: 10.1021/acsnano.7b02474
[59]
Yang J, Luo S, Zhou X, Li J L, Fu J T, Yang W D, Wei D P. ACS Appl. Mater. Interfaces, 2019, 11(16): 14997.

doi: 10.1021/acsami.9b02049
[60]
Shi G, Zhao Z H, Pai J H, Lee I, Zhang L Q, Stevenson C, Ishara K, Zhang R J, Zhu H W, Ma J. Adv. Funct. Mater., 2016, 26(42): 7614.

doi: 10.1002/adfm.201602619
[61]
Wang X N, Qiu Y F, Cao W W, Hu P G. Chem. Mater., 2015, 27(20): 6969.

doi: 10.1021/acs.chemmater.5b02098
[62]
Li X T, Hua T, Xu B G. Carbon, 2017, 118: 686.

doi: 10.1016/j.carbon.2017.04.002
[63]
Zhao J, Zhang G Y, Shi D X. Chin. Phys. B, 2013, 22(5): 057701.

doi: 10.1088/1674-1056/22/5/057701
[64]
Kim Y J, Cha J Y, Ham H, Huh H, So D S, Kang I. Curr. Appl. Phys., 2011, 11(1): S350.

doi: 10.1016/j.cap.2010.11.022
[65]
Liang K, Spiesz E M, Schmieden D T, Xu A W, Meyer A S, Aubin-Tam M E. ACS Nano, 2020, 14(11): 14731.

doi: 10.1021/acsnano.0c00913
[66]
Qin Y Y, Peng Q Y, Ding Y J, Lin Z S, Wang C H, Li Y, Xu F, Li J J, Yuan Y, He X D, Li Y B. ACS Nano, 2015, 9(9): 8933.

doi: 10.1021/acsnano.5b02781
[67]
Kim S J, Mondal S, Min B K, Choi C G. ACS Appl. Mater. Interfaces, 2018, 10(42): 36377.

doi: 10.1021/acsami.8b11233
[68]
Jing X, Mi H Y, Peng X F, Turng L S. Carbon, 2018, 136: 63.

doi: 10.1016/j.carbon.2018.04.065
[69]
Tang Y C, Zhao Z B, Hu H, Liu Y, Wang X Z, Zhou S K, Qiu J S. ACS Appl. Mater. Interfaces, 2015, 7(49): 27432.

doi: 10.1021/acsami.5b09314
[70]
Pang K, Song X, Xu Z, Liu X T, Liu Y J, Zhong L, Peng Y X, Wang J X, Zhou J Z, Meng F X, Wang J, Gao C. Sci. Adv., 2020, 6(46): eabd4045.

doi: 10.1126/sciadv.abd4045
[71]
Sun S B, Liu Y Q, Chang X T, Jiang Y C, Wang D S, Tang C J, He S Y, Wang M W, Guo L, Gao Y. J. Mater. Chem. C, 2020, 8(6): 2074.

doi: 10.1039/C9TC04537F
[72]
Chen Z P, Ren W C, Gao L B, Liu B L, Pei S F, Cheng H M. Nat. Mater., 2011, 10(6): 424.

doi: 10.1038/nmat3001
[73]
Li J H, Zhao S F, Zeng X L, Huang W P, Gong Z Y, Zhang G P, Sun R, Wong C P. ACS Appl. Mater. Interfaces, 2016, 8(29): 18954.

doi: 10.1021/acsami.6b05088
[74]
Sarker F, Karim N, Afroj S, Koncherry V, Novoselov K S, Potluri P. ACS Appl. Mater. Interfaces, 2018, 10(40): 34502.

doi: 10.1021/acsami.8b13018
[75]
Li W G, Guo J H, Fan D L. Adv. Mater. Technol., 2017, 2(6): 1700070.

doi: 10.1002/admt.201700070
[76]
Zhou R, Li P C, Fan Z, Du D H, Ouyang J Y. J. Mater. Chem. C, 2017, 5(6): 1544.

doi: 10.1039/C6TC04849H
[77]
Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Nature, 2009, 457(7230): 706.

doi: 10.1038/nature07719
[78]
Yan C Y, Wang J X, Kang W B, Cui M Q, Wang X, Foo C Y, Chee K J, Lee P S. Adv. Mater., 2014, 26(13): 2022.

doi: 10.1002/adma.201304742
[79]
Cai Y C, Shen J, Dai Z Y, Zang X X, Dong Q C, Guan G F, Li L J, Huang W, Dong X C. Adv. Mater., 2017, 29(31): 1606411.

doi: 10.1002/adma.201606411
[80]
Wang S, Fang Y L, He H, Zhang L, Li C A, Ouyang J Y. Adv. Funct. Mater., 2021, 31(5): 2007495.

doi: 10.1002/adfm.202007495
[81]
Lv C, Hu C, Luo J H, Liu S, Qiao Y, Zhang Z, Song J F, Shi Y, Cai J G, Watanabe A. Nanomaterials, 2019, 9(3): 422.

doi: 10.3390/nano9030422
[82]
Yavari F, Kritzinger C, Gaire C, Song L, Gulapalli H, Borca-Tasciuc T, Ajayan P M, Koratkar N. Small, 2010, 6(22): 2535.

doi: 10.1002/smll.201001384 pmid: 20963796
[83]
Li X Y, Chen X D, Yao Y, Li N, Chen X P, Bi X. IEEE Sens. J., 2013, 13(12): 4749.

doi: 10.1109/JSEN.2013.2273615
[84]
Sun J W, Xie X, Bi H C, Jia H Y, Zhu C Y, Wan N, Huang J Q, Nie M, Li D, Sun L T. Nanotechnology, 2017, 28(13): 134004.

doi: 10.1088/1361-6528/aa5e68
[85]
Bi H C, Yin K B, Xie X, Ji J, Wan S, Sun L T, Terrones M, Dresselhaus M S. Sci. Rep., 2013, 3(1): 1.
[86]
Shojaee M, Nasresfahani S, Dordane M K, Sheikhi M H. Sens. Actuat. A: Phys., 2018, 279: 448.

doi: 10.1016/j.sna.2018.06.052
[87]
Trung T Q, Ramasundaram S, Hwang B U, Lee N E. Adv. Mater., 2016, 28(3): 394.

doi: 10.1002/adma.201670016
[88]
Choi S J, Yu H, Jang J S, Kim M H, Kim S J, Jeong H S, Kim I D. Small, 2018, 14(13): 1703934.

doi: 10.1002/smll.201703934
[89]
Ding X, Chen X D, Chen X P, Zhao X, Li N. Sens. Actuat. B: Chem., 2018, 266: 534.

doi: 10.1016/j.snb.2018.03.143
[90]
Yao Y, Xue Y J. Sens. Actuat. B: Chem., 2015, 211: 52.

doi: 10.1016/j.snb.2014.12.134
[91]
Tai H L, Zhen Y, Liu C H, Ye Z B, Xie G Z, Du X S, Jiang Y D. Sens. Actuat. B: Chem., 2016, 230: 501.

doi: 10.1016/j.snb.2016.01.105
[92]
Yuan Z, Tai H L, Ye Z B, Liu C H, Xie G Z, Du X S, Jiang Y D. Sens. Actuat. B: Chem., 2016, 234: 145.

doi: 10.1016/j.snb.2016.04.070
[93]
Wang S, Xie G Z, Su Y J, Su L, Zhang Q P, Du H F, Tai H L, Jiang Y D. Sens. Actuat. B: Chem., 2018, 255: 2203.

doi: 10.1016/j.snb.2017.09.028
[94]
Zhang D Z, Wang D Y, Li P, Zhou X Y, Zong X Q, Dong G K. Sens. Actuat. B: Chem., 2018, 255: 1869.

doi: 10.1016/j.snb.2017.08.212
[95]
Zhang D Z, Wang D Y, Zong X Q, Dong G K, Zhang Y. Sens. Actuat. B: Chem., 2018, 262: 531.

doi: 10.1016/j.snb.2018.02.012
[96]
Yuan Z, Tai H L, Bao X H, Liu C H, Ye Z B, Jiang Y D. Mater. Lett., 2016, 174: 28.

doi: 10.1016/j.matlet.2016.01.122
[97]
Trung T Q, Ramasundaram S, Hong S W, Lee N E. Adv. Funct. Mater., 2014, 24(22): 3438.

doi: 10.1002/adfm.201304224
[98]
Jiang H J. Small, 2011, 7(17): 2413.
[99]
Wu S X, He Q Y, Tan C L, Wang Y D, Zhang H. Small, 2013, 9(8): 1160.

doi: 10.1002/smll.201202896
[100]
Shang N G, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi S S, Marchetto H. Adv. Funct. Mater., 2008, 18(21): 3506.

doi: 10.1002/adfm.200800951
[101]
Li J, Guo S J, Zhai Y M, Wang E K. Anal. Chimica Acta, 2009, 649(2): 196.

doi: 10.1016/j.aca.2009.07.030
[102]
Li J, Guo S, Zhai Y M, Wang E K. Electrochem. Commun., 2009, 11(5): 1085.

doi: 10.1016/j.elecom.2009.03.025
[103]
Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Biosens. Bioelectron., 2010, 25(6): 1504.

doi: 10.1016/j.bios.2009.11.009
[104]
Dong X C, Ma Y W, Zhu G Y, Huang Y X, Wang J, Chan-Park M B, Wang L H, Huang W, Chen P. J. Mater. Chem., 2012, 22(33): 17044.

doi: 10.1039/c2jm33286h
[105]
Xu H F, Dai H, Chen G N. Talanta, 2010, 81(1/2): 334.

doi: 10.1016/j.talanta.2009.12.006
[106]
Zhan B B, Liu C B, Shi H X, Li C, Wang L H, Huang W, Dong X C. Appl. Phys. Lett., 2014, 104(24): 243704.

doi: 10.1063/1.4884418
[107]
de Ohno Y, Maehashi K, Matsumoto K. Biosens. Bioelectron., 2010, 26(4): 1727.

doi: 10.1016/j.bios.2010.08.001
[108]
Wang X N, Sun X L, Hu P G, Zhang J, Wang L F, Feng W, Lei S B, Yang B, Cao W W. Adv. Funct. Mater., 2013, 23(48): 6044.

doi: 10.1002/adfm.201301044
[109]
Zou J F, Liu Z G, Guo Y J, Dong C. Anal. Methods, 2017, 9(1): 134.

doi: 10.1039/C6AY02719A
[110]
Ohno Y, Maehashi K, Matsumoto K. J. Am. Chem. Soc., 2010, 132(51): 18012.

doi: 10.1021/ja108127r
[111]
Song Y, Luo Y N, Zhu C Z, Li H, Du D, Lin Y H. Biosens. Bioelectron., 2016, 76: 195.

doi: 10.1016/j.bios.2015.07.002
[112]
Shao Y Y, Wang J, Wu H, Liu J, Aksay I, Lin Y H. Electroanalysis, 2010, 22(10): 1027.

doi: 10.1002/elan.200900571
[113]
Jang H D, Kim S K, Chang H, Roh K M, Choi J W, Huang J X. Biosens. Bioelectron., 2012, 38(1): 184.

doi: 10.1016/j.bios.2012.05.033
[114]
Zhan B B, Liu C B, Chen H P, Shi H X, Wang L H, Chen P, Huang W, Dong X C. Nanoscale, 2014, 6(13): 7424.

doi: 10.1039/C4NR01611D
[115]
Fu C L, Yang W S, Chen X, Evans D G. Electrochem. Commun., 2009, 11(5): 997.

doi: 10.1016/j.elecom.2009.02.042
[116]
Ambrosi A, Pumera M. Phys. Chem. Chem. Phys., 2010, 12(31): 8943.

doi: 10.1039/c0cp00213e
[117]
Wang Z R, Hao Z, Wang X J, Huang C, Lin Q, Zhao X Z, Pan Y L. Adv. Funct. Mater., 2021, 31(4): 2170026.

doi: 10.1002/adfm.202170026
[118]
Dong X C, Shi Y M, Huang W, Chen P, Li L J. Adv. Mater., 2010, 22(14): 1649.

doi: 10.1002/adma.200903645
[119]
Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S. Nat. Mater., 2007, 6(9): 652.

pmid: 17660825
[120]
Yuan W J, Shi G Q. J. Mater. Chem. A, 2013, 1(35): 10078.

doi: 10.1039/c3ta11774j
[121]
Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S. Prog. Mater. Sci., 2011, 56(8): 1178.

doi: 10.1016/j.pmatsci.2011.03.003
[122]
Huang D, Yang Z, Li X L, Zhang L L, Hu J, Su Y J, Hu N T, Yin G L, He D N, Zhang Y F. Nanoscale, 2017, 9(1): 109.

doi: 10.1039/c6nr06465e pmid: 27763653
[123]
Huang B, Li Z Y, Liu Z R, Zhou G, Hao S G, Wu J, Gu B L, Duan W H. J. Phys. Chem. C, 2008, 112(35): 13442.

doi: 10.1021/jp8021024
[124]
Leenaerts O, Partoens B, Peeters F M. Phys. Rev. B, 2008, 77(12): 125416.

doi: 10.1103/PhysRevB.77.125416
[125]
Robinson J T, Perkins F K, Snow E S, Wei Z Q, Sheehan P E. Nano Lett., 2008, 8(10): 3137.

doi: 10.1021/nl8013007 pmid: 18763832
[126]
Fowler J D, Allen M J, Tung V C, Yang Y, Kaner R B, Weiller B H. ACS Nano, 2009, 3(2): 301.

doi: 10.1021/nn800593m pmid: 19236064
[127]
Yuan W J, Liu A R, Huang L, Li C, Shi G Q. Adv. Mater., 2013, 25(5): 766.

doi: 10.1002/adma.201203172
[128]
Huang L, Wang Z P, Zhang J K, Pu J L, Lin Y J, Xu S H, Shen L, Chen Q, Shi W Z. ACS Appl. Mater. Interfaces, 2014, 6(10): 7426.

doi: 10.1021/am500843p
[129]
Al Mashat L, Shin K, Kalantar zadeh K, Plessis J D, Han S H, Kojima R W. J. Phys. Chem. C, 2010, 114(39): 16168.

doi: 10.1021/jp103134u
[130]
Bai H, Sheng K X, Zhang P F, Li C, Shi G Q. J. Mater. Chem., 2011, 21(46): 18653.

doi: 10.1039/c1jm13918e
[131]
Bai S L, Guo J, Sun J H, Tang P G, Chen A F, Luo R X, Li D Q. Ind. Eng. Chem. Res., 2016, 55(19): 5788.

doi: 10.1021/acs.iecr.6b00418
[132]
Sundaram R S, GÓmez-Navarro C, Balasubramanian K, Burghard M, Kern K. Adv. Mater., 2008, 20(16): 3050.

doi: 10.1002/adma.200800198
[133]
Chu B H, Lo C F, Nicolosi J, Chang C Y, Chen V, Strupinski W, Pearton S J, Ren F. Sens. Actuat. B: Chem., 2011, 157(2): 500.

doi: 10.1016/j.snb.2011.05.007
[134]
Yi J, Lee J M, Park W I. Sens. Actuat. B: Chem., 2011, 155(1): 264.

doi: 10.1016/j.snb.2010.12.033
[135]
Song Z L, Wei Z R, Wang B C, Luo Z, Xu S M, Zhang W K, Yu H X, Li M, Huang Z, Zang J F, Yi F, Liu H. Chem. Mater., 2016, 28(4): 1205.

doi: 10.1021/acs.chemmater.5b04850
[136]
Choi S J, Choi C, Kim S J, Cho H J, Hakim M, Jeon S, Kim I D. Sci. Rep., 2015, 5(1): 1.
[137]
Pang Y, Yang Z, Han X L, Jian J M, Li Y X, Wang X F, Qiao Y C, Yang Y, Ren T L. ACS Appl. Mater. Interfaces, 2018, 10(50): 44173.

doi: 10.1021/acsami.8b16237
[138]
Wang Z F, Huang Y, Sun J F, Huang Y, Hu H, Jiang R J, Gai W M, Li G M, Zhi C Y. ACS Appl. Mater. Interfaces, 2016, 8(37): 24837.

doi: 10.1021/acsami.6b08207
[139]
Robert C, Feller J F, Castro M. ACS Appl. Mater. Interfaces, 2012, 4(7): 3508.

doi: 10.1021/am300594t
[140]
Pang Y, Tian H, Tao L Q, Li Y X, Wang X F, Deng N Q, Yang Y, Ren T L. ACS Appl. Mater. Interfaces, 2016, 8(40): 26458.

doi: 10.1021/acsami.6b08172
[141]
Wang Y, Wu H T, Xu L, Zhang H N, Yang Y, Wang Z L. Sci. Adv., 2020, 6(34): abb9083.
[142]
Ho D H, Sun Q J, Kim S Y, Han J T, Kim D H, Cho J H. Adv. Mater., 2016, 28(13): 2601.

doi: 10.1002/adma.201505739
[143]
Zhao X L, Long Y, Yang T T, Li J, Zhu H W. ACS Appl. Mater. Interfaces, 2017, 9(35): 30171.

doi: 10.1021/acsami.7b09184
[144]
Wang Q, Ling S J, Liang X P, Wang H M, Lu H J, Zhang Y Y. Adv. Funct. Mater., 2019, 29(16): 1808695.

doi: 10.1002/adfm.201808695
[145]
Chen Y A, Pötschke P, Pionteck J, Voit B, Qi H S. J. Mater. Chem. A, 2018, 6(17): 7777.

doi: 10.1039/C8TA00618K
[146]
Liu H B, Xiang H C, Wang Y, Li Z J, Qian L W, Li P, Ma Y C, Zhou H W, Huang W. ACS Appl. Mater. Interfaces, 2019, 11(43): 40613.

doi: 10.1021/acsami.9b13349
[147]
Zhao F, Zhao Y, Cheng H H, Qu L T. Angew. Chem. Int. Ed., 2015, 54(49): 14951.

doi: 10.1002/anie.201508300 pmid: 26457880
[148]
Huang X, Yin Z Y, Wu S X, Qi X Y, He Q Y, Zhang Q C, Yan Q Y, Boey F, Zhang H. Small, 2011, 7(14): 1876.

doi: 10.1002/smll.201002009 pmid: 21630440
[149]
Zhu W J, Tai G A, Wang X F, Gu Q L, Wu Z X, Zhu K J. Prog. Chem., 2017, 29(11): 1285.
(朱文杰, 台国安, 王旭峰, 古其林, 伍增辉, 朱孔军. 化学进展, 2017, 29(11): 1285.)

doi: 10.7536/PC170567
[150]
Wu N, Cheng X F, Zhong Q Z, Zhong J W, Li W B, Wang B, Hu B, Zhou J. Adv. Funct. Mater., 2015, 25(30): 4788.

doi: 10.1002/adfm.201501695
[151]
Khalifa M, Wuzella G, Lammer H, Mahendran A R. Synth. Met., 2020, 266: 116420.

doi: 10.1016/j.synthmet.2020.116420
[1] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[2] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[3] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[4] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[5] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[6] Huayue Sun, Xianxin Xiang, Tingyi Yan, Lijun Qu, Guangyao Zhang, Xueji Zhang. Wearable Biosensors Based on Smart Fibers and Textiles [J]. Progress in Chemistry, 2022, 34(12): 2604-2618.
[7] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[8] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[9] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[10] Changhuan Zhang, Nianwu Li, Xiuqin Zhang. Electrode Materials for Flexible Lithium-Ion Battery [J]. Progress in Chemistry, 2021, 33(4): 633-648.
[11] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[12] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[13] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[14] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.
[15] Xi Su, Chuang Ge, Li Chen, Yi Xu. Hydrogel-Based Sensing Detection of Bacteria [J]. Progress in Chemistry, 2020, 32(12): 1908-1916.