中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (6): 649-658 DOI: 10.7536/PC170348 Previous Articles   Next Articles

• Review •

The Research of the Anisotropic Hydrogel's Properties and Preparation

Xiaoyan He*, Liqin Liu, Meng Wang, Caiyun Zhang, Yunlei Zhang, Minhui Wang   

  1. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Received: Revised: Online: Published:
  • Contact: 10.7536/PC170348 E-mail:hexy09@163.com
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21164010)and the Foundation for Distinguished Young Scholars of Gansu Province (No. 145RJDA326).
PDF ( 1670 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogel is cross-linked polymeric network containing more than 90% water. They have been extensively applied in organ reconstruction, soft tissue prosthesis,cell culturing substrate, and controlled drug release. In addition to their good biocompatibility, they share remarkable resemblance to the structures of many living organisms’ tissues, such as muscles, cartilages, corneas and the skin; one key property of hydrogel is that it can be easily integrated with other functional materials to play a synergistic role, which greatly extends the application in many areas. For instance, the hydrogel containing magnetic nanoparticles can take other special effects besides the role of tissue prosthesis in postoperative organ reconstruction after excision of tumor. Thus, they are more suitable for materials of living tissues than any other artificial ones. However, compared with the biological soft tissue, conventional synthetic hydrogels show isotropic structure at the molecular and macroscopic level, lacking ordered structures, which leads to limitations in practical applications. The synthesis of anisotropic hydrogels, to some degree, solves this problem. In this paper, we mainly focus on the preparation methods of anisotropic hydrogels and the classifications of anisotropic properties. The factors influencing the anisotropy are summarized.The existing problems and further research directions are also discussed.

Contents
1 Introduction
2 The property of the anisotropic hydrogel
2.1 Magnetic property of anisotropic hydrogel
2.2 Mechanical property of anisotropic hydrogel
2.3 Optical property of anisotropic hydrogel
2.4 Swelling property of anisotropic hydrogel
3 The preparation of anisotropic hydrogel
3.1 Anisotropic hydrogel synthesized by template method
3.2 Anisotropic hydrogel synthesized by magnetic field
3.3 Anisotropic hydrogel synthesized by self-assembly
4 Conclusion

CLC Number: 

[1] Pakulska M M, Vulic K, Tam R Y, Shoichet M S. Adv. Mater., 2015, 27:5002.
[2] Ni M, Zhang N, Xia W, Wu X, Yao C, Liu X, Hu X Y, Lin C, Wang L. J. Am. Chem. Soc., 2016, 138:6643.
[3] 邵亮(Shao L), 柳明珠(Liu M Z), 邱建辉(Qiu J H), 高春梅(Gao C M), 张国宏(Zhang G H), 泰利军(Tai L J). 化学进展(Progress in Chemistry), 2011, 23(5):923.
[4] Zhao Y, Shi C, Yang X, Shen B, Sun Y, Chen Y, Xu X, Sun H, Yu K, Yang B, Lin Q. ACS Nano, 2016, 10:5856.
[5] Yin M J, Yao M, Gao S, Zhang A P, Tam H Y, Wai P K A. Adv. Mater., 2016, 28:1394.
[6] Luo R, Cao Y, Shi P, Chen C H. Small, 2014, 10:4886.
[7] Wang P, Sun J, Lou Z, Fan F, Hu K, Sun Y, Gu N. Adv. Mater., 2016, 28:10801.
[8] Zhao Y, Liu W, Yang X, Xu H. J. Appl. Polym. Sci., 2008, 110:2234.
[9] Wang H, Guan C, Wang X, Fan H J. Small, 2015, 11:1470.
[10] Marrella A, Lagazzo A, Barberis F, Catelani T, Quarto R, Scaglione S. Carbon, 2017, 115:608.
[11] Li X, Wang Y, Chen J, Wang Y, Ma J, Wu G. ACS Appl. Mater. Interfaces, 2014, 6:3640.
[12] Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G. ACS Nano, 2013, 7:3540.
[13] Zhang C, Jia X, Wang Y, Zhang M, Yang S, Guo J. J. Sep. Sci., 2014, 37:419.
[14] Wang Z, Shen X, Akbari G M, Lin X, Wu Y, Liu X, Sun X, Kim J K. ACS Appl. Mater. Interfaces, 2015, 7:5538.
[15] 郭彦(Guo Y), 高筱玲(Gao X L), 赵健伟(Zhao J W), 田燕妮(Tian Y N). 化学进展(Progress in Chemistry), 2008, 20(6):951.
[16] Ha J W, Sun W, Stender A S, Fang N. J. Phys. Chem. C, 2012, 116:2766.
[17] Wu S, Duan B, Liu P, Zhang C, Qin X, Butcher J T. ACS Appl. Mater. Interfaces, 2016, 8:16950.
[18] Sharma S, Panitch A, Neu C P. Acta Biomater., 2013, 9:4618.
[19] Takahashi H, Shimizu T, Nakayama M, Yamato M, Okano T. Biomaterials, 2013, 34:7372.
[20] Schneider M, Andrä H. Math. Methods Appl. Sci., 2014, 37:1624.
[21] Geeves M A. Nature, 2002, 415:129.
[22] Wu Z L, Sawada D, Kurokawa T, Kakugo A, Yang W, Furukawa H, Gong J P. Macromolecules, 2011, 44:3542.
[23] Chen M, Zhu J, Qi G, He C, Wang H. Mater. Lett., 2012, 89:104.
[24] Pei X, Zan T, Li H, Chen Y, Shi L, Zhang Z. ACS Macro Lett., 2015, 4:1215.
[25] Liu M, Ishida Y, Ebina Y, Sasaki T, Hikima T, Takata M, Aida T. Nature, 2015, 517:68.
[26] Shikinaka K, Koizumi Y, Kaneda K, Osadab Y, Masunaga H, Shigehara K. Polymer, 2013, 54:2489.
[27] Huang C L, Chuang C H, Lo Y L. Carbohydr. Polym., 2013, 96:487.
[28] Millon L E, Guhados G, Wan W. J. Biomed. Mater. Res. Part B, 2008, 86:444.
[29] Hu K, Sun J, Guo Z, Wang P, Chen Q, Ma M, Gu N. Adv. Mater., 2015, 27:2507.
[30] Sakai Y, Oishi A, Takahashi F. Biotechnol. Bioeng., 1999, 62:363.
[31] Chen C H, Abate A R, Lee D, Terentjev E M, Weitz D A. Adv. Mater., 2009, 21:3201.
[32] Thompson J W, Stretz H A, Arce P E, Gao H, Ploehn H J, He J. J. Appl. Polym. Sci., 2012, 126:1600.
[33] Haque M, Kamita G, Kurokawa T, Tsujii K, Gong J P. Adv. Mater., 2010, 22:5110.
[34] Millon L E, Mohammadi H, Wan W K. J. Biomed. Mater. Res. Part B, 2006, 79:305.
[35] Buyanov A L, Gofman I V, Revel's kaya L G, Khripunov A K, Tkachenko A A. J. Mech. Behav. Biomed. Mater., 2010, 3:102.
[36] Choi S, Kim J. J. Mater. Chem. B, 2015, 3:1479.
[37] Lin P, Zhang T, Wang X, Yu B, Zhou F. Small, 2016, 12:4386.
[38] Miyamoto N, Shintate M, Ikeda S, Hoshida Y, Yamauchi Y, Motokawa R, Annaka M. Chem. Commun., 2013, 49:1082.
[39] Maggini L, Liu M, Ishida Y, Bonifazi D. Adv. Mater., 2013, 25:2462.
[40] Swan M C, Bucknall D G, Goodacre T E E, Czernuszka J T. Acta Biomater., 2011, 7:1126.
[41] Tsukuda S, Omichi M, Sugimoto M, Idesaki A, Padalkar V S, Seki S. J. Polym. Sci. Part B:Polym. Phys., 2016, 54:1950.
[42] Haque M A, Kurokawa T, Kamita G, Gong J P. Macromolecules, 2011, 44:8916.
[43] Luo R, Wu J, Dinh N D, Chen C H. Adv. Funct. Mater., 2015, 25:7272.
[44] Zawko S A, Suri S, Truong Q, Schmidt C E. Acta Biomater., 2009, 5:14.
[45] Hou K, Wang H, Lin Y, Chen S,Yang S, Cheng Y, Hsiao B S, Zhu M. Macromol. Rapid Commun., 2016, 37:1795.
[46] Pena-Francesch A, Montero L, Borrós S. Langmuir, 2014, 30:7162.
[47] Hashmi S, GhavamiNejad A, Obiweluozor F O, Vatankhah-Varnoosfaderani M, Stadler F J. Macromolecules, 2012, 45:9804.
[48] Chen P, Yang J J, Li S S, Wang Z, Xiao T Y, Qian Y H, Yu S H. Nano Energy, 2013, 2:249.
[49] Patil S, Chaudhury P, Clarizia L, McDonald M, Reynaud E, Gaines P, Schmidt D F. Acta Biomater., 2012, 8:2919.
[50] Zinchenko A, Miwa Y, Lopatina L I, Sergeyev V G, Murata S. ACS Appl. Mater. Interfaces, 2014, 6:3226.
[51] Salvekar A V, Huang W M, Xiao R, Wong Y S, Venkatraman S S, Tay K H, Shen Z X. Acc. Chem. Res., 2017, 50:141.
[52] Shigekura Y, Chen Y M, Furukawa H, Kaneko T, Kaneko D, Osada Y, Gong J P. Adv. Mater., 2005, 17:2695.
[53] Jung S, Abel J H, Starger J L,Yi H. Biomacromolecules, 2016, 17:2427.
[54] Zhu J, Wang J, Liu Q, Liu Y, Wang L, He C, Wang H. J. Mater. Chem. B, 2013, 1:978.
[55] Chau M, De France K J, Kopera B, Machado V R, Rosenfeldt S, Reyes L, Chan K J W, Förster S,Cranston E D, Hoare T, Kumacheva E. Chem. Mater., 2016, 28:3406.
[56] Barrow M, Zhang H. Soft Matter, 2013, 9:2723.
[57] Mori A, Kaito T, Furukawa H. Mater. Lett., 2008, 62:3459.
[58] Yamamoto I, Ozawa S, Makino T, Yamaguchi M, Takamasu T. Sci. Technol. Adv. Mater., 2008, 9:024214.
[59] Otsuka I, Abe H, Ozeki S. Sci. Technol. Adv. Mater., 2006, 7:327.
[60] Kimura T, Umehara Y, Kimura F. Carbon, 2010, 48:4015.
[61] Zhao F, Gao Y, Shi J, Browdy H M, Xu B. Langmuir, 2010, 27:1510.
[62] Pasc A, Gizzi P, Dupuy N, Parant S, Ghanbaja J, Gérardin C. Tetrahedron Lett., 2009, 50:6183.
[63] Das R N, Kumar Y P, Pagoti S, Patil A J, Dash J. Chem. Eur. J., 2012, 18:6008.
[64] Pappas C G, Frederix P W J M, Mutasa T, Fleming S, Abul-Haija Y M, Kelly S M, Gachagan A, Kalafatovic D, Trevino J, Ulijn R V, Bai S. Chem. Commun., 2015, 51:8465.
[1] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[2] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[3] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[4] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[5] Li Liangjun, Jianhui Deng, Jianwei Guo, Hangbo Yue. Synthesis and Properties of Microporous Organic Polymers Based on Adamantane [J]. Progress in Chemistry, 2020, 32(2/3): 190-203.
[6] Weiyang Lv, Ji’an Sun, Yuyuan Yao, Miao Du, Qiang Zheng. Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063.
[7] Aobo Geng, Qiang Zhong, Changtong Mei, Linjie Wang, Lijie Xu, Lu Gan. Applications of Wet-Functionalized Graphene in Rubber Composites [J]. Progress in Chemistry, 2019, 31(5): 738-751.
[8] Na Li, Ze Chang, Qiang Chen, Jiacheng Yin, Xian-He Bu. Construction and Modulation of Dynamic Coordination Space [J]. Progress in Chemistry, 2019, 31(1): 10-20.
[9] Xiaowei Cao, Shuai Chen, Min Bao, Hongcan Shi, Wei Li. Synthesis and Surface Modifications of Au Nanostars and Their Applications in Biomedical Fields [J]. Progress in Chemistry, 2018, 30(9): 1380-1391.
[10] Guoqiang Wang, Min Jiang*, Qiang Zhang, Rui Wang, Xiaoling Qu, Guangyuan Zhou*. Polyesters Containing Furan Rings Based on Renewable Resources [J]. Progress in Chemistry, 2018, 30(6): 719-736.
[11] Xinmin He, Ting Zhang, Fei Chen, Jun Jiang. Applications of Graphene in Composite Thermoelectric Materials [J]. Progress in Chemistry, 2018, 30(4): 439-447.
[12] Lu Jia, Jianzhong Ma, Dangge Gao, Bin Lv. Layered Double Hydroxides/Polymer Nanocomposites [J]. Progress in Chemistry, 2018, 30(2/3): 295-303.
[13] Dandan Rao, Bo Sun, Junlian Qiao, Xiaohong Guan. The Properties, Generation and Environmental Significance of Mn (Ⅲ) [J]. Progress in Chemistry, 2017, 29(9): 1142-1153.
[14] Honglei Wang, Wenzhen Lv, Xingxing Tang, Lingfeng Chen, Runfeng Chen, Wei Huang. Two-Dimensional Perovskites and Their Applications on Optoelectronic Devices [J]. Progress in Chemistry, 2017, 29(8): 859-869.
[15] Kang Liu, Guanbin Gao*, Taolei Sun*. β-HgS Quantum Dots:Preparation, Properties and Applications [J]. Progress in Chemistry, 2017, 29(7): 776-784.