中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (12): 1637-1652 DOI: 10.7536/PC1904105 Previous Articles   Next Articles

Enhancing the Durability of Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cells

Yuekun Ye, Bin Chi, Shijie Jiang, Shijun Liao**()   

  1. School of Chemistry and Engineering, South China University of Technology, Guangzhou 510641, China
  • Received: Online: Published:
  • Contact: Shijun Liao
  • About author:
  • Supported by:
    National Key Research and Development Program of China(2017YFB0102900); National Key Research and Development Program of China(2016YFB0101201); National Natural Science Foundation of China(21476088); National Natural Science Foundation of China(21776105); Guangdong Provincial Department of Science and Technology(2015B010106012); Guangzhou Science Technology and Innovation Committee(201504281614372); Guangzhou Science Technology and Innovation Committee(2016GJ006)
Richhtml ( 63 ) PDF ( 2493 ) Cited
Export

EndNote

Ris

BibTeX

Proton exchange membrane fuel cell(PEMFC) has attracted huge attention recently due to its high energy conversion efficiency, low operating temperature and environmental benign. With the launch of the Mirai fuel cell electric vehicle by Toyota in 2014, a new wave of industrialization of fuel cells and fuel cell vehicles has been brought about. However, enhancing the durability of PEMFC and developing a new generation of membrane electrode assembly(MEA) and fuel cells are still challenging topics in the field. The MEA is the core component of PEMFC, and its durability directly determines the life of the fuel cell. The MEA is mainly composed of a proton exchange membrane, anode and cathode catalyst layers and gas diffusion layers on both sides. In last decade, great efforts have been paid to improving the durability of MEAs/PEMFCs from three aspects, membrane, catalyst layer and gas diffusion layer. In this paper, we introduce these research works systematically, and a review and prospect for the research and development of this topic in the future is also made.

Fig. 1 Summary of the mechanisms of radical attack on the Nafion polymer structure[7]
Fig. 2 Degradation mechanisms for platinum particles on a carbon support in fuel cells[57]
[1]
Tasic G S, Miljanic S S, Kaninski M P M, Saponjic D P, Nikolic V M . Electrochem. Commun., 2009,11:2097.
[2]
Khorasany R M H, Kjeang E, Wang G G, Rajapakse R K N D . J. Power Sources, 2015,279:55.
[3]
Xiao Y, Cho C . Energies, 2014,7:6401.
[4]
Khorasany R M H, Alavijeh A S, Kjeang E, Wang G G, Rajapakse R K N D . J. Power Sources, 2015,274:1208.
[5]
Lin R, Xiong F, Tang W C, Techer L, Zhang J M, Ma J X . J. Power Sources, 2014,260:150.
[6]
Kim N I, Seo Y, Kim K B, Lee N, Lee J H, Song I, Choi H, Park J Y . J. Power Sources, 2014,253:90.
[7]
Zaton M, Roziere J, Jones D J . Sustainable Energy & Fuels, 2017,1:409.
[8]
Shouwen S, Dursch T J, Borup R L, Weber A Z, Kusoglu A . ECS Transactions, 2015,69:1017.
[9]
Shi S, Dursch T J, Blake C, Mukundan R, Borup R L, Weber A Z, Kusoglu A . Journal of Polymer Science Part B-Polymer Physics, 2016,54:570. http://doi.wiley.com/10.1002/polb.v54.5

doi: 10.1002/polb.v54.5
[10]
Nandjou E, Poirot-Crouvezier J P, Chandesris M, Blachot J F, Bonnaud C, Bultel Y . J. Power Sources, 2016,326:182.
[11]
Casalongue H S, Kaya S, Viswanathan V, Miller D J, Friebel D, Hansen H A, Norskov J K, Nilsson A, Ogasawara H . Nature Communications, 2013,4:2817.
[12]
Klose C, Breitwieser M, Vierrath S, Klingele M, Cho H, Buchler A, Kerres J, Thiele S . J. Power Sources, 2017,361:237.
[13]
Shi W, Baker L A . RSC Advances, 2015,5:99284.
[14]
Department of Energy. Fuel Cells Section(3.4) of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan. [2017-05-10]. https://www.energy.gov/sites/prod/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf. https://www.energy.gov/sites/prod/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf
[15]
Inaba M, Kinumoto T, Kiriake M, Umebayashi R, Tasaka A, Ogumi Z . Electrochim. Acta, 2006,51:5746.
[16]
Kusoglu A, Weber A Z . Chem. Rev., 2017,117:987. https://www.ncbi.nlm.nih.gov/pubmed/28112903

doi: 10.1021/acs.chemrev.6b00159 pmid: 28112903
[17]
Hongsirikarn K, Goodwin J G, Greenway S, Creager S . J. Power Sources, 2010,195:7213.
[18]
Chen F L, Su Y G, Soong C Y, Yan W M, Chu H S . J. Electroanal. Chem., 2004,566:85.
[19]
Mikkola M S, Rockward T, Uribe F A, Pivovar B S . Fuel Cells, 2007,7:153.
[20]
Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu Z S, Wang H, Shen J . J. Power Sources, 2007,165:739.
[21]
Shi S, Weber A Z, Kusoglu A . Electrochim. Acta, 2016,220:517. https://linkinghub.elsevier.com/retrieve/pii/S0013468616322010

doi: 10.1016/j.electacta.2016.10.096
[22]
Saito M, Hayamizu K, Okada T . J. Phys. Chem. B, 2005,109:3112. https://www.ncbi.nlm.nih.gov/pubmed/16851330

doi: 10.1021/jp045624w pmid: 16851330
[23]
Banas C J, Bonville L, Pasaogullari U . J. Electrochem. Soc., 2017,164:F1100.
[24]
Qi J, Wang X, Pasaogullari U, Bonville L, Molter T . J. Electrochem. Soc., 2013,160:F916.
[25]
Dubau L, Castanheira L, Maillard F, Chatenet M, Lottin O, Maranzana G, Dillet J, Lamibrac A, Perrin J C, Moukheiber E, Elkaddouri A, De Moor G, Bas C, Flandin L, Caque N . Wiley Interdisciplinary Reviews-Energy and Environment, 2014,3:540.
[26]
Bas C, Alberola N D, Flandin L . Journal of Membrane Science, 2010,363:67.
[27]
Cho H S, Das M, Wang H, Dinh H N, Van Zee J W . J. Electrochem. Soc., 2015,162:F427.
[28]
Alberti G, Narducci R, Di Vona M L, Giancola S . Fuel Cells, 2013,13:42.
[29]
Zhang W, Wycisk R, Kish D L, Pintauro P N . J. Electrochem. Soc., 2014,161:F770.
[30]
Subianto S, Pica M, Casciola M, Cojocaru P, Merlo L, Hards G, Jones D J . J. Power Sources, 2013,233:216. https://linkinghub.elsevier.com/retrieve/pii/S0378775313000712

doi: 10.1016/j.jpowsour.2012.12.121
[31]
D'urso C, Oldani C, Baglio V, Merlo L, Arico A S . J. Power Sources, 2014,272:753.
[32]
Yin C, Li J, Zhou Y, Zhan H, Fang P, He C . ACS Appl. Mater. Interfaces, 2018,10:14026. https://www.ncbi.nlm.nih.gov/pubmed/29620850

doi: 10.1021/acsami.8b01513 pmid: 29620850
[33]
Qiu X, Dong T, Ueda M, Zhang X, Wang L . Journal of Membrane Science, 2017,524:663.
[34]
Breitwieser M, Klose C, Klingele M, Hartmann A, Erben J, Cho H, Kerres J, Zengerle R, Thiele S . J. Power Sources, 2017,337:137.
[35]
Li H Y, Liu Y L . Journal of Materials Chemistry A, 2014,2:3783.
[36]
Sood R, Cavaliere S, Jones D J, Roziere J . Nano Energy, 2016,26:729.
[37]
Shahgaldi S, Alaefour I, Li X . Applied Energy, 2018,217:295.
[38]
Miyake J, Taki R, Mochizuki T, Shimizu R, Akiyama R, Uchida M, Miyatake K . Science Advances, 2017, 3:eaao0476.
[39]
Rodgers M P, Bonville L J, Kunz H R, Slattery D K, Fenton J M . Chem. Rev., 2012,112:6075. https://www.ncbi.nlm.nih.gov/pubmed/23061417

doi: 10.1021/cr200424d pmid: 23061417
[40]
Curtin D E, Lousenberg R D, Henry T J, Tangeman P C, Tisack M E . J. Power Sources, 2004,131:41.
[41]
Coms F D . ECS Transactions, 2008,16(2):235. https://www.ncbi.nlm.nih.gov/pubmed/13286319

doi: 10.1210/jcem-16-2-235 pmid: 13286319
[42]
Baker A M, Williams S T D, Mukundan R, Spernjak D, Advani S G, Prasad A K, Borup R L . Journal of Materials Chemistry A, 2017,5:15073.
[43]
Motz A R, Kuo M C, Horan J L, Yadav R, Seifert S, Pandey T P, Galioto S, Yang Y, Dale N V, Hamrock S J, Herring A M . Energy & Environmental Science, 2018,11:1499.
[44]
Gubler L, Dockheer S M, Koppenol W H . J. Electrochem. Soc., 2011,158:B755.
[45]
Lim C, Alavijeh A S, Lauritzen M, Kolodziej J, Knights S, Kjeang E . Ecs Electrochemistry Letters, 2015,4:F29.
[46]
Stewart S M, Spernjak D, Borup R, Datye A, Garzon F . Ecs Electrochemistry Letters, 2014,3:F19.
[47]
Schlick S, Danilczuk M, Drews A R, Kukreja R S . J. Phys. Chem. C, 2016,120:6885.
[48]
Baker A M, Mukundan R, Spernjak D, Advani S G, Prasad A K, Borup R L . Polymer Electrolyte Fuel Cells 16. 2016,707.
[49]
Baker A M, Mukundan R, Spernjak D, Judge E J, Advani S G, Prasad A K, Borup R L . J. Electrochem. Soc., 2016,163:F1023.
[50]
Banham D, Ye S, Knights S, Stewart S M, Wilson M, Garzon F . J. Power Sources, 2015,281:238.
[51]
Cheng T T H, Wessel S, Knights S . J. Electrochem. Soc., 2013,160:F27.
[52]
Zaton M, Roziere J, Jones D J . Journal of Materials Chemistry A, 2017,5:5390. https://www.ncbi.nlm.nih.gov/pubmed/32264078

doi: 10.1039/c7tb00929a pmid: 32264078
[53]
Breitwieser M, Klose C, Hartmann A, Buechler A, Klingele M, Vierrath S, Zengerle R, Thiele S . Advanced Energy Materials, 2017,351:145.
[54]
Rhoden S L N H Linkous C A, Mohajeri N, Diaz D J, Brooker P, Slattery D K, Fenton J M . J. Electrochem. Soc., 2010,157:B1095.
[55]
Hasani-Sadrabadi M M, Dashtimoghadam E, Majedi F S, Vandersarl J J, Bertsch A, Renaud P, Jacob K I . Nano Energy, 2016,23:114.
[56]
Cherevko S, Kulyk N, Mayrhofer K J J. Nano Energy, 2016,29:275.
[57]
Meier J C, Galeano C, Katsounaros I, Witte J, Bongard H J, Topalov A A, Baldizzone C, Mezzavilla S, Schueth F, Mayrhofer K J J. Beilstein Journal of Nanotechnology, 2014,5:44.
[58]
Bi W, Fuller T F . J. Electrochem. Soc., 2008,155:B215.
[59]
Rodgers M P, Bonville L J, Mukundan R, Borup R, Ahluwalia R, Beattie P, Brooker R P, Mohajeri N, Kunz H R, Slattery D K, Fenton J M . ECS Transactions, 2013,58:129.
[60]
Borup R L, Davey J R, Garzon F H, Wood D L, Inbody M A . J. Power Sources, 2006,163:76.
[61]
Wang M J, Zhao T, Luo W, Mao Z X, Chen S G, Ding W, Deng Y H, Li W, Li J, Wei Z D . AlChE J., 2018,64:2881.
[62]
Yano H, Watanabe M, Iiyama A, Uchida H . Nano Energy, 2016,29:323.
[63]
Ferreira P J, La O G J, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger H A . J. Electrochem. Soc., 2005,152:A2256.
[64]
Darling R M, Meyers J P . J. Electrochem. Soc., 2003,150:A1523.
[65]
Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath J E, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K I, Iwashita N . Chem. Rev., 2007,107:3904. https://www.ncbi.nlm.nih.gov/pubmed/17850115

doi: 10.1021/cr050182l pmid: 17850115
[66]
Li L, Hu L, Li J, Wei Z . Nano Research, 2015,8:418. https://www.ncbi.nlm.nih.gov/pubmed/24107610

doi: 10.1186/1556-276X-8-418 pmid: 24107610
[67]
Cheng N, Banis M N, Liu J, Riese A, Li X, Li R, Ye S, Knights S, Sun X L . Adv. Mater., 2015,27:277. https://www.ncbi.nlm.nih.gov/pubmed/25405600

doi: 10.1002/adma.201404314 pmid: 25405600
[68]
Song Z, Wang B, Cheng N, Yang L, Banham D, Li R, Ye S, Sun X L . Journal of Materials Chemistry A, 2017,5:9760.
[69]
Nie Y, Chen S, Ding W, Xie X, Zhang Y, Wei Z . Chem. Commun., 2014,50:15431. https://www.ncbi.nlm.nih.gov/pubmed/25351928

doi: 10.1039/c4cc06781a pmid: 25351928
[70]
Lee H, Sung Y E, Choi I, Lim T, Kwon O J . J. Power Sources, 2017,362:228.
[71]
Takenaka S, Matsumori H, Matsune H, Kishida M . Applied Catalysis A-General, 2011,409:248.
[72]
Takenaka S, Goto M, Masuda Y, Emura S, Kishida M . Int. J. Hydrogen Energy, 2018,43:7473.
[73]
Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin H L, Snyder J D, Li D, Herron J A, Mavrikakis M, Chi M, More K L, Li Y, Markovic N M, Somorjai G A, Yang P, Stamenkovic V R . Science, 2014,343:1339. https://www.ncbi.nlm.nih.gov/pubmed/24578531

doi: 10.1126/science.1249061 pmid: 24578531
[74]
Cao M, Wu D, Cao R . Chemcatchem, 2014,6:26.
[75]
Jung W, Xie T, Kim T, Ganesan P, Popov B N . Electrochim. Acta, 2015,167:1.
[76]
Dorjgotov A, Jeon Y, Hwang J, Ulziidelger B, Kim H S, Han B, Shul Y G . Electrochim. Acta, 2017,228:389.
[77]
Sakthivel M, Radev I, Peinecke V, Drillet J F . J. Electrochem. Soc., 2015,162:F901.
[78]
Lim J, Shin H, Kim M, Lee H, Lee K S, Kwon Y, Song D, Oh S, Kim H, Cho E . Nano Lett., 2018,18:2450. https://www.ncbi.nlm.nih.gov/pubmed/29578723

doi: 10.1021/acs.nanolett.8b00028 pmid: 29578723
[79]
Choi J, Jang J H, Roh C W, Yang S, Kim J, Lim J, Yoo S J, Lee H . Applied Catalysis B-Environmental, 2018,225:530.
[80]
Xiong Y, Yang Y, Joress H, Padgett E, Gupta U, Yarlagadda V, Agyeman-Budu D N, Huang X, Moylan T E, Zeng R, Kongkanand A, Escobedo F A, Brock J D, Disalvo F J, Muller D A, Abruna H D . Proc. Natl. Acad. Sci. U.S.A., 2019,116:1974. https://www.ncbi.nlm.nih.gov/pubmed/30670659

doi: 10.1073/pnas.1815643116 pmid: 30670659
[81]
Yang C, Zhou M, Zhang M, Gao L . Electrochim. Acta, 2016,188:529.
[82]
Du L, Shao Y, Sun J, Yin G, Liu J, Wang Y . Nano Energy, 2016,29:314.
[83]
Yu K, Groom D J, Wang X, Yang Z, Gummalla M, Ball S C, Myers D J, Ferreira P J. Chem. Mater., 2014,26:5540.
[84]
Meier J C, Galeano C, Katsounaros I, Topalov A A, Kostka A, Schueth F, Mayrhofer K J J. ACS Catalysis, 2012,2:832. https://www.ncbi.nlm.nih.gov/pubmed/30688451

doi: 10.1021/acs.jcim.8b00763 pmid: 30688451
[85]
谢小红(Xie X H), 魏子栋(Wei Z D) . 电化学 (Journal of Electrochemistry), 2015,21:221.
[86]
Lamibrac A, Maranzana G, Lottin O, Dillet J, Mainka J, Didierjean S, Thomas A, Moyne C . J. Power Sources, 2011,196:9451.
[87]
Castanheira L, Dubau L, Maillard F . Electrocatalysis, 2014,5:125. http://link.springer.com/10.1007/s12678-013-0173-y

doi: 10.1007/s12678-013-0173-y
[88]
Durst J, Lamibrac A, Charlot F, Dillet J, Castanheira L F, Maranzana G, Dubau L, Maillard F, Chatenet M, Lottin O . Applied Catalysis B-Environmental, 2013,138:416. a72f2af9-aef6-44a0-bf19-68bf3f1470b9http://dx.doi.org/10.1016/j.apcatb.2013.03.021

doi: 10.1016/j.apcatb.2013.03.021
[89]
Macauley N, Papadias D D, Fairweather J, Spernjak D, Langlois D, Ahluwalia R, More K L, Mukundan R, Borup R L . J. Electrochem. Soc., 2018,165:F3148.
[90]
Jia F, Guo L, Liu H . Energy Convers. Manage., 2017,139:175.
[91]
Yang Z, Berber M R, Nakashima N . Electrochim. Acta, 2015,170:1.
[92]
Park J C, Park S H, Chung M W, Choi C H, Kho B K, Woo S I . J. Power Sources, 2015,286:166.
[93]
Yang Z, Moriguchi I, Nakashima N . ACS Appl. Mater. Interfaces, 2015,7:9800. https://www.ncbi.nlm.nih.gov/pubmed/25902007

doi: 10.1021/acsami.5b01724 pmid: 25902007
[94]
Li Y, Li Y, Zhu E, McLouth T, Chiu C Y, Huang X, Huang Y . J. Am. Chem. Soc., 2012,134:12326. https://www.ncbi.nlm.nih.gov/pubmed/22783832

doi: 10.1021/ja3031449 pmid: 22783832
[95]
Jung W S, Popov B N . Carbon, 2017,122:746.
[96]
Mirzaei F, Parnian M J, Rowshanzamir S . Energy, 2017,138:696.
[97]
Tamaki T, Wang H, Oka N, Honma I, Yoon S H, Yamaguchi T . Int. J. Hydrogen Energy, 2018,43:6406.
[98]
Jung W S . Journal Of Energy Chemistry, 2018,27:326.
[99]
Sneed B T, Cullen D A, Reeves K S, Dyck O E, Langlois D A, Mukundan R, Borup R L, More K L . ACS Appl. Mater. Interfaces, 2017,9:29839. https://www.ncbi.nlm.nih.gov/pubmed/28809471

doi: 10.1021/acsami.7b09716 pmid: 28809471
[100]
Shao Y, Cheng Y, Duan W, Wang W, Lin Y, Wang Y, Liu J . ACS Catalysis, 2015,5:7288.
[101]
Wang Y J, Fang B, Li H, Bi X T, Wang H . Prog. Mater Sci., 2016,82:445.
[102]
Puthusseri D, Ramaprabhu S . Int. J. Hydrogen Energy, 2016,41:13163.
[103]
Takabatake Y, Noda Z, Lyth S M, Hayashi A, Sasaki K . Int. J. Hydrogen Energy, 2014,39:5074.
[104]
Cognard G, Ozouf G, Beauger C, Berthome G, Riassetto D, Dubau L, Chattot R, Chatenet M, Maillard F . Applied Catalysis B-Environmental, 2017,201:381.
[105]
Cavaliere S, Jimenez-Morales I, Ercolano G, Savych I, Jones D, Roziere J . Chemelectrochem, 2015,2:1966.
[106]
Senoo Y, Taniguchi K, Kakinuma K, Uchida M, Uchida H, Deki S, Watanabe M . Electrochem. Commun., 2015,51:37.
[107]
Savych I, Subianto S, Nabil Y, Cavaliere S, Jones D, Roziere J . PCCP, 2015,17:16970. https://www.ncbi.nlm.nih.gov/pubmed/26061638

doi: 10.1039/c5cp01542a pmid: 26061638
[108]
Mohanta P K, Gloekler C, Arenas A O, Joerissen L . Int. J. Hydrogen Energy, 2017,42:27950.
[109]
Ozouf G, Cognard G, Maillard F, Chatenet M, Guetaz L, Heitzmann M, Jacques P A, Beauger C . J. Electrochem. Soc., 2018,165:F3036.
[110]
Kim M, Kwon C, Eom K, Kim J, Cho E . Scientific Reports, 2017,7:44411. https://www.ncbi.nlm.nih.gov/pubmed/28290503

doi: 10.1038/srep44411 pmid: 28290503
[111]
Hsieh B J, Tsai M C, Pan C J, Su W N, Rick J, Lee J F, Yang Y W, Hwang B J . Npg Asia Materials, 2017,9.
[112]
Parrondo J, Han T, Niangar E, Wang C, Dale N, Adjemian K, Ramani V . Proc. Natl. Acad. Sci. U.S. A., 2014,111:45.
[113]
Li X, Liu Y, Ma S, Ye J, Zhang X, Wang G, Qiu Y . J. Alloys Compd., 2015,649:939.
[114]
Esfahani R a M, Vankova S K, Videla A H a M, Specchia S . Applied Catalysis B -Environmental, 2017,201:419.
[115]
Dhanasekaran P, Williams S R, Kalpana D, Bhat S D . RSC Advances, 2018,8:472.
[116]
Wood D L Iii, Borup R L . J. Electrochem. Soc., 2010,157:B1251.
[117]
Schmittinger W, Vahidi A . J. Power Sources, 2008,180:1.
[118]
Hiramitsu Y, Sato H, Hosomi H, Aoki Y, Harada T, Sakiyama Y, Nakagawa Y, Kobayashi K, Hori M . J. Power Sources, 2010,195:435.
[119]
Bosomoiu M, Tsotridis G, Bednarek T . J. Power Sources, 2015,285:568.
[120]
Antonacci P, Chevalier S, Lee J, Yip R, Ge N, Bazylak A . Int. J. Hydrogen Energy, 2015,40:16494.
[121]
Owejan J P, Trabold T A, Mench M M . Int. J. Heat Mass Transfer, 2014,71:585.
[122]
Nitta I, Hottinen T, Himanen O, Mikkola M . J. Power Sources, 2007,171:26.
[123]
Park J, Oh H, Ha T, Lee Y I, Min K . Applied Energy, 2015,155:866.
[124]
Sadeghi E, Djilali N, Bahrami M . J. Power Sources, 2010,195:8104.
[125]
Lai Y H, Rapaport P A, Ji C, Kumar V . J. Power Sources, 2008,184:120.
[126]
Bazylak A . Int. J. Hydrogen Energy, 2009,34:3845. https://linkinghub.elsevier.com/retrieve/pii/S0360319909002973

doi: 10.1016/j.ijhydene.2009.02.084
[127]
Radhakrishnan V, Haridoss P . Int. J.Hydrogen Energy, 2010,35:11107.
[128]
Lee C, Merida W . J. Power Sources, 2007,164:141.
[129]
Lee S Y, Kim H J, Cho E, Lee K S, Lim T H, Hwang I C, Jang J H . Int. J. Hydrogen Energy, 2010,35:12888.
[130]
Chun J H, Jo D H, Kim S G, Park S H, Lee C H, Kim S H . Renewable Energy, 2012,48:35.
[131]
Latorrata S, Stampino P G, Cristiani C, Dotelli G . Int. J. Hydrogen Energy, 2015,40:14596.
[132]
Fairweather J, Li B, Mukundan R, Fenton J, Borup R . ECS Transactions, 2010,33(1):433.
[133]
Cho J, Ha T, Park J, Kim H S, Min K, Lee E, Jyoung J Y . Int. J. Hydrogen Energy, 2011,36:6090.
[134]
Ha T, Cho J, Park J, Min K, Kim H S, Lee E, Jyoung J Y . Int. J. Hydrogen Energy, 2011,36:12427.
[135]
Yu S, Li X, Li J, Liu S, Lu W, Shao Z, Yi B . Energy Convers. Manage., 2013,76:301.
[136]
George M G, Liu H, Muirhead D, Banerjee R, Ge N, Shrestha P, Lee J, Chevalier S, Hinebaugh J, Messerschmidt M, Zeis R, Scholta J, Bazylak A . J. Electrochem. Soc., 2017,164:F714.
[137]
Debe M K . Nature, 2012,486:43. https://www.ncbi.nlm.nih.gov/pubmed/22678278

doi: 10.1038/nature11115 pmid: 22678278
[138]
Aoki T, Matsunaga A, Ogami Y, Maekawa A, Mitsushima S, Ota K I, Nishikawa H . J. Power Sources, 2010,195:2182. https://linkinghub.elsevier.com/retrieve/pii/S0378775309019259

doi: 10.1016/j.jpowsour.2009.10.074
[139]
Poornesh K K, Cho C D, Lee G B, Tak Y S . J. Power Sources, 2010,195:2718.
[140]
Lapicque F, Belhadj M, Bonnet C, Pauchet J, Thomas Y . J. Power Sources, 2016,336:40.
[141]
Choi H, Kim O H, Kim M, Choe H, Cho Y H, Sung Y E . ACS Appl. Interfaces, 2014,6:7665.
[142]
Hao J, Yu S, Jiang Y, Li X, Shao Z, Yi B . J. Electroanal. Chem., 2015,756:201.
[143]
Lobato J, Zamora H, Canizares P, Plaza J, Andres Rodrigo M . J. Power Sources, 2015,288:288.
[144]
Latorrata S, Stampino P G, Cristiani C, Dotelli G . Energies, 2017,10:2063.
[145]
Bottino A, Capannelli G, Comite A, Costa C, Ong A L . Int. J. Hydrogen Energy, 2015,40:14690.
[146]
Morgan J M, Datta R . J. Power Sources, 2014,251:269. https://linkinghub.elsevier.com/retrieve/pii/S0378775313015966

doi: 10.1016/j.jpowsour.2013.09.090
[147]
Kitahara T, Nakajima H, Inamoto M, Shinto K . J. Power Sources, 2014,248:1256. https://linkinghub.elsevier.com/retrieve/pii/S0378775313017321

doi: 10.1016/j.jpowsour.2013.10.066
[1] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[2] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[3] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[4] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[5] Dongmei Yao, Weiqi Zhang, Qian Xu, Li Xu, Huaming Li, Huaneng Su. Membrane Electrode Assembly for High Temperature Polymer Electrolyte Membrane Fuel Cell Based on Phosphoric Acid-Doped Polybenzimidazole [J]. Progress in Chemistry, 2019, 31(2/3): 455-463.
[6] Bin Chi, Sanying Hou, Guangzhi Liu, Shijun Liao*. High Performance and High Power Density Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2018, 30(2/3): 243-251.
[7] Jianwen Shao, Fuchao Yang, Zhiguang Guo. The Application of Biomimetic Superoleophobic Materials under Harsh Operating Conditions [J]. Progress in Chemistry, 2018, 30(12): 2003-2011.
[8] Zhao Chenhuan, Zhang Wenqiang, Yu Bo*, Wang Jianchen, Chen Jing. Solid Oxide Electrolyzer Cells [J]. Progress in Chemistry, 2016, 28(8): 1265-1288.
[9] Qu Mengnan*, Hou Lingang, He Jinmei*, Ma Xuerui, Yuan Mingjuan, Liu Xiangrong. Research and Development of Functional Superhydrophobic Materials [J]. Progress in Chemistry, 2016, 28(12): 1774-1787.
[10] Wang Cheng, Wang Shubo, Zhang Jianbo, Li Jianqiu, Wang Jianlong, Yang Minggao. The Durability Research on the Proton Exchange Membrane Fuel Cell for Automobile Application [J]. Progress in Chemistry, 2015, 27(4): 424-435.
[11] Liu Xu, Wu Juntao, Huo Jiangbei, Meng Xiaoyu, Cui Lishan, Zhou Qiong. Effects of Conducting Channels Microstructure in Proton Exchange Membrane on the Performance of Fuel Cells [J]. Progress in Chemistry, 2015, 27(4): 395-403.
[12] Liu Feng, Wang Cheng, Zhang Jianbo, Lan Aidong, Li Jianqiu, Ouyang Minggao. Ordered Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2014, 26(11): 1763-1771.
[13] Chen Xu, He Daping, Mu Shichun. Nitrogen-Doped Graphene [J]. Progress in Chemistry, 2013, 25(08): 1292-1301.
[14] Wang Jiashu, Pan Guoshun, Guo Dan. Catalyst Layer Structure of Membrane Electrode Assemblies in PEMFC [J]. Progress in Chemistry, 2012, (10): 1906-1914.
[15] Zhuo Qiongfang, Yang Bo, Deng Shubo, Huang Jun, Wang Bin, Yu Gang. Electrochemical Anodic Materials Used for Degradation of Organic Pollutants [J]. Progress in Chemistry, 2012, 24(04): 628-636.