中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (0203): 385-393 DOI: 10.7536/PC130812 Previous Articles   Next Articles

• Review •

Strengthening of Hydrogels Based on Polysaccharide and Polypeptide

Song Lifeng, Zhao Jin*, Yuan Xiaoyan   

  1. School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation for China (No. 51103095)

PDF ( 1857 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogels based on polysaccharide and polypeptide have been utilized in a wide range of biomedical applications because of the rich resources, good biocompatibility and biodegradability. However, their wide applications are always restricted by the relatively poor mechanical strength. This review aims to give an overview of strengthening of hydrogels based on these materials, and highlights four kinds of ways: strengthening via blending; strengthening via special topological structure; strengthening via crystallization; and strengthening via imitating robust hydrogels based on synthetic materials, in terms of their enhanced mechanical properties and corresponding strengthening mechanisms. Finally, we describe the main current achievements in the study of strengthening of hydrogels based on polysaccharide and polypeptide, and also provide some suggestions for further work particularly with regard to some unanswered questions and possible avenues for further enhancement of gel mechanical properties.

Contents
1 Introduction
2 Strengthening via blending
2.1 Blending via hydrogen bond
2.2 Blending via electrostatic interaction
3 Designing special topological structures
3.1 Dendritic topology structure
3.2 Star topology structure
4 Strengthening via crystallization
5 Strengthening via imitating robust hydrogels based on synthetic materials
5.1 Nanocomposite hydrogels
5.2 Double-network hydrogels
6 Conclusion and outlook

CLC Number: 

[1] Peppas N A, Bures P, Leobandung W, Ichikawa H. Eur. J. Pharm. Biopharm., 2000, 50(1): 27.
[2] Van V S, Dubruel P, Schacht E. Biomacromolecules, 2011, 12(5): 1387.
[3] Balakrishnan B, Banerjee R. Chem. Rev., 2011, 111(8): 4453.
[4] Karino T, Shibayama M, Ito K. Physica B, 2006, 385/386: 692.
[5] Okumura Y, Ito K. Adv. Mater., 2001, 13(7): 485.
[6] Haraguchi K, Uyama K, Tanimoto H. Macromol. Rapid Commun., 2011, 32(16): 1253.
[7] Haraguchi K, Takehisa T. Adv. Mater., 2002, 14(16): 1120.
[8] Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T. Macromolecules, 2003, 15(36): 5732.
[9] Liu R Q, Liang S M, Tang X Z, Yan D, Li X F, Yu Z Z. J. Mater. Chem., 2012, 22(28): 14160.
[10] Haraguchi K, Takehisa T, Fan S, Macromolecules, 2002, 35(27): 10162.
[11] Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung U. Macromolecules, 2008, 41: 5379.
[12] Shibayama M. Soft Matter, 2012, 8(31): 8030.
[13] Matsunaga T, Sakai T, Akagi Y, Chung U, Shibayama M. Macromolecules, 2009, 42(4): 1344.
[14] Kurakazu M, Katashima T, Chijiishi M, Nishi K, Akagi Y, Matsunaga T, Shibayama M, Chung U, Sakai T. Macromolecules, 2010, 43: 3935.
[15] Li X, Tsutsui Y, Matsunaga T, Shibayama M, Chung U, Sakai T. Macromolecules, 2011, 44(9): 3567.
[16] Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Adv. Mater., 2003, 15(14): 1155.
[17] Yasuda K, Gong J P, Katsuyama Y, Nakayama A, Tanabe Y, Kondo E, Ueno M, Osada Y. Biomaterials, 2005, 26(21): 4468.
[18] Gong J P. Soft Matter, 2010, 6(12): 2583.
[19] Tsukeshiba H, Huang Mei, Na Y H, Kurokawa T, Kuwabara R, Tanaka Y, Furukawa H, Osada Y, Gong J P. J. Phys. Chem. B, 2005, 109(34): 16304.
[20] Na Y H, Kurokawa T, Katsuyama Y, Tsukeshiba H, Gong J P, Osada Y, Okabe S, Karino T, Shibayama M. Macromolecules, 2004, 37(14): 5370.
[21] Tanaka Y, Gong J P, Osada Y. Prog. Polym. Sci., 2005, 30(1): 1.
[22] Chen Y M, Dong K, Liu Z Q, Xu F. Sci. China Tech. Sci., 2012, 55(8): 2241.
[23] Hu J, Kurokawa T, Nakajima T, Sun T L, Suekama T, Wu Z L, Liang S M, Gong J P. Macromolecules, 2012, 45(23): 9445.
[24] Tuncaboylu D C, Sari M, Oppermann W, Okay O. Macromolecules, 2011, 44(12): 4997.
[25] Haque M A, Kurokawa T, Kamita G, Gong J P. Macromolecules, 2011, 44(22): 8916.
[26] Tuncaboylu D C, Argun A, Sahin M, Sari M, Okay O. Polymer, 2012, 53(24): 5513.
[27] Haque M A, Kamita G, Kurokawa T, Tsujii K, Gong J P. Adv. Mater., 2010, 22(45): 5110.
[28] Henderson K J, Zhou T C, Otim K J, Shull K R. Macromolecules, 2010, 43(14): 6193.
[29] Sun J Y, Zhao X H, Illeperuma W R K, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J, Suo Z G. Nature, 2012, 489(7417): 133.
[30] Tang Q W, Sun X M, Li Q H, Wu J H, Lin J M. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 346(1/3): 91.
[31] Lin W C, Fan W, Marcellan A, Hourdet D, Creton C. Macromolecules, 2010, 43(5): 2554.
[32] Petit L, Bouteiller L, Brulet A, Lafuma F, Hourdet D. Langmuir, 2007, 23(1): 147.
[33] Lin W C, Yu D G, Yang M C. Colloids and Surfaces B: Biointerfaces, 2006, 47(1): 43.
[34] Gupta B, Agarwa R, Alam M S. J. Appl. Polym. Sci., 2013, 127(2): 1301.
[35] Chang K Y, Cheng L W, Ho G H, Huang Y P, Lee Y D. Acta Biomater., 2009, 5: 1937.
[36] 许俊(Xu J), 江学良(Jiang X L), 孙康(Sun K). 功能高分子学报(Journal of Functional Polymers). 2007, 19/20(4): 369.
[37] Artzi N, Shazly T, Crespo C, Ramos A B, Chenault H K, Edelman E R. Macromol. Biosci., 2009, 9: 754.
[38] Ma K, Titan A L, Stafford M, Zheng C H, Levenston M E. Acta Biomater., 2012, 8(10): 3754.
[39] Yan S F, Zhang K X, Liu Z W, Zhang X, Gan L, Cao B, Chen X S, Cui L, Yin J B. J. Mater. Chem. B, 2013, 1(11): 1541.
[40] Oliva N, Shitreet S, Abraham E, Stanley B, Edelman E R. Artzi N. Langmuir, 2012, 28: 15402.
[41] Zhang H B, Patel A, Gaharwar A K, Mihaila S M, Iviglia G, Mukundan S, Bae H, Yang H, Khademhosseini A. Biomacromolecules, 2013, 14: 1299.
[42] Al-Jamal K T, Al-Jamal W T, Wang J T W, Rubio N, Buddle J, Gathercole D, Zloh M, Kostarelos K. ACS Nano, 2013, 7(3): 1905.
[43] Al-Jamal K T, Al-Jamal W T, Akerman S, Podesta J E, Yilmazer A, Turton J A, Bianco A, Vargesson N, Kanthou C, Florence A T, Tozer G M, Kostarelos K. Proc. Natl. Acad. Sci. U. S. A., 2009, 107(9): 3966.
[44] Crespo L, Sanclimens G, Pons M, Giralt E, Royo M, Albericio F. Chem. Rev., 2005, 105(5): 1663.
[45] Palui G, Simon F X, Schmutz M, Mesini P J, Banerjee A. Tetrahedron, 2008, 64 (1): 175.
[46] Ohsaki M, Okuda T, Wada A, Hirayama T, Niidome T, Aoyagi H. Bioconjugate Chem., 2002, 13(3): 510.
[47] Wathier M, Jung P J, Carnahan M A, Kim T, Grinstaff M W. J. Am. Chem. Soc., 2004, 126(40): 12744.
[48] Wathier M, Johnson C S, Kim T, Grinstaff M W. Bioconjugate Chem., 2006, 17(4): 873.
[49] Oelker A M, Berlin J A, Wathier M, Grinstaff M W. Biomacromolecules, 2011, 12(5): 1658.
[50] Liu D L, Chang X, Dong C M. Chem. Commun., 2013, 49(12): 1229.
[51] Chung H J, Park T G. Nano Today, 2009, 4 (5): 429.
[52] Gungormusa M, Brancob M, Fonga H, Schneiderb J P, Tamerlera C, Sarikaya M. Biomaterials, 2010, 31(28): 7266.
[53] Thornton P D, Billah S M R, Cameron Neil R. Macromol. Rapid Commun., 2013, 34(3): 257.
[54] Choi Y Y, Jang J H, Park M H, Choi B G, Chi B, Jeong B. J. Mater. Chem., 2010, 20: 3416.
[55] Sulistio A, Blencowe A, Widjaya A, Zhang X Q, Qiao G G. Polym. Chem., 2012, 3(1): 224.
[56] Sulistio A, Gurr P A, Blencowe A, Qiao G G. Aust. J. Chem. 2012, 65(8): 978.
[57] Sulistio A, Widjaya A, Blencowe A, Zhang X Q, Qiao G G. Chem. Commun., 2011, 47(4): 1151.
[58] Sulistio A, Lowenthal J, Blencowe A, Bongiovanni M N, Ong L, Gras S L, Zhang X Q, Qiao G G. Biomacromolecules, 2011, 12(10): 3469.
[59] Abe K, Yano H. Carbohyd. Polym., 2011, 85(4): 733.
[60] Abe K, Yano H. Cellulose, 2012, 19(6): 1907.
[61] Nakano T. Cellulose, 2010, 17(4): 711.
[62] Nakagaito A N, Yano H. Cellulose, 2008, 15(2): 323.
[63] Lee J I, Kim H S, Yoo H S. Int. J. Pharm., 2009, 373(1/2): 93.
[64] Bako J, Vecsernyes M, Ujhelyi Z, Kovacsne I B, Borbro I, Biro T, Borbely J, Hegedus C. J. Mater. Sci.: Mater. Med., 2013, 24(3): 659.
[65] Teramoto N, Hayashi A, Yamanaka K, Sakiyama A, Nakano A, Shibata M. Materials. 2012, 5(12): 2573.
[66] Zhong C, Wu J, Reinhart-King C A, Chu C C. Acta Biomater., 2010, 6(10): 3908.
[67] Rickett T A, Amoozgar Z, Tuchek C A, Park J, Yeo Y, Shi R. Biomacromolecules, 2011, 12(1): 57.
[68] Ishihara M, Obara K, Nakamura S, Fujita M, MasuokaK, Kanatani Y, Takase B, Hattori H, Morimoto Y, Ishihara M, Maehara T, Kikuchi M. J. Artif. Organs, 2006, 9(1): 8.
[69] Chou, A I, Akintoye S O, Nicoll S B. Osteoarthr. Cartil., 2009, 17(10): 1377.
[70] Nakano A, Teramoto N, Chen G P, Miura Y, Shibata M. J. Appl. Polym. Sci., 2010, 118(4): 2284.
[71] Weng L H, Gouldstone A, Wu Y H, Chen W L. Biomaterials, 2008, 29(14): 2153.
[72] Naficy S, Brown H R, Razal J M, Spinks G M, Whitten P G. Aust. J. Chem., 2011, 64(8): 1007.

[1] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[2] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[3] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[4] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[5] Chen Yaqiong, Song Hongdong, Wu Mao, Lu Yang, Guan Xiao. Application of Protein-Polysaccharide Complex System in the Delivery of Active Ingredients [J]. Progress in Chemistry, 2022, 34(10): 2267-2282.
[6] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[7] Jianyun Lin, Shihe Luo, Chongling Yang, Ying Xiao, Liting Yang, Zhaoyang Wang. Bio-Based Polymeric Hemostatic Material and Wound Dressing [J]. Progress in Chemistry, 2021, 33(4): 581-595.
[8] Pingping Zhao, Junxing Yang, Jianhui Shi, Jingyi Zhu. Construction and Application of Dendrimer-Based SPECT Imaging Agent [J]. Progress in Chemistry, 2021, 33(3): 394-405.
[9] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[10] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[11] Qiangqiang Hu, Heze Guo, Hongjing Dou. Size Control and Biomedical Applications of ZIF-8 Nanoparticles [J]. Progress in Chemistry, 2020, 32(5): 656-664.
[12] Dongdong Zha, Wen Zhou, Peng Yin, Bin Guo, Bengang Li, Yanan Huang. Ways and Mechanism of Improving the Mechanical Properties of Thermoplastic Starch [J]. Progress in Chemistry, 2019, 31(7): 1044-1055.
[13] Zixuan Cai, Bin Zhang, Liyang Jiang, Yunyi Li, Guohe Xu, Jingjun Ma. Intelligent-Responsive Hydrogels-Based Controlled Drug Release Systems and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1653-1668.
[14] Xingang Zuo, Haolan Zhang, Tong Zhou, Changyou Gao. Biomaterials for Regulating Cell Migration and Tissue Regeneration [J]. Progress in Chemistry, 2019, 31(11): 1576-1590.
[15] Xiaoyan He*, Liqin Liu, Meng Wang, Caiyun Zhang, Yunlei Zhang, Minhui Wang. The Research of the Anisotropic Hydrogel's Properties and Preparation [J]. Progress in Chemistry, 2017, 29(6): 649-658.