中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (3): 609-615 DOI: 10.7536/PC210419 Previous Articles   Next Articles

• Review •

Fast Self-Assembly Methods of Block Copolymer Thin Films

Yuling Liu1, Tengda Hu2, Yilian Li1, Yang Lin2, Borsali Redouane3(), Yingjie Liao2()   

  1. 1 School of Materials Science and Engineering, Shanghai University,Shanghai 200444, China
    2 School of Mechanical and Electrical Engineering and Automation, Shanghai University,Shanghai 200444, China
    3 University Grenoble Alpes, Grenoble 38000, France
  • Received: Revised: Online: Published:
  • Contact: Borsali Redouane, Yingjie Liao
Richhtml ( 15 ) PDF ( 461 ) Cited
Export

EndNote

Ris

BibTeX

Block copolymer (BCP) thin films can undergo microphase separation through different annealing techniques into large-scale cylindrical, lamellar, spherical or gyroidal nanopatterns. These long-range ordered nanopatterns have been widely used in many fields such as nanolithography, electronics, etc. At present, effective and rapid annealing methods are still a hot research topic in BCP thin film self-assembly. This article first introduces the commonly used annealing techniques for preparing BCP nanopatterns, then summarizes three new types of rapid annealing techniques, and finally analyzes and summarizes the advantages and disadvantages of these annealing techniques.

Contents

1 Introduction

2 Traditional annealing methods of block copolymer thin film self-assembly

2.1 Thermal annealing

2.2 Solvent annealing

3 Rapid annealing methods of block copolymer thin film self-assembly

3.1 Microwave annealing

3.2 Laser annealing

3.3 Solvothermal annealing

4 Conclusion and outlook

Fig.1 (a) Schematic of block copolymer (BCP) thin film preparation and self-assembly;(b) BCP mask for photolithography[16]; (c) application in electroluminescent devices[20]; (d) protein ultrafiltration membrane[21]; (e) resistive memory devices[23]
Fig.2 Self-assembly patterns obtained under different annealing methods: (a) thermal annealing[24]; (b) solvent vapor annealing[12]; (c) laser annealing[35]; (d) solvothermal annealing[24] ; (e) microwave annealing[34]
Fig.3 Schematic diagram of various annealing systems of microwave annealing technology and the morphology of self-assembled block copolymer thin films after microwave annealing[29,31,34]
Fig.4 (a) Schematic of laser spike annealing and SEM image after film self-assembly[57]; (b) Schematic diagram of laser annealing vacuum chamber and typical samples and SEM image after film self-assembly[35]
Fig.5 Schematic of two solvothermal annealing systems and the self-assembled BCP patterns after solvothermal annealing[24,40]
Table 1 The annealing time required for different species of BCP materials using different annealing technologies
[1]
Matsen M W, Bates F S. Macromolecules, 1996, 29(23): 7641.

doi: 10.1021/ma960744q
[2]
Barandiaran I, Katsigiannopoulos D, Grana E, Avgeropoulos A, Eceiza A, Kortaberria G. Colloid Polym. Sci., 2013, 291(9): 2173.

doi: 10.1007/s00396-013-2961-6
[3]
Chai J N, Buriak J M. ACS Nano, 2008, 2(3): 489.

doi: 10.1021/nn700341s
[4]
Sinturel C, Vayer M, Morris M, Hillmyer M A. Macromolecules, 2013, 46(14): 5399.

doi: 10.1021/ma400735a
[5]
Albert J N L, Epps T H III. Mater. Today, 2010, 13(6): 24.
[6]
Luo Y D, Montarnal D, Kim S, Shi W C, Barteau K P, Pester C W, Hustad P D, Christianson M D, Fredrickson G H, Kramer E J, Hawker C J. Macromolecules, 2015, 48(11): 3422.

doi: 10.1021/acs.macromol.5b00518
[7]
Yang Q, Loos K. Polymers, 2017, 9(10):10.

doi: 10.3390/polym9010010
[8]
Hur Y H, Song S W, Kim J M, Park W I, Kim K H, Kim Y, Jung Y S. Adv. Funct. Mater., 2018, 28(28): 1800765.

doi: 10.1002/adfm.201800765
[9]
Matsen M W, Bates F S. Macromolecules, 1996, 29(4): 1091.

doi: 10.1021/ma951138i
[10]
Likhtman A E, Semenov A N. Macromolecules, 1997, 30(23): 7273.

doi: 10.1021/ma9702713
[11]
Qu T, Guan S, Zheng X X, Chen A H. Nanoscale Adv., 2020, 2(4): 1523.

doi: 10.1039/D0NA00057D
[12]
Liao Y J, Goujon L J, Reynaud E, Halila S, Gibaud A, Wei B, Borsali R. Carbohydr. Polym., 2019, 212: 222.

doi: 10.1016/j.carbpol.2019.02.014
[13]
Li W H. Acta Chimica Sinica, 2021, 133.
(李卫华. 化学学报, 2021, 133.).
[14]
Choi C, Jang J, Park S Y, Lee J, Kim J K. ACS Appl. Polym. Mater., 2020, 2(9): 4090.

doi: 10.1021/acsapm.0c00710
[15]
Oh J, Shin M, Kim I S, Suh H S, Kim Y, Kim J K, Bang J, Yeom B, Son J G. ACS Nano, 2021, 15(5): 8549.

doi: 10.1021/acsnano.1c00358
[16]
Tseng Y C, Peng Q, Ocola L E, Elam J W, Darling S B. J. Phys. Chem. C, 2011, 115(36): 17725.

doi: 10.1021/jp205532e
[17]
Sun J X, Zhu X L, Yu X M, Peng H J, Wong M, Kwok H S. J. Display Technol., 2006, 2(2): 138.

doi: 10.1109/JDT.2006.872304
[18]
Guo C H, Lin Y H, Witman M D, Smith K A, Wang C, Hexemer A, Strzalka J, Gomez E D, Verduzco R. Nano Lett., 2013, 13(6): 2957.

doi: 10.1021/nl401420s
[19]
Hung C C, Chiu Y C, Wu H C, Lu C E, Bouilhac C, Otsuka I, Halila S, Borsali R, Tung S H, Chen W C. Adv. Funct. Mater., 2017, 27(13): 1606161.

doi: 10.1002/adfm.201606161
[20]
Tao Y F, Ma B W, Segalman R A. Macromolecules, 2008, 41(19): 7152.

doi: 10.1021/ma800577g
[21]
Zhou C, Segal-Peretz T, Oruc M E, Suh H S, Wu G P, Nealey P F. Adv. Funct. Mater., 2017, 27(34): 1701756.

doi: 10.1002/adfm.201701756
[22]
Nunes S P. Macromolecules, 2016, 49(8): 2905.

doi: 10.1021/acs.macromol.5b02579
[23]
Chuang T H, Chiang Y C, Hsieh H C, Isono T, Huang C W, Borsali R, Satoh T, Chen W C. ACS Appl. Mater. Interfaces, 2020, 12(20): 23217.

doi: 10.1021/acsami.0c04551
[24]
Park W I, Kim K, Jang H I, Jeong J W, Kim J M, Choi J, Park J H, Jung Y S. Small, 2012, 8(24): 3762.

doi: 10.1002/smll.201201407
[25]
Albalak R J, Capel M S, Thomas E L. Polymer, 1998, 39(8/9): 1647.

doi: 10.1016/S0032-3861(97)00497-7
[26]
Fukunaga K, Elbs H, Magerle R, Krausch G. Macromolecules, 2000, 33(3): 947.

doi: 10.1021/ma9910639
[27]
Amundson K, Helfand E, Davis D D, Quan X N, Patel S S, Smith S D. Macromolecules, 1991, 24(24): 6546.

doi: 10.1021/ma00024a030
[28]
Xiang H Q, Lin Y, Russell T P. Macromolecules, 2004, 37(14): 5358.

doi: 10.1021/ma049888s
[29]
Borah D, Senthamaraikannan R, Rasappa S, Kosmala B, Holmes J D, Morris M A. ACS Nano, 2013, 7(8): 6583.

doi: 10.1021/nn4035519
[30]
Jin C, Murphy J N, Harris K D, Buriak J M. ACS Nano, 2014, 8(4): 3979.

doi: 10.1021/nn5009098
[31]
Liao Y J, Chen W C, Borsali R. Adv. Mater., 2017, 29(35): 1701645.

doi: 10.1002/adma.201701645
[32]
Liao Y J, Liu K P, Chen W C, Wei B, Borsali R. Macromolecules, 2019, 52(22): 8751.

doi: 10.1021/acs.macromol.9b01513
[33]
Toolan D T W, Adlington K, Isakova A, Kalamiotis A, Mokarian-Tabari P, Dimitrakis G, Dodds C, Arnold T, Terrill N J, Bras W, Hermida Merino D, Topham P D, Irvine D J, Howse J R. Phys. Chem. Chem. Phys., 2017, 19(31): 20412.

doi: 10.1039/C7CP03578K
[34]
Zhang X J, Harris K D, Wu N L Y, Murphy J N, Buriak J M. ACS Nano, 2010, 4(11): 7021.

doi: 10.1021/nn102387c
[35]
Majewski P W, Yager K G. ACS Nano, 2015, 9(4): 3896.

doi: 10.1021/nn5071827 pmid: 25763534
[36]
Singer J P, Gotrik K W, Lee J H, Kooi S E, Ross C A, Thomas E L. Polymer, 2014, 55(7): 1875.

doi: 10.1016/j.polymer.2014.02.028
[37]
Tan K W, Jung B, Werner J G, Rhoades E R, Thompson M O, Wiesner U. Science, 2015, 349(6243): 54.

doi: 10.1126/science.aab0492
[38]
Tang J L, An-Tsai M. IEEE, Rapid formation of block copolymer thin film based on infrared laser irradiation, 2007.
[39]
Kim E, Ahn H, Park S, Lee H, Lee M, Lee S, Kim T, Kwak E A, Lee J H, Lei X, Huh J, Bang J, Lee B, Ryu D Y. ACS Nano, 2013, 7(3): 1952.

doi: 10.1021/nn3051264
[40]
Gotrik K W, Ross C A. Nano Lett., 2013, 13(11): 5117.

doi: 10.1021/nl4021683 pmid: 24083573
[41]
Jin C, Olsen B C, Luber E J, Buriak J M. Chem. Mater., 2017, 29(1): 176.

doi: 10.1021/acs.chemmater.6b02967
[42]
Sinturel C, Bates F S, Hillmyer M A. ACS Macro Lett., 2015, 4(9): 1044.

doi: 10.1021/acsmacrolett.5b00472
[43]
Kim J K, Yang S Y, Lee Y, Kim Y. Prog. Polym. Sci., 2010, 35(11): 1325.

doi: 10.1016/j.progpolymsci.2010.06.002
[44]
Tseng Y C, Darling S B. Polymers, 2010, 2(4): 470.

doi: 10.3390/polym2040470
[45]
Han E, Stuen K O, Leolukman M, Liu C C, Nealey P F, Gopalan P. Macromolecules, 2009, 42(13): 4896.

doi: 10.1021/ma9002903
[46]
Wang Q Q, Wu L P, Wang J, Wang L Y. Progress in Chemistry, 2017, 435.
(王倩倩, 吴立萍, 王菁, 王力元. 化学进展, 2017, 435.).
[47]
Gotrik K W, Hannon A F, Son J G, Keller B, Alexander-Katz A, Ross C A. ACS Nano, 2012, 6(9): 8052.

pmid: 22928726
[48]
Chavis M A, Smilgies D M, Wiesner U B, Ober C K. Adv. Funct. Mater., 2015, 25(20): 3057.

doi: 10.1002/adfm.201404053
[49]
Wu Y H, Lo T Y, She M S, Ho R M. ACS Appl. Mater. Interfaces, 2015, 7(30): 16536.

doi: 10.1021/acsami.5b03977
[50]
Xiong S S, Li D X, Hur S M, Craig G S W, Arges C G, Qu X P, Nealey P F. Macromolecules, 2018, 51(18): 7145.

doi: 10.1021/acs.macromol.8b01275
[51]
Jung J, Park H W, Lee S, Lee H, Chang T, Matsunaga K, Jinnai H. ACS Nano, 2010, 4(6): 3109.

doi: 10.1021/nn1003309
[52]
Olszowka V, Tsarkova L, Böker A. Soft Matter, 2009, 5(4): 812.

doi: 10.1039/B814365J
[53]
Xuan Y, Peng J, Cui L, Wang H F, Li B Y, Han Y C. Macromolecules, 2004, 37(19): 7301.

doi: 10.1021/ma0497761
[54]
Dalvi M C, Eastman C E, Lodge T P. Phys. Rev. Lett., 1993, 71(16): 2591.

pmid: 10054720
[55]
Lodge T P, Dalvi M C. Phys. Rev. Lett., 1995, 75(4): 657.

pmid: 10060081
[56]
Zhang X J, Murphy J N, Wu N L Y, Harris K D, Buriak J M. Macromolecules, 2011, 44(24): 9752.

doi: 10.1021/ma202064t
[57]
Jiang J, Jacobs A G, Wenning B, Liedel C, Thompson M O, Ober C K. ACS Appl. Mater. Interfaces, 2017, 9(37): 31317.

doi: 10.1021/acsami.7b00774
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Xiuting Dong, Wen Zhang, Song Zhao, Xinlei Liu, Yuxin Wang. Shaping Methods for Metal-Organic Framework Composites [J]. Progress in Chemistry, 2021, 33(12): 2173-2187.
[5] Wang Xinbo, Zhang Shuhong, He Xiaodong. Network Mesostructures in Self-Assembly of Diblock Copolymers and the Application [J]. Progress in Chemistry, 2016, 28(6): 860-871.
[6] Feng Yuchen, Jie Suyun, Li Bogeng. Telechelic Polymers and Block Copolymers Prepared via Olefin-Metathesis Polymerization [J]. Progress in Chemistry, 2015, 27(8): 1074-1086.
[7] Zhao Xiang, Zhao Zongyan. Quaternary Compound Semiconductor Cu2 ZnSnS4: Structure, Preparation, Applications, and Perspective [J]. Progress in Chemistry, 2015, 27(7): 913-934.
[8] Xiong Lina, Zhang Xueqin, Sun Ying, Yang Hong. Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers [J]. Progress in Chemistry, 2015, 27(12): 1774-1783.
[9] You Yuncheng, Zeng Tian, Liu Jinsong, Hu Tingsong, Tai Guoan. Chemical Vapor Deposition and Application of Graphene-Like Tungsten Disulfide [J]. Progress in Chemistry, 2015, 27(11): 1578-1590.
[10] Fu Chao, Zhu Yutian, Shi Dean. Separation and Characterization of Block Copolymers by Liquid Chromatography at the Critical Condition [J]. Progress in Chemistry, 2014, 26(01): 140-151.
[11] Wang Zhipeng, Yuan Jinying* . Applications of Diels-Alder Reaction in Synthesis of Polymers with Well-Defined Architectures [J]. Progress in Chemistry, 2012, 24(12): 2342-2351.
[12] He Wen, Ding Yuanju, Lu Zaijun, Yang Qifeng. Amphiphilic Block Copolymer Micelles for Medical Materials [J]. Progress in Chemistry, 2011, 23(5): 930-940.
[13] Zhou Yongning, Fu Zhengwen. Nanostructured Thin Film Electrode Materials for Lithium Ion Battery [J]. Progress in Chemistry, 2011, 23(0203): 336-348.
[14] Dong Quanfeng, Song Jie, Zheng Mingsen, Susanne Jacke, Wolfram Jaegermann. Investigation of Microscale Lithium Ion Batteries and the Key Materials [J]. Progress in Chemistry, 2011, 23(0203): 374-381.
[15] Lin Yuan, Wang Shanghua, Fu Nianqing, Zhang Jingbo, Zhou Xiaowen, Xiao Xurui. Preparation and Properties of Flexible Dye-Sensitized Solar Cells [J]. Progress in Chemistry, 2011, 23(0203): 548-556.