中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (12): 1653-1668 DOI: 10.7536/PC190327 Previous Articles   Next Articles

Intelligent-Responsive Hydrogels-Based Controlled Drug Release Systems and Its Applications

Zixuan Cai, Bin Zhang, Liyang Jiang, Yunyi Li, Guohe Xu**(), Jingjun Ma   

  1. College of Science and Engineering, Agricultural University of Hebei, Cangzhou 061100, China
  • Received: Online: Published:
  • Contact: Guohe Xu
  • About author:
  • Supported by:
    Young Tip-top Talents Plan of Universities and Colleges in Hebei Province of China(BJ201702); Specific Foundation for Doctor in Hebei Agriculture University of China(ZD2016027); Undergraduate Innovation and Entrepreneurship Training Program Project of Hebei Province(201810086063); Collaborative Innovation Projects between Teachers and Students of Bohai Campus of Hebei Agricultural University(2018bssxt11)
Richhtml ( 114 ) PDF ( 2026 ) Cited
Export

EndNote

Ris

BibTeX

Controlled drug release systems can ameliorate the release, absorption, metabolism and excretion of drug molecules in the body, significantly improve drug utilization and reduce the side effects of drugs. Intelligent-responsive hydrogels have been extensively studied for controlled drug release carriers due to their responsiveness, hydrophilicity, good biocompatibility and non-toxicity. In this paper, the research progress of the intelligent-responsive hydrogels-based controlled drug release systems is summarized in detail, including the conception, mechanism and applications. According to the kinds of external stimuli, the intelligent-responsive hydrogels-based controlled drug release systems can be classified into pH-responsive, temperature-responsive, light-responsive, glucose-responsive, enzyme-responsive, electric field-responsive, magnetic field-responsive, pressure-responsive, redox-responsive and multiple-responsive hydrogels-based controlled drug release systems. The applications of the intelligent-responsive hydrogels-based controlled drug release systems in treating diseases, such as cancer, acute kidney injury, eye diseases, diabetes and its complications, and antibiotic treatments for preventing wound infection are further briefly described. Then, the problems of the intelligent-responsive hydrogels-based controlled drug release systems researches, such as poor biocompatibility, burst release or stagnant release, and non-degradability, are analyzed. Finally, the future development of the intelligent-responsive hydrogel-based controlled drug release systems is prospected.

Fig. 1 Mechanism of intelligent-responsive hydrogels-based controlled drug release systems through swelling
Fig. 2 Mechanism of intelligent-responsive hydrogels-based controlled drug release systems through shrinking
Fig. 3 Mechanism of intelligent-responsive hydrogels-based controlled drug release systems through degradation[32]
Fig. 4 Mechanism of anionic pH-responsive hydrogels-based controlled drug release systems[40]
Fig. 5 Mechanism of negative thermosensitive hydrogels-based controlled drug release systems
Fig. 6 (a) PEG/PPG/PCL terpolymer structure and schematic;(b) Schematic diagram of PEG/PPG/PCL thermosensitive hydrogels-based controlled drug release systems[58]
Fig. 7 The release of ibuprofen driven by visible light[71]
Fig. 8 UV-responsive hydrogels-based controlled drug release systems based on β-cyclodextrin-azobenzene[72]
Fig. 9 NIR-responsive hydrogels-based controlled drug release systems based on PDANPs/ 4-arm-PEG-SH[73]
Fig. 10 Converting glucose into gluconic acid catalyzed by GOD[14]
Fig. 11 (a) Schematic diagram of MMP-9 triggering amphiphilic peptide injectable hydrogel structure conversion release;(b) Schematic diagram of the killing effect of enzyme-responsive injectable hydrogel on cancer cells[77]
Fig. 12 Magnetic field-responsive hydrogels-based controlled drug release systems
Fig. 13 Pressure-responsive hydrogels-based controlled drug release systems based on Al-CD[91]
Fig. 14 The scheme of the HRP-mediated cross-linking of the thiolated polymer[93]
Fig. 15 Redox-responsive hydrogels-based controlled drug release systems based on TKNs[94]
[1]
Sohail M F, Rehman M, Sarwar H S, Naveed S, Salman O, Bukhari N I, Hussain I, Webster T J, Shahnaz G . Int. J. Nanomed., 2018,(13):3145.
[2]
Kalantzi L E, Karavas E, Koutris E X, Bikiaris D N . Recent Pat. Drug Deliv. Formul., 2009,3(1):49. https://www.ncbi.nlm.nih.gov/pubmed/19149729

doi: 10.2174/187221109787158337 pmid: 19149729
[3]
Kang J, Hwang J, Seo J, Kim H, Shin U S . Mat. Sci. Eng. C-Mater., 2018,91:247.
[4]
Davis M E, Chen Z G, Shin D M . Nat. Rev. Drug Discov., 2008,7(9):771. https://www.ncbi.nlm.nih.gov/pubmed/18758474

doi: 10.1038/nrd2614 pmid: 18758474
[5]
Cho K, Wang X, Nie S, Chen Z, Shin D M . Clin. Cancer Res., 2008,14(5):1310. https://www.ncbi.nlm.nih.gov/pubmed/18316549

doi: 10.1158/1078-0432.CCR-07-1441 pmid: 18316549
[6]
Deng K, Hou Z, Li X, Li C, Zhang Y, Deng X, Cheng Z, Lin J . Sci. Rep., 2015,5:7851. https://www.ncbi.nlm.nih.gov/pubmed/25597762

doi: 10.1038/srep07851 pmid: 25597762
[7]
Reimer N, Reinsch H, Inge A K, Stock N . Inorg. Chem., 2015,54(2):492. https://www.ncbi.nlm.nih.gov/pubmed/25539449

doi: 10.1021/ic502242j pmid: 25539449
[8]
Alexis F, Pridgen E, Molnar L K, Farokhzad O C . Mol. Pharm., 2008,5(4):505. https://www.ncbi.nlm.nih.gov/pubmed/18672949

doi: 10.1021/mp800051m pmid: 18672949
[9]
Yang Y Q, Zheng L S, Guo X D, Qian Y, Zhang L J . Biomacromolecules, 2011,12(1):116. https://www.ncbi.nlm.nih.gov/pubmed/21121600

doi: 10.1021/bm101058w pmid: 21121600
[10]
Aluigi A, Ballestri M, Guerrini A, Sotgiu G, Ferroni C, Corticelli F, Gariboldi M B, Monti E, Varchi G . Mat. Sci. Eng. C-Mater., 2018,90:476.
[11]
Sivakumaran D, Maitland D, Hoare T . Biomacromolecules, 2011,12(11):4112. https://www.ncbi.nlm.nih.gov/pubmed/22007750

doi: 10.1021/bm201170h pmid: 22007750
[12]
Cheng L Y, Sun X M, Hu C M, Jin R, Sun B S, Shi Y M, Zhang L, Cui W G, Zhang Y G . Acta. Biomater., 2013,9(12):9461. https://www.ncbi.nlm.nih.gov/pubmed/23938200

doi: 10.1016/j.actbio.2013.07.040 pmid: 23938200
[13]
Javanbakht S, Nazari N, Rakhshaei R, Namazi H . Carbohyd. Polym., 2018,195:453. https://www.ncbi.nlm.nih.gov/pubmed/29804999

doi: 10.1016/j.carbpol.2018.04.103 pmid: 29804999
[14]
Qiu Y, Park K . Adv. Drug Deliver. Rev., 2012,64S:49.
[15]
Pareek A, Maheshwari S, Cherlo S, Thavva R, Runkana V . Int. J. Pharm., 2017,532(1):502. https://www.ncbi.nlm.nih.gov/pubmed/28882487

doi: 10.1016/j.ijpharm.2017.09.001 pmid: 28882487
[16]
Berger J, Reist M, Mayer J M, Felt O, Gurny R . Eur. J. Pharm. Biopharm., 2004,57(1):35. https://www.ncbi.nlm.nih.gov/pubmed/14729079

doi: 10.1016/s0939-6411(03)00160-7 pmid: 14729079
[17]
Liu R, Dai L, Si C, Zeng Z . Carbohyd. Polym., 2018,195:63. https://www.ncbi.nlm.nih.gov/pubmed/29805020

doi: 10.1016/j.carbpol.2018.04.085 pmid: 29805020
[18]
Thanusha A V, Dinda A K, Koul V, . Mat. Sci. Eng. C-Mater., 2018,89:378.
[19]
Cheng Y H, Ko Y C, Chang Y F, Huang S H, Liu C J L . Exp. Eye Res., 2019,179:179. https://www.ncbi.nlm.nih.gov/pubmed/30471279

doi: 10.1016/j.exer.2018.11.017 pmid: 30471279
[20]
Soppimath K S, Aminabhavi T M, Kulkarni A R, Rudzinski W E . J. Control. Release, 2001,70(1/2):1. https://www.ncbi.nlm.nih.gov/pubmed/11166403

doi: 10.1016/s0168-3659(00)00339-4 pmid: 11166403
[21]
May M H, Lahooti S, Babensee J E T I . J. Control. Release, 2000,65(1/2):173. https://www.ncbi.nlm.nih.gov/pubmed/10699279

doi: 10.1016/s0168-3659(99)00234-5 pmid: 10699279
[22]
Jin S, Li D, Yang P, Guo J, Lu J Q, Wang C C . Colloids. Surface A, 2015,484:47.
[23]
Huang G, Gao J, Hu Z B, John J V S, Ponder B C, Moro D. J . Control. Release, 2004,94(2/3):303. https://www.ncbi.nlm.nih.gov/pubmed/14744482

doi: 10.1016/j.jconrel.2003.10.007 pmid: 14744482
[24]
Baniani D D, Bagheri R, Solouk A . Carbohyd. Polym., 2017,174:633. https://www.ncbi.nlm.nih.gov/pubmed/28821114

doi: 10.1016/j.carbpol.2017.06.095 pmid: 28821114
[25]
Zhang Y, Zhu W, Wang B B, Ding J D . J. Control. Release, 2005,105(3):260. https://www.ncbi.nlm.nih.gov/pubmed/15913826

doi: 10.1016/j.jconrel.2005.04.001 pmid: 15913826
[26]
Ankareddi I, Brazel C S . Int. J. Pharm., 2007,336(2):241. https://www.ncbi.nlm.nih.gov/pubmed/17234371

doi: 10.1016/j.ijpharm.2006.11.065 pmid: 17234371
[27]
Lehto J, Vaaramaa K, Vesterinen E, Tenhu H . J. Appl. Polym. Sci., 1998,68(3):355.
[28]
Schmedlen K H, Masters K S, West J L . Biomater., 2002,23(22):4325. https://www.ncbi.nlm.nih.gov/pubmed/12219822

doi: 10.1016/s0142-9612(02)00177-1 pmid: 12219822
[29]
Babaladimath G, Badalamoole V . Polym. Int., 2018,67(8):983.
[30]
Chan A W, Neufeld R J . Biomaterials, 2010,31(34):9040. https://www.ncbi.nlm.nih.gov/pubmed/20739057

doi: 10.1016/j.biomaterials.2010.07.111 pmid: 20739057
[31]
Peppas N A, Bures P, Leobandung W, Ichikawa H . Eur. J. Pharm. Biopharm., 2000,50(1):27. https://www.ncbi.nlm.nih.gov/pubmed/10840191

doi: 10.1016/s0939-6411(00)00090-4 pmid: 10840191
[32]
Hu J J, Quan Y C, Lai Y P, Zheng Z, Hu Z Q, Wang X Y, Dai T J, Zhang Q, Cheng Y Y . J. Control. Release, 2017,247:145. https://www.ncbi.nlm.nih.gov/pubmed/28077265

doi: 10.1016/j.jconrel.2017.01.003 pmid: 28077265
[33]
Garg T, Singh S, Goyal A K . Crit. Rev. Ther. Drug, 2013,30(5):369. https://www.ncbi.nlm.nih.gov/pubmed/24099326

doi: 10.1615/critrevtherdrugcarriersyst.2013007259 pmid: 24099326
[34]
Li Z, He G D, Hua J C, Wu M Q, Guo W, Gong J X, Zhang J F, Qiao C S . RSC Adv., 2017,7(18):11085.
[35]
Mahkam M, Poorgholy N, Vakhshouri L . Macromol. Res., 2009,17(9):709.
[36]
Javanbakht S, Nazari N, Rakhshaei R, Namazi H . Carbohyd. Polym., 2018,195:453. https://www.ncbi.nlm.nih.gov/pubmed/29804999

doi: 10.1016/j.carbpol.2018.04.103 pmid: 29804999
[37]
Glajch J L, Kirkland J J, Kohler J . J. Chromatogr., 1987,384:81. https://www.ncbi.nlm.nih.gov/pubmed/3818859

doi: 10.1016/s0021-9673(01)94661-8 pmid: 3818859
[38]
高春梅(Gao C M), 柳明珠(Liu M Z), 吕少瑜(Lu S Y), 陈晨(Chen C), 黄银娟(Huang Y J), 陈远谋(Chen Y M) . 化学进展 (Prog. Chem.), 2013,25(6):1012.
[39]
Liu C H, Chen Y Q, Chen J G . Carbohyd. Polym., 2010,79(3):500. https://linkinghub.elsevier.com/retrieve/pii/S0144861709004603

doi: 10.1016/j.carbpol.2009.08.024
[40]
Zhang L H, Ma Y H, Zhao C W, Zhu X, Chenab R C, Yang W T . J. Mater. Chem. B, 2015,3(39):7673. https://www.ncbi.nlm.nih.gov/pubmed/32264577

doi: 10.1039/c5tb01149c pmid: 32264577
[41]
Zhang B, Yan Y Y, Shen Q J, Ma D, Huang L H, Cai X, Tan S Z . Mat. Sci. Eng. C-Mater., 2017,79:185.
[42]
Jiao Z P, Zhang B, Li C Y, Kuang W C, Zhang J X, Xiong Y Q, Tan S Z, Cai X, Huang LH . Nanotechnol. Rev., 2018,7(4):291.
[43]
Shohraty F, Moghadam P N, Fareghi A R, Movagharnezhad N, Khalafy J . Adv. Polym. Tech., 2018,37(1):1.
[44]
El-Mahrouk G M, Aboul-Einien M H, Makhlouf A I . Aaps Pharmscitech, 2016,17(6):1285. https://www.ncbi.nlm.nih.gov/pubmed/26689404

doi: 10.1208/s12249-015-0467-x pmid: 26689404
[45]
Lu C C, Li B Q, Liu N, Wu G L, Gao H, Ma J B . RSC Adv., 2014,4(92):50301.
[46]
Panda J J, Mishra A, Basu A, Chauhan V S . Biomacromolecules, 2008,9(8):2244. https://www.ncbi.nlm.nih.gov/pubmed/18624454

doi: 10.1021/bm800404z pmid: 18624454
[47]
Strong L E, West J L . Wires. Nanomed. Nanobi., 2011,3(3):307.
[48]
Nelson A, Cosgrove T . Langmuir, 2004,20(24):10382. https://www.ncbi.nlm.nih.gov/pubmed/15544363

doi: 10.1021/la049323p pmid: 15544363
[49]
Nelson A, Cosgrove T . Langmuir, 2004,20(6):2298. https://www.ncbi.nlm.nih.gov/pubmed/15835687

doi: 10.1021/la035268t pmid: 15835687
[50]
Leeuwenburgh S C G, Jansen J A, Mikos A G . J. Biomat. Sci.-Polym. E., 2007,18(12):1547. https://www.ncbi.nlm.nih.gov/pubmed/17988519

pmid: 17988519
[51]
Zhang Y, Ding J, Sun D, Sun H, Zhuang X, Chang F, Wang J, Chen X, . Mat. Sci. Eng. C-Mater., 2015,49:262.
[52]
Bastiancich C, Danhier P, Preat V, Danhier F . J. Control. Release, 2016,243:29. https://www.ncbi.nlm.nih.gov/pubmed/27693428

doi: 10.1016/j.jconrel.2016.09.034 pmid: 27693428
[53]
Yu L, Ding J . Chem. Soc. Rev., 2008,37(8):1473. https://www.ncbi.nlm.nih.gov/pubmed/18648673

doi: 10.1039/b713009k pmid: 18648673
[54]
Dicker K T, Gurski L A, Pradhan-Bhatt S, Witt R L, Farach-Carson M C, Jia X . Acta Biomater., 2014,10(4):1558. https://www.ncbi.nlm.nih.gov/pubmed/24361428

doi: 10.1016/j.actbio.2013.12.019 pmid: 24361428
[55]
Tanjim M, Rahman M A, Rahman M M, Minami H, Hoque S M, Sharafat M K, Gafur M A, Ahmad H . Soft Matter, 2018,14(26):5469. https://www.ncbi.nlm.nih.gov/pubmed/29923579

doi: 10.1039/c8sm00560e pmid: 29923579
[56]
Sun H, Chen J, Han X, Liu H L . C Mat. Sci. Eng. C-Mater., 2018,82:284. https://www.ncbi.nlm.nih.gov/pubmed/29025659

doi: 10.1016/j.msec.2017.08.067 pmid: 29025659
[57]
Zhang J T, Huang S W, Cheng S X, Zhuo R X . J. Polym. Sci. Pol. Chem., 2004,42(5):1249.
[58]
Loh X J, Peh P, Liao S, Sng C, Li J . J. Control. Release, 2010,143(2):175. https://www.ncbi.nlm.nih.gov/pubmed/20064568

doi: 10.1016/j.jconrel.2009.12.030 pmid: 20064568
[59]
Figueroa-Pizano M D, Velaz I, Penas F J, Zavala-Rivera P, Rosas-Durazo A J, Maldonado-Arce A D, Martinez-Barbosa M E . Carbohyd. Polym., 2018,195:476. https://www.ncbi.nlm.nih.gov/pubmed/29805002

doi: 10.1016/j.carbpol.2018.05.004 pmid: 29805002
[60]
Indulekha S, Arunkumar P, Bahadur D, Srivastava R . Mat. Sci. Eng. C-Mater., 2016,62:113.
[61]
van Valenberg F, Strauss-Ayali D, Agmon-Gerstein Y, Friedman A, Arentsen H C, Schaafsma H E, Witjes J A, Oosterwijk E . Ther. Adv. Urol., 2018,10(7):213. https://www.ncbi.nlm.nih.gov/pubmed/30034540

doi: 10.1177/1756287218762064 pmid: 30034540
[62]
Liang H F, Hong M H, Ho R M, Chung C K, Lin Y H, Chen C H, Sung H W . Biomacromolecules, 2004,5(5):1917. https://www.ncbi.nlm.nih.gov/pubmed/15360306

doi: 10.1021/bm049813w pmid: 15360306
[63]
Ruel-Gariepy E, Shive M, Bichara A, Berrada M, Le Garrec D, Chenite A, Leroux J C . Eur. J. Pharm. Biopharm., 2004,57(1):53. https://www.ncbi.nlm.nih.gov/pubmed/14729080

doi: 10.1016/s0939-6411(03)00095-x pmid: 14729080
[64]
Burakowska E, Zimmerman S C, Haag R . Small, 2009,5(19):2199. https://www.ncbi.nlm.nih.gov/pubmed/19572327

doi: 10.1002/smll.200900465 pmid: 19572327
[65]
Rai P, Mallidi S, Zheng X, Rahmanzadeh R, Mir Y, Elrington S, Khurshid A, Hasan T . Adv. Drug Deliver. Rev., 2010,62(11):1094. https://www.ncbi.nlm.nih.gov/pubmed/20858520

doi: 10.1016/j.addr.2010.09.002 pmid: 20858520
[66]
Katz J S, Burdick J A . Macromol. Biosci., 2010,10(4):339. https://www.ncbi.nlm.nih.gov/pubmed/20014197

doi: 10.1002/mabi.200900297 pmid: 20014197
[67]
Ji W, Qin M G, Feng C L . Macromol. Chem. Phys., 2018,219(2):1.
[68]
Yang A F, Dong X, Liang J, Zhang Y, Yang W Z, Liu T J, Yang J, Kong D L, Lv F . Soft Matter, 2018,14(22):4495. https://www.ncbi.nlm.nih.gov/pubmed/29808187

doi: 10.1039/c8sm00626a pmid: 29808187
[69]
Alvarez-Lorenzo C, Bromberg L, Concheiro A . Photochem. Photobiol., 2009,85(4):848. https://www.ncbi.nlm.nih.gov/pubmed/19222790

doi: 10.1111/j.1751-1097.2008.00530.x pmid: 19222790
[70]
Chiang C Y, Chu C C . Carbohyd. Polym., 2015,119:18. https://www.ncbi.nlm.nih.gov/pubmed/25563940

doi: 10.1016/j.carbpol.2014.11.043 pmid: 25563940
[71]
Hardy J G, Larraneta E, Donnelly R F, McGoldrick N, Migalska K, McCrudden M T C, Irwin N J, Donnelly L, McCoy C P . Mol. Pharm., 2016,13(3):907. https://www.ncbi.nlm.nih.gov/pubmed/26795883

doi: 10.1021/acs.molpharmaceut.5b00807 pmid: 26795883
[72]
Nehls E M, Rosales A M, Anseth K S . J. Mater. Chem. B, 2016,4(6):1035. https://www.ncbi.nlm.nih.gov/pubmed/27127630

doi: 10.1039/C5TB02004B pmid: 27127630
[73]
Wang X, Wang C P, Wang X Y, Wang Y T, Zhang Q, Cheng Y Y . Chem. Mater., 2017,29(3):1370.
[74]
Zou X, Zhao X W, Ye L . RSC Adv., 2015,5(116):96230. https://www.ncbi.nlm.nih.gov/pubmed/27019702

doi: 10.1039/c5ra20359g pmid: 27019702
[75]
Matsumoto A, Yoshida R, Kataoka K . Biomacromolecules, 2004,5(3):1038. https://www.ncbi.nlm.nih.gov/pubmed/15132698

doi: 10.1021/bm0345413 pmid: 15132698
[76]
Bai J K, Sheng C L, Zhang Y, Wang J X . PROG. Prog. Biochem. Biophys., 2016,43(11):1048.
[77]
Kalafatovic D, Nobis M, Son J Y, Anderson K I, Ulijn R V . Biomaterials, 2016,98:192. https://www.ncbi.nlm.nih.gov/pubmed/27192421

doi: 10.1016/j.biomaterials.2016.04.039 pmid: 27192421
[78]
Wang Y, Luo Y Y, Zhao Q, Wang Z J, Xu Z J, Jia X R . ACS Appl. Mater. Inter., 2016,8(31):19899. https://www.ncbi.nlm.nih.gov/pubmed/27420576

doi: 10.1021/acsami.6b05567 pmid: 27420576
[79]
Im J S, Yun J, Lim Y M, Kim H I, Lee Y S . Acta Biomater., 2010,6(1):102. https://www.ncbi.nlm.nih.gov/pubmed/19531386

doi: 10.1016/j.actbio.2009.06.017 pmid: 19531386
[80]
Garland M J, Singh T R R, Woolfson A D, Donnelly R F . Int. J. Pharm., 2011,406(1/2):91. https://www.ncbi.nlm.nih.gov/pubmed/21236323

doi: 10.1016/j.ijpharm.2011.01.002 pmid: 21236323
[81]
Liu Y, Servant A, Guy O J, Al-Jamal K T, Williams P R, Hawkins K M, Kostarelos K . Sensor. Actuat. B-Chem., 2012,175(SI):100.
[82]
Shi X N, Zheng Y D, Wang C, Yue L N, Qiao K, Wang G J, Wang L N, Quan H Y . RSC Adv., 2015,5(52):41820.
[83]
Paradee N, Sirivat A . Mol. Pharm., 2016,13(1):155. https://www.ncbi.nlm.nih.gov/pubmed/26561875

doi: 10.1021/acs.molpharmaceut.5b00592 pmid: 26561875
[84]
Juntanon K, Niamlang S, Rujiravanit R, Sirivat A . Int. J. Pharm., 2008,356(1/2):1. https://www.ncbi.nlm.nih.gov/pubmed/18242901

doi: 10.1016/j.ijpharm.2007.12.023 pmid: 18242901
[85]
Niamlang S, Sirivat A . Int. J. Pharm., 2009,371(1/2):126. https://www.ncbi.nlm.nih.gov/pubmed/19162150

doi: 10.1016/j.ijpharm.2008.12.032 pmid: 19162150
[86]
Bajpai A K, Shukla S K, Bhanu S, Kankane S . Prog. Polym. Sci., 2008,33(11):1088.
[87]
Wang M S, Yin Y D . J. Am. Chem. Soc., 2016,138(20):6315. https://www.ncbi.nlm.nih.gov/pubmed/27115174

doi: 10.1021/jacs.6b02346 pmid: 27115174
[88]
Hawkins A M, Bottom C E, Liang Z, Puleo D A, Hilt J Z . Adv. Healthc. Mater., 2012,1(1):96. https://www.ncbi.nlm.nih.gov/pubmed/23184692

doi: 10.1002/adhm.201100013 pmid: 23184692
[89]
Ji W, Liu G F, Xu M X, Feng C L . Macromol. Chem. Phys., 2015,216(19):1945.
[90]
Wilde L, Bock M, Glockl G, Garbacz G, Weitschies W . Int. J. Pharm., 2014,461(1/2):296. https://www.ncbi.nlm.nih.gov/pubmed/24333906

doi: 10.1016/j.ijpharm.2013.11.062 pmid: 24333906
[91]
Hosseinifar T, Sheybani S, Abdouss M, Najafabadi S, Ardestani M S . J. Biomed. Mater. Res. A, 2018,106(2):349. https://www.ncbi.nlm.nih.gov/pubmed/28940736

doi: 10.1002/jbm.a.36242 pmid: 28940736
[92]
Yang F, Wang J, Cao L Y, Chen R, Tang L J, Liu C S . J. Mater. Chem. B, 2014,2(3):295. https://www.ncbi.nlm.nih.gov/pubmed/32261508

doi: 10.1039/c3tb21103g pmid: 32261508
[93]
Moriyama K, Minamihata K, Wakabayashi R, Goto M, Kamiya N . Chem. Commum., 2014,50(44):5895. https://www.ncbi.nlm.nih.gov/pubmed/24761434

doi: 10.1039/c3cc49766f pmid: 24761434
[94]
Chen D Q, Zhang G Q, Li R M, Guan M R, Wang X Y, Zou T J, Zhang Y, Wang C R, Shu C Y, Hong H, Wan L J . J. Am. Chem. Soc., 2018,140(24):7373. https://www.ncbi.nlm.nih.gov/pubmed/29799737

doi: 10.1021/jacs.7b12025 pmid: 29799737
[95]
Hooshyar Z, Bardajee G R . J. Iran. Chem. Soc., 2017,14(3):541.
[96]
Peng J R, Qi T T, Liao J F, Chu B Y, Yang Q, Li W T, Qu Y, Luo F, Qian Z Y . Biomaterials, 2013,34(34):8726. https://www.ncbi.nlm.nih.gov/pubmed/23948167

doi: 10.1016/j.biomaterials.2013.07.092 pmid: 23948167
[97]
Chen Y, Song G C, Yu J R, Wang Y, Zhu J, Hu Z M . J. Mech. Behav. Biomed., 2018,82:61. https://www.ncbi.nlm.nih.gov/pubmed/29571114

doi: 10.1016/j.jmbbm.2018.03.002 pmid: 29571114
[98]
Mahdavinia G R, Rahmani Z, Karami S, Pourjavadi A . J. Biomat. Sci.-Polym. E., 2014,25(17):1891.
[99]
Wang H, Yi J, Mukherjee S, Banerjee P, Zhou S . Nanoscale, 2014,6(21):13001. https://www.ncbi.nlm.nih.gov/pubmed/25243783

doi: 10.1039/c4nr03748k pmid: 25243783
[100]
Eskandari S, Guerin T, Toth I, Stephenson R J . Adv. Drug Deliver. Rev., 2017,110:169.
[101]
Weng W, Ho I, Pang C, Pang S, Pan T, Leung W . Biosens. Bioelectron., 2018,116:51. https://www.ncbi.nlm.nih.gov/pubmed/29859397

doi: 10.1016/j.bios.2018.05.035 pmid: 29859397
[102]
Yang L, Lv Z, Xia W, Zhang W, Xin Y, Yuan H, Chen Y, Hu X, Lv Y, Xu Q, Weng X, Ni C . Clin. Transl. Oncol., 2018,20(7):912. https://www.ncbi.nlm.nih.gov/pubmed/29243075

doi: 10.1007/s12094-017-1806-z pmid: 29243075
[103]
Zhou M D, Hao S J, Williams A J, Harouaka R A, Schrand B, Rawal S, Ao Z, Brenneman R, Gilboa E, Lu B, Wang S W, Zhu J Y, Datar R, Cote R, Tai Y C, Zheng S Y . Sci. Rep., 2015,5:1.
[104]
Ghosh J, Das J, Manna P, Sil P C . Biomaterials, 2011,32(21):4857. https://www.ncbi.nlm.nih.gov/pubmed/21486680

doi: 10.1016/j.biomaterials.2011.03.048 pmid: 21486680
[105]
Lee A, Voo Z X, Chin W, Ono R J, Yang C, Gao S J, Hedrick J L, Yang Y Y . ACS Appl. Mater. Inter., 2018,10(16):13274. https://www.ncbi.nlm.nih.gov/pubmed/29595244

doi: 10.1021/acsami.7b14319 pmid: 29595244
[106]
Capanema N S V, Mansur A A P, Carvalho S M, Carvalho I C, Chagas P, de Oliveira L C A Mansur H S . Carbohyd. Polym., 2018,195:401. https://www.ncbi.nlm.nih.gov/pubmed/29804993

doi: 10.1016/j.carbpol.2018.04.105 pmid: 29804993
[107]
Pan A N, Wang Z Y, Chen B L, Dai W B, Zhang H, He B, Wang X Q, Wang Y G, Zhang Q . Drug Deliv., 2018,25(1):1495. https://www.ncbi.nlm.nih.gov/pubmed/29943651

doi: 10.1080/10717544.2018.1474971 pmid: 29943651
[108]
Zhao M, Zhou Y, Liu S, Li L, Chen Y, Cheng J, Lu Y, Liu J . Drug. Deliv., 2018,25(1):546. https://www.ncbi.nlm.nih.gov/pubmed/29451033

doi: 10.1080/10717544.2018.1440445 pmid: 29451033
[109]
Huang J, Ren J, Chen G, Li Z, Liu Y, Wang G, Wu X . Mat. Sci. Eng. C-Mater., 2018,89:213.
[110]
Gupta H, Velpandian T, Jain S . J. Drug Target., 2010,18(7):499. https://www.ncbi.nlm.nih.gov/pubmed/20055752

doi: 10.3109/10611860903508788 pmid: 20055752
[111]
Prasanna A, Tsai H C, Hsiue G H . React. Funct. Polym., 2018,124:40.
[112]
Wong C Y, Al-Salami H, Dass C R . Int. J. Pharm., 2018,537(1/2):223. https://www.ncbi.nlm.nih.gov/pubmed/29288095

doi: 10.1016/j.ijpharm.2017.12.036 pmid: 29288095
[113]
Schneider E L, Hearn B R, Pfaff S J, Reid R, Parkes D G, Vrang N, Ashley G W, Santi D V . ACS Chem. Biol., 2017,12(8):2107. https://www.ncbi.nlm.nih.gov/pubmed/28605180

doi: 10.1021/acschembio.7b00218 pmid: 28605180
[114]
Wang P X, Zhuo X Z, Chu W, Tang X . Int. J. Pharm., 2017,528(1/2):62. https://www.ncbi.nlm.nih.gov/pubmed/28579543

doi: 10.1016/j.ijpharm.2017.05.069 pmid: 28579543
[115]
Zhao F L, Wu D, Yao D, Guo R W, Wang W W, Dong A J, Kong D L, Zhang J H . Acta Biomater., 2017,64:334. https://www.ncbi.nlm.nih.gov/pubmed/28974477

doi: 10.1016/j.actbio.2017.09.044 pmid: 28974477
[116]
Bajpai S K, Swarnkar M P . J. Macromol. Sci. A, 2017,54(3):186.
[117]
Peng H, Ning X, Wei G, Wang S, Dai G, Ju A . Carbohyd. Polym., 2018,195:349. https://www.ncbi.nlm.nih.gov/pubmed/29804986

doi: 10.1016/j.carbpol.2018.04.119 pmid: 29804986
[118]
Zhao L L, Niu L J, Liang H Z, Tan H, Liu C Z, Zhu F Y . ACS Appl. Mater. Inter., 2017,9(43):37563. https://www.ncbi.nlm.nih.gov/pubmed/28994281

doi: 10.1021/acsami.7b09395 pmid: 28994281
[119]
Xiao Y, Gong T, Jiang Y, Wang Y, Wen Z T, Zhou S, Bao C, Xu X . Polymer, 2016,82:1. https://www.ncbi.nlm.nih.gov/pubmed/26744546

doi: 10.1016/j.polymer.2015.11.016 pmid: 26744546
[120]
Alvarez-Rivera F, Concheiro A, Alvarez-Lorenzo C . Eur. J. Pharm. Biopharm., 2018,122:126. https://www.ncbi.nlm.nih.gov/pubmed/29079419

doi: 10.1016/j.ejpb.2017.10.016 pmid: 29079419
[121]
Chau D, Tint N L, Collighan R J, Griffin M, Dua H S, Shakesheff K M, Rose F . Brit. J. Ophthamol., 2010,94(5):648. https://www.ncbi.nlm.nih.gov/pubmed/20447968

doi: 10.1136/bjo.2009.163642 pmid: 20447968
[122]
De Giglio E, Cafagna D, Giangregorio M M, Domingos M, Mattioli-Belmonte M, Cometa S . J. Bioact. Compat. Pol., 2011,26(4):420.
[123]
Menzies D J, Nelson A, Shen H, McLean K M, Forsythe J S, Gengenbach T, Fong C, Muir B W . J. R. Soc. Interface, 2012,9(70):1008. https://www.ncbi.nlm.nih.gov/pubmed/21957120

doi: 10.1098/rsif.2011.0509 pmid: 21957120
[124]
Lu T, Qiao Y, Liu X . Interface Focus, 2012,2(3):325. https://www.ncbi.nlm.nih.gov/pubmed/23741609

doi: 10.1098/rsfs.2012.0003 pmid: 23741609
[125]
Wang X, Liu L H, Ramstrom O, Yan M D . Exp. Biol. Med., 2009,234(10):1128. https://www.ncbi.nlm.nih.gov/pubmed/19596820

doi: 10.3181/0904-MR-134 pmid: 19596820
[126]
Afferrante L, Carbone G . J. R. Soc. Interface, 2012,9(77):3359. https://www.ncbi.nlm.nih.gov/pubmed/22977100

doi: 10.1098/rsif.2012.0452 pmid: 22977100
[127]
Niu Y, Qi L, Zhang F, Zhao Y . Biosens. Bioelectr., 2018,112:162.
[128]
Patel M, Kaneko T, Matsumura K . J. Mater. Chem. B, 2017,5(19):3488. https://www.ncbi.nlm.nih.gov/pubmed/32264285

doi: 10.1039/c7tb00701a pmid: 32264285
[129]
Hu J J, Chen Y H, Li Y Q, Zhou Z J, Cheng Y Y . Biomaterials, 2017,112:133. https://www.ncbi.nlm.nih.gov/pubmed/27760397

doi: 10.1016/j.biomaterials.2016.10.015 pmid: 27760397
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[3] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[4] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[5] Xingang Zuo, Haolan Zhang, Tong Zhou, Changyou Gao. Biomaterials for Regulating Cell Migration and Tissue Regeneration [J]. Progress in Chemistry, 2019, 31(11): 1576-1590.
[6] Xiaoyan He*, Liqin Liu, Meng Wang, Caiyun Zhang, Yunlei Zhang, Minhui Wang. The Research of the Anisotropic Hydrogel's Properties and Preparation [J]. Progress in Chemistry, 2017, 29(6): 649-658.
[7] Xiao Xiao, Changsheng Chen, Weiqiang Liu, Yeshun Zhang. Structure, Features and Biomedical Applications of Silk Sericin [J]. Progress in Chemistry, 2017, 29(5): 513-523.
[8] Liu Jingjing, Chu Huijuan, Wei Hongliang, Zhu Hongzheng, Zhu Jing, He Juan. Progress in Graphene-Based Hydrogels [J]. Progress in Chemistry, 2015, 27(11): 1591-1603.
[9] Fan Guanming, Han Qian, Xiong Xingquan. Synthesis of Hydrogels via Copper-Free Click Reactions [J]. Progress in Chemistry, 2014, 26(07): 1223-1232.
[10] Zhu Lin, Chen Qiang, Xu Kun. Toughening Mechanisms of High Strength Double Network Hydrogels [J]. Progress in Chemistry, 2014, 26(06): 1032-1038.
[11] Gao Youzhi, Wang Meng, Yan Fanyong, Chen Li. Preparing Composite of Hydrogels with Metal Nanoparticles and Its Application as Catalyst [J]. Progress in Chemistry, 2014, 26(04): 626-637.
[12] Song Lifeng, Zhao Jin, Yuan Xiaoyan. Strengthening of Hydrogels Based on Polysaccharide and Polypeptide [J]. Progress in Chemistry, 2014, 26(0203): 385-393.
[13] Jiang Caiyun, Qian Weiping. Composites of Intelligent PNIPAM Hydrogels and Au Nanoparticles [J]. Progress in Chemistry, 2010, 22(08): 1626-1632.
[14] . Research Progress of Hydrogel-modified Bio-Electrodes [J]. Progress in Chemistry, 2010, 22(06): 1195-1202.
[15] . Cyclodextrin-Containing Supramolecular Hydrogels [J]. Progress in Chemistry, 2010, 22(05): 916-926.