中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (07): 1223-1232 DOI: 10.7536/PC140108 Previous Articles   Next Articles

• Review •

Synthesis of Hydrogels via Copper-Free Click Reactions

Fan Guanming, Han Qian, Xiong Xingquan*   

  1. College of Materials Science & Engineering, Huaqiao University, Key Laboratory for Functional Materials of Fujian Higher Education, Xiamen 361021, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21004024), the Natural Science Foundation of Fujian Province (No.2011J01046), the Program for New Century Excellent Talents in Fujian Province(No.2012FJ-NCET-ZR03), the University Distinguished Young Research Talent Training Program of Fujian Province(No.11FJPY02) and the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (No.ZQN-YX103)

PDF ( 2411 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogels are a class of hydrophilic, crosslinked polymeric materials. They are valuable for drug delivery, biosensing and tissue engineering. Generally, hydrogels with nearly ideal network structures can be obtained via the click reactions which have advantages of fast reaction rate, modularity and less by-products. As the representative of click chemistry, Cu(Ⅰ)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has been applied widely for the preparation of hydrogel materials. The copper metal contamination in the obtained hydrogels is a major concern because of the use of copper salts catalytic system. The drawback counteracts the applications of CuAAC reaction in the fields of synthesis of hydrogels. Copper-free click reactions, such as thiol-ene/yne reaction, furan/anthracene-maleimide (MI) Diels-Alder (D-A) reaction and strain-promoted alkyne-azide cycloaddition (SPAAC) reaction, have been widely used to prepare hydrogel materials. In this paper, the application of the copper-free click reaction in preparing the hydrogels and their functionalization are reviewed. In addition, the trend of their development is discussed.

Contents
1 Introduction
2 Synthesis of hydrogels via Cu-free click chemistry
2.1 Synthesis of hydrogels via thiol-ene click reaction
2.2 Synthesis of hydrogels via Diels-Alder click reaction
2.3 Synthesis of hydrogels via Cu-free azide-alkyne cycloaddition reaction
3 Outlook

CLC Number: 

[1] Kolb H C, Finn M G, Sharpless K B. Angew. Chem. Int. Ed., 2001, 40: 2004.
[2] Morten M, Christian W T. Chem. Rev., 2008, 108: 2952.
[3] Wang Q, Hawker C. Chem. Asian J., 2011, 6: 2568.
[4] 熊兴泉(Xiong X Q), 蔡雷(Cai L), 唐忠科(Tang Z K). 有机化学(Chinese Journal of Organic Chemistry), 2012, 32: 1410.
[5] Kade M J, Burke D J, Hawker C J. J. Polym. Sci. Part A: Polym. Chem., 2010, 48: 743.
[6] Hoyle C E, Bowman C N. Angew. Chem. Int. Ed., 2010, 49: 1540.
[7] 徐源鸿(Xu Y H), 熊兴泉(Xiong X Q), 蔡雷(Cai L), 唐忠科(Tang Z K),叶章基(Ye Z J). 化学进展(Progress in Chemistry), 2012, 24: 385.
[8] Sanyal A. Macromol. Chem. Phys., 2010, 211: 1417.
[9] Ripoll J L, Rouessac A, Rouessac F. Tetrahedron, 1978, 34: 19.
[10] Szalai M L, McGrath D V, Wheeler D R, Zifer T, McElhanon J R. Macromolecules, 2007, 40: 818.
[11] Robertson A, Philp D, Spencer N. Tetrahedron, 1999, 55: 11365.
[12] 熊兴泉(Xiong X Q), 陈会新(Chen H X). 有机化学(Chinese Journal of Organic Chemistry), 2013, 33: 1437.
[13] 熊兴泉(Xiong X Q), 江云兵(Jiang Y B). 化学进展(Progress in Chemistry), 2013, 25: 999.
[14] Baskin J M, Prescher J A, Laughlin S T, Agard N J, Chang P V, Miller I A, Lo A, Codelli J A, Bertozzit C R. Proc. Natl. Acad. Sci. U. S. A., 2007, 104: 16793.
[15] Ning X H, Guo J, Wolfert M A, Boons G J. Angew. Chem. Int. Ed., 2008, 47: 2253.
[16] Yigit S, Sanyal R, Sanyal A. Chem. Asian J., 2011, 6: 2648.
[17] Aimetti A A, Machen A J, Anseth K S. Biomaterials, 2009, 30: 6048.
[18] Campos L M, Meinel I, Guino R G, Schierhorn M, Gupta N, Stucky G D, Hawker C J. Adv. Mater., 2008, 20: 3728.
[19] Rossow T, Heyman J A, Ehrlicher A J, Langhoff A, Weitz D A, Haag R, Seiffert S. J. Am. Chem. Soc., 2012, 134: 4983.
[20] Lundberg P, Bruin A, Klijnstra J W, Nyström A M, Johansson M, Malkoch M, Hult A. ACS Appl. Mater. Interfaces, 2010, 2: 903.
[21] Wang Z C, Xu X D, Chen C S, Yun L, Song J C, Zhang X Z, Zhuo R X. ACS Appl. Mater. Interfaces, 2010, 2: 1009.
[22] Sui X F, van Ingen L, Hempenius M A, Vancso G J. Macromol. Rapid Commun., 2010, 31: 2059.
[23] Lin C C, Raza A, Shih H. Biomaterials, 2011, 32: 9685.
[24] Shih H, Lin C C. Biomacromolecules, 2012, 13: 2003.
[25] Ki C S, Shih H, Lin C C. Polymer, 2013, 54: 2115.
[26] Liu Y, Shu X Z, Prestwich G D. Tissue Eng., 2006, 12: 3405.
[27] Jin R, Teixeira L S M, Krouwels A, Dijkstra P J, van Blitterswijk C A, Karperien M, Feijin J. Acta Biomaterialia, 2010, 6: 1968.
[28] Pritchard C D, shea T M, Siegwart D J, Calo E, Anderson D G, Reynolds F M, Thomas J A, Slotkin J R, Woodard E J, Langer R. Biomaterials, 2011, 32: 587.
[29] Bardts M, Ritter H. Macromol. Chem. Phys., 2010, 211: 778.
[30] Díaz D D, Morin E, Schön E M, Budin G, Wagner A, Remy J S. J. Mater. Chem., 2011, 21: 641.
[31] Dargaville T R, Forster R, Farrugia B L, Kempe K, Voorhaar L, Schubert U S, Hoogenboom R. Macromol. Rapid Commun., 2012, 33: 1695.
[32] Cai T, Yang W J, Zhang Z B, Zhu X L, Neoh K G, Kang E T. Soft Matter, 2012, 8: 5612.
[33] Kim Ö, Yvonne H, Isabella J R, Jonathan K, Peter L, Michael M. Chem. Commun., 2013, 49: 6938.
[34] Chujo Y, Sade K, Saegusa T. Macromolecules, 1990, 23: 2636.
[35] Rideout D C, Breslow R. J. Am. Chem. Soc., 1980, 102: 7816.
[36] Otto S, Engberts J B. Org. Biomol. Chem., 2003, 1: 2809.
[37] Narayan S, Muldoon J, Finn M G, Fokin V V, Kolb H C, Sharpless K B. Angew. Chem. Int. Ed., 2005, 44: 3275.
[38] Wei H L, Yang Z Y, Chen Y, Chu H J, Zhu J, Li Z C. Eur. Polym. J., 2010, 46: 1032.
[39] Wei H L, Yao K, Chu H J, Li Z C, Zhu J, Shen Y M, Zhao Z X, Feng Y L. J. Mater. Sci., 2012, 47: 332.
[40] Nimmo C M, Owen S C, Shoichet M S. Biomacromolecules, 2011, 12: 824.
[41] Tan H, Rubin P, Marra K G. Macromol. Rapid Commun., 2011, 32: 905.
[42] Silva N A, Cooke M J, Tam R Y, Sousa N, Salgado A J, Reis R L, Shoichet M S. Biomaterials, 2012, 33: 6345.
[43] Kirchhof S, Brandl F P, Hammer N, Goepferich A M. J. Mater. Chem. B, 2013, 1: 4855.
[44] Clark M, Kiser P. Polym. Int., 2009, 58: 1190.
[45] Jewett J C, Bertozzi C R. Chem. Soc. Rev., 2010, 39: 1272.
[46] DeForest C A, Polizzotti B D, Anseth K S. Nat. Mater., 2009, 8: 659.
[47] Xu J W, Filion T M, Prifti F, Song J. Chem. Asian J., 2011, 6: 2730.

[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[4] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[5] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[6] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[7] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[8] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[9] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[10] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[11] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[12] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[13] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[14] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[15] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.