中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (04): 626-637 DOI: 10.7536/PC130907 Previous Articles   Next Articles

• Review •

Preparing Composite of Hydrogels with Metal Nanoparticles and Its Application as Catalyst

Gao Youzhi, Wang Meng, Yan Fanyong*, Chen Li*   

  1. Tianjin Key Laboratory of Fiber Modification and Functional Fiber, Tianjin Polytechnic University, Tianjin 300387, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Nature Science Foundation of China (No. 21174103, 21374078)

PDF ( 936 ) Cited
Export

EndNote

Ris

BibTeX

Metal nanoparticles can be used as catalyst in various chemical reactions, especially in the decomposition of the toxic such as dyes, pesticides and so on. It is significant to prevent the aggregation of metal nanoparticles caused by the higher surface energy. Hydrogels with 3-dimention network structure is a soft solid-like material. The utilization of environmentally benign hydrogel networks provides two advantages: one is a template in which metal nanoparticles prepared are prevented from aggregation, and the other one is the properties of recovery and reuse of metal nanoparticles are sharply enhanced by incorporating them into hydrogels. In this review, we mainly focus on the preparation methods and performances of hydrogel/metal nanoparticles composite catalysts from two aspects: natural hydrogels and synthetic hydrogels. Based on the work of our own laboratory, the effects of the performances of hydrogel/metal nanoparticles composite catalysts are summarized as well as the existing problems and further research directions are discussed.

Contents
1 Introduction
2 Application of natural hydrogels in catalytic reactions
2.1 Agarose hydrogel based catalysts
2.2 Chitosan hydrogel based catalysts
2.3 Alginate hydrogel based catalysts
3 Application of synthetic hydrogels in catalytic reactions
3.1 The copolymer of ethylene glycol hydrogel based catalysts
3.2 Polymers(copolymers) of acrylic acid (acrylamide) hydrogel based catalysts
4 Conclusion and outlook

CLC Number: 

[1] Varvarenko S, Voronov A, Samaryk V, Tarnavchyk I, Nosova N, Kohut A, Voronov S. React. Funct. Polym., 2010, 70: 647.
[2] Nayak S, Lyon L A. Angew. Chem. Int. Ed., 2005, 44: 7686.
[3] Sun X M, Shi J, Zhang Z Z, Cao S K. J. Appl. Polym. Sci., 2011, 122: 729.
[4] Dawson R, Cooper A I, Adams D J. Prog. Polym. Sci., 2012, 37: 530.
[5] Noro S, Kitagawa S, Akutagawa T, Nakamura T. Prog. Polym. Sci., 2009, 34: 240.
[6] Butun S, Sahiner N. Polymer, 2011, 52: 4834.
[7] Yoon J A, Kowalewski T, Matyjaszewski K. Macromolecules, 2011, 44: 2261.
[8] Silan C, Akcali A, Otkun M T, Ozbey N, Butun S, Ozay O, Sahiner N. Colloid Surface B, 2012, 89: 248.
[9] Sahiner N, Ozay O, Aktas N. Chemosphere, 2011, 85: 832.
[10] Pint C L, Kim S M, Stach E A, Hauge R H. ACS Nano, 2009, 3: 1897.
[11] Metin O, Dinc M, Eren Z S, Ozkar S. Int. J. Hydrogen Energy, 2011, 36: 11528.
[12] Goyal A, Kumar A, Patra P K, Mahendra S, Tabatabaei S, Alvarez P J J, Jonh G, Ajayan P M. Macromol. Rapid Comm., 2009, 30: 1116.
[13] Li Y X, Pan Y F, Zhu L L, Wang Z Q, Su D M, Xue G. Macromol. Rapid Comm., 2011, 32: 1741.
[14] Schnepp Z. Angew. Chem. Int. Ed. Engl., 2013, 52: 1096.
[15] Thomas V, Namdeo M, Murali Mahan Y, Bajpai S K, Bajpai M. J. Macromol. Sci. A, 2007, 45: 107.
[16] Wang J Y, Chen L, Zhao Y P, Guo G, Zhang R. J. Mater. Sci. Mater. Med., 2009, 20: 583.
[17] Wang J Y, Xiao F, Zhao Y P, Chen L, Zhang R, Guo G. Carbohyd. Polym., 2010, 82: 578.
[18] Zhang Q S, Zhao Y P, Chen L. Int. J. Mod. Phys. B, 2009, 23: 1365.
[19] Xiao F, Chen L, Xing R F, Zhao Y P. Colloid. Surface. B, 2009, 71: 13.
[20] Zhang Q S, Li X W, Zhao Y P, Chen L. Appl. Clay. Sci., 2009, 46: 346.
[21] Liu J B, Yang X H, Wang K M, Wang Q, Ji H N, Wu C L, Li J, He X X, Tang J L, Huang J. J. Mater. Chem., 2012, 22: 495.
[22] Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev., 2002, 102: 1359.
[23] Firouzabadi H, Iranpoor N, Kazemi F. J. Mol. Catal. A Chem., 2011, 348: 94.
[24] Firouzabadi H, Iranpoor N, Gholinejad M, Kazemi F. RSC Adv., 2011, 1: 1013.
[25] Reddy R K, Rajgopal K, Uma M C, Lakshmi K M. New J. Chem., 2006, 30: 1549.
[26] Majeti N V, Kumar R. React. Funct. Polym., 2000, 46: 1.
[27] Honarkar H, Barikani M. Monatsh. Chem., 2009, 140: 1403.
[28] Macquarrie D J. Ind. Eng. Chem. Res., 2005, 44: 8499.
[29] Guibal E. Prog. Polym. Sci., 2005, 30: 71.
[30] Kühbeck D, Saidulu G, Rajender R K, Díaz D D. Green Chem., 2012, 14: 378.
[31] Zheng Y, Wang A Q. J. Mater. Chem., 2012, 22: 16552.
[32] Chtchigrovsky M, Lin Y, Ouchaou K, Chaumontet M, Robitzer M, Quignard F, Taran F. Chem. Mater., 2012, 24: 1505.
[33] Cheng Y, Luo X, Payne G F, Rubloff G W. J. Mater. Chem., 2012, 22: 7659.
[34] Topuz F, Henke A, Richtering W, Groll J. Soft Matter, 2012, 8: 4877.
[35] Ai L H, Yue H T, Jiang J. J. Mater. Chem., 2012, 22: 23447.
[36] Ramtenki V, Anumon V D, Badiger M V, Prasad B L V. Colloid Surface A, 2012, 414: 296.
[37] Zhang L D, Zheng S D, Kang D E, Shin J Y, Suh H, Kim I. RSC Adv., 2013, 3: 4692.
[38] Sahiner N, Kaynak A, Butun S. J. Non-Cryst. Solids., 2012, 358: 758.
[39] Nurettin S, Hava O, Ozgur O, Nahit A. Appl. Catal. B Environ., 2010, 101: 137.
[40] Turhan T, Avc?basi Y G, Sahiner N. J. Ind. Eng. Chem., 2013, 19: 1218.
[41] Sahiner N, Ozay O, Aktas N, Inger E, Hee J. Int. J. Hydrogen Energy, 2011, 36: 15250.
[42] Sahiner N, Ozay O, Inger E, Aktas N. J. Power Sources, 2011, 196: 10105.
[43] Ozay O, Erk I, Aktas N, Sahiner N. Int. J. Hydrogen Energy, 2011, 36: 8209.
[44] Turhan T, Güvenilir Y A, Sahiner N. Energy, 2013, 55: 511.
[45] Samba S K, Mallikarjuna R N, Nagendra P M, Mohana R K, Murali M Y, Yadavb J S, Sabithab G, Shailaja D. J. Mol. Catal. A Chem., 2008, 295: 10.
[46] Wang Y, Zhang J Z, Zhang W Q, Zhang M C. J. Org. Chem., 2009, 74: 1923.
[47] Wang Y, Yan R, Zhang J Z, Zhang W Q. J. Mol. Catal. A Chem., 2010, 317: 81.
[48] Zhang Y Y, Yang J H, Zhang X, Bian F L, Yu W. React. Funct. Polym., 2012, 72: 233.
[49] Yang N, Chen L, Yang M K, Bi S X, He X L, Zhu Z Y, Yu M L. Carbohyd. Polym., 2012, 88: 509.
[50] Chen K, Zhang Q S, Chen B J, Chen L. Appl. Clay Sci., 2012, 58: 114.
[51] Feng X, Guo Y F, Chen X, Zhao Y P, Li J X, He X L, Chen L. Desalination, 2012, 290: 89.
[52] Yan F Y, Wang M, Cao D L, Guo S S, Chen L. J. Polym. Sci. A, 2013, 51: 2401.
[53] Wang M, Yan F Y, Cao D L, Song X Y. Adv. Mater. Res., 2013, 641/642: 325.

[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[3] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[4] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[5] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[6] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[7] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[8] Jun Dong, Jiaxi Xu. An Overview on the Synthesis and Reactions of Sulfines [J]. Progress in Chemistry, 2022, 34(5): 1088-1108.
[9] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[10] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[11] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[12] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[13] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[14] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[15] Liao Yiming, Wu Baoqi, Tang Rongzhi, Lin Feng, Tan Yu. Strain-Promoted Azide-Alkyne Cycloaddition [J]. Progress in Chemistry, 2022, 34(10): 2134-2145.