中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (5): 513-523 DOI: 10.7536/PC170224 Previous Articles   Next Articles

• Review •

Structure, Features and Biomedical Applications of Silk Sericin

Xiao Xiao1,2, Changsheng Chen3*, Weiqiang Liu1,3*, Yeshun Zhang4   

  1. 1. Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China;
    2. Department of Biomedical Engineering, Graduate School of Tsinghua University at Shenzhen, Shenzhen 518055, China;
    3. Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China;
    4. The Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture, The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51403116) and the Shenzhen Science and Technology Projects (No.JCYJ20140419122040605,JCYJ20140419122040604).
PDF ( 1322 ) Cited
Export

EndNote

Ris

BibTeX

Silk sericin is a kind of natural material originated from a wide variety of cocoons and behaves excellent biocompatibility and a series of unique biological properties. The specific amino acid compositions and structural properties of silk sericin endow it with good water solubility, cellular adhesion and proliferation activity, in situ fluorescence, antioxidant and the inhibitory effect on tyrosinase. With the actions of cross-linking agent, chemical active group or just ultraviolet light, silk sericin can be designed into various structural biomaterials, including micro(nano)-structural materials, 2D (patterned) films, hydrogels or even 3D porous scaffolds, denoting broad prospect in biomedical applications, such as wound healing, tissue regeneration, drug delivery, medicine, material coating. Based on the significant studies of silk sericin in recent years, this review summarizes the structure and physicochemical properties of silk sericin, with a focus on the design of sericin-based biomaterials and their relevant biomedical applications. The prospective regarding the future potential of silk sericin is delivered.
Contents
1 Introduction
2 Advantages in biological features
2.1 Low(no) immunogenicity
2.2 Cell proliferation activity
2.3 In situ fluorescence property
2.4 Inhibitory effect on tyrosinase
3 Crosslinking methods and materials design
3.1 Micro (nano) materials
3.2 2D (patterned) films
3.3 Hydrogels
4 Biomedical applications
4.1 Wound dressing
4.2 Novel delivery system
4.3 Surface coating
4.4 Natural medicines
4.5 Others
5 Conclusions

CLC Number: 

[1] Thilagavathi G, Viju S. Advances in Silk Science and Technology. Sawston:Woodhead Publishing, 2015.219.
[2] Lamboni L, Gauthier M, Yang G, Wang Q. Biotechnol. Adv., 2015, 33:1855.
[3] Kundu S C, Dash B C, Dash R, Kaplan D L. Prog. Polym. Sci., 2008, 33:998.
[4] Koh L D, Cheng Y, Teng C P, Khin Y W, Loh X J, Tee S Y, Low M, Ye E, Yu H D, Zhang Y W, Han M Y. Prog. Polym. Sci., 2015, 46:86.
[5] Kumar P, Kumar D, Sikka P, Singh P. Anim. Reprod. Sci., 2015, 152:26.
[6] Wu J, Rong Y, Wang Z, Zhou Y, Wang S, Zhao B. Food Chem., 2015, 174:621.
[7] Aghaz F, Hajarian H, KaramiShabankareh H. Reprod. Biol., 2016, 16:87.
[8] Pérez-Rigueiro J, Elices M, Llorca J, Viney C. J. Appl. Polym. Sci., 2001, 82:1928.
[9] Teramoto H, Miyazawa M. Biomacromolecules, 2005, 6:2049.
[10] Takasu Y, Yamada H, Tamura T, Sezutsu H, Mita K, Tsubouchi K. Insect Biochem. Mol. Biol., 2007, 37:1234.
[11] Tao W, Li M, Xie R. Macromolecular Materials and Engineering, 2005, 290:188.
[12] Cho K Y, Moon J Y, Lee Y W, Lee K G, Yeo J H, Kweon H Y, Kim K H, Cho C S. Int. J. Biol. Macromol., 2003, 32:36.
[13] Yun H, Oh H, Kim M K, Kwak H W, Lee J Y, Um I C, Vootla S K, Lee K H. Int. J. Biol. Macromol., 2013, 52:59.
[14] Jo Y N, Um I C. Int. J. Biol. Macromol., 2015, 78:287.
[15] Kurioka A, Kurioka F, Yamazaki M. Biosci. Biotechnol. Biochem., 2004, 68:774.
[16] Teramoto H, Nakajima K, Takabayashi C. Biosci. Biotechnol. Biochem., 2005, 69:845.
[17] Teramoto H, Nakajima K, Takabayashi C. Biomacromolecules, 2004, 5:1392.
[18] Aramwit P, Damrongsakkul S, Kanokpanont S, Srichana T. Biotechnol. Appl. Biochem., 2010, 55:91.
[19] Gupta D, Agrawal A, Chaudhary H, Gulrajani M, Gupta C. Journal of Cleaner Production, 2013, 52:488.
[20] Zhang Y Q. Biotechnol. Adv., 2002, 20:91.
[21] Teramoto H, Miyazawa M. Journal of Insect Biotechnology and Sericology, 2003, 72:157.
[22] Jo Y N, Park B D, Um I C. Int. J. Biol. Macromol., 2015, 81:936.
[23] Huang L, Tao K, Liu J, Qi C, Xu L, Chang P, Gao J, Shuai X, Wang G, Wang Z, Wang L. ACS Appl. Mater. Interfaces, 2016, 8:6577.
[24] Inthanon K, Daranarong D, Techaikool P, Punyodom W, Khaniyao V, Bernstein A M, Wongkham W. Stem Cells Int., 2016, 2016:5309484.
[25] Nishida A, Yamada M, Kanazawa T, Takashima Y, Ouchi K, Okada H. Int. J. Pharm., 2011, 407:44.
[26] Cao T T, Zhang Y Q. Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 61:940.
[27] Aramwit P, Siritientong T, Srichana T. Waste Manag. Res., 2012, 30:217.
[28] Dash R, Ghosh S K, Kaplan D L, Kundu S C. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2007, 147:129.
[29] Aramwit P, Sangcakul A. Biosci. Biotechnol. Biochem., 2007, 71:2473.
[30] Panilaitis B, Altman G H, Chen J, Jin H J, Karageorgiou V, Kaplan D L. Biomaterials, 2003, 24:3079.
[31] Aramwit P, Kanokpanont S, De-Eknamkul W, Srichana T. J. Biosci. Bioeng., 2009, 107:556.
[32] Aramwit P, Keongamaroon O, Siritientong T, Bang N, Supasyndh O. BMC Nephrol., 2012, 13:119.
[33] Khampieng T, Aramwit P, Supaphol P. Int. J. Biol. Macromol., 2015, 80:636.
[34] Morikawa M, Kimura T, Murakami M, Katayama K, Terada S, Yamaguchi A. J. Hepatobiliary Pancreat. Surg., 2009, 16:223.
[35] Terada S, Nishimura T, Sasaki M, Yamada H, Miki M. Cytotechnology, 2002, 40:3.
[36] Terada S, Sasaki M, Yanagihara K, Yamada H. J. Biosci. Bioeng., 2005, 100:667.
[37] Takechi T, Wada R, Fukuda T, Harada K, Takamura H. Biomed. Rep., 2014, 2:364.
[38] Jagtapb S G, Khyade V B. Amer. J. Eng. Res., 2016, 5:180.
[39] Dash R, Acharya C, Bindu P C, Kundu S C. BMB Rep., 2008, 41:236.
[40] Du X, Li J, Chen Y. Biotechnology and Bioprocess Engineering, 2011, 16:438.
[41] Tsubouchi K, Igarashi Y, Takasu Y, Yamada H. Biosci. Biotechnol. Biochem., 2005, 69:403.
[42] Wang Z, Wang J, Jin Y, Luo Z, Yang W, Xie H, Huang K, Wang L. ACS Appl. Mater. Interfaces, 2015, 7:24629.
[43] Tamura Y, Nakajima K, Nagayasu K, Takabayashi C. Phytochemistry, 2002, 59:275.
[44] Liu J, Qi C, Tao K, Zhang J, Zhang J, Xu L, Jiang X, Zhang Y, Huang L, Li Q, Xie H, Gao J, Shuai X, Wang G, Wang Z, Wang L. ACS Appl. Mater. Interfaces, 2016, 8:6411.
[45] Kusurkar T S, Tandon I, Sethy N K, Bhargava K, Sarkar S, Singh S K, Das M. Sci. Rep., 2013, 3:3290.
[46] 陈忠敏(Chen Z M), 陈枭(Chen X), 庞亚妮(Pang Y N), 李江峰(Li J F), 王富平(Wang F P). 丝绸(Journal of Silk), 2015, 25.
[47] Wang Z, Zhang Y, Zhang J, Huang L, Liu J, Li Y, Zhang G, Kundu S C, Wang L. Sci. Rep., 2014, 4:7064.
[48] Kato N, Sato S, Yamanaka A, Yamada H, Fuwa N, Nomura M. Biosci. Biotechnol. Biochem., 1998, 62:145.
[49] Manosroi A, Boonpisuttinant K, Winitchai S, Manosroi W, Manosroi J. Pharm. Biol., 2010, 48:855.
[50] Eidet J R, Reppe S, Pasovic L, Olstad O K, Lyberg T, Khan A Z, Fostad I G, Chen D F, Utheim T P. Sci. Rep., 2016, 6:22671.
[51] Chlapanidas T, Farago S, Lucconi G, Perteghella S, Galuzzi M, Mantelli M, Avanzini M A, Tosca M C, Marazzi M, Vigo D, Torre M L, Faustini M. Int. J. Biol. Macromol., 2013, 58:47.
[52] Yildirimer L, Seifalian A M. Biotechnol. Adv., 2014, 32:984.
[53] Teramoto H, Kameda T, Tamada Y. Biosci. Biotechnol. Biochem., 2008, 72:3189.
[54] Chen L, Hu J, Ran J, Shen X, Tong H. RSC Adv., 2015, 5:56410.
[55] Zhao R, Li X, Sun B, Zhang Y, Zhang D, Tang Z, Chen X, Wang C. Int. J. Biol. Macromol., 2014, 68:92.
[56] Bhowmick S, Scharnweber D, Koul V. Biomaterials, 2016, 88:83.
[57] Mandal B B, Priya A S, Kundu S C. Acta Biomater., 2009, 5:3007.
[58] Napavichayanun S, Yamdech R, Aramwit P. Arch. Dermatol. Res., 2016, 308:123.
[59] Ersel M, Uyanikgil Y, Karbek Akarca F, Ozcete E, Altunci Y A, Karabey F, Cavucoglu T, Meral A, Yigitturk G, Oyku Cetin E. Med. Sci. Monit., 2016, 22:1064.
[60] 王见伟(Wang J W),宋利锋(Song L F),赵瑾(Zhao J),原续波(Yuan X B). 化学进展(Progress in Chemistry), 2015, 27:373.
[61] Migneault I, Dartiguenave C, Bertrand M J, Waldron K C. Biotechniques, 2004, 37:790.
[62] Muzzarelli R A A. Carbohydr. Polym., 2009, 77:1.
[63] Zhang Y, Liu J, Huang L, Wang Z, Wang L. Sci. Rep., 2015, 5:12374.
[64] Kurland N E, Dey T, Wang C, Kundu S C, Yadavalli V K. Adv. Mater., 2014, 26:4431.
[65] Nishida A, Naganuma T, Kanazawa T, Takashima Y, Yamada M, Okada H. Int. J. Pharm., 2011, 414:193.
[66] Kanazawa T, Shizawa Y, Takeuchi M, Tamano K, Ibaraki H, Seta Y, Takashima Y, Okada H. Pharmaceutics, 2015, 7:294.
[67] Shi L, Yang N, Zhang H, Chen L, Tao L, Wei Y, Liu H, Luo Y. Mater. Sci. Eng. C Mater. Biol. Appl., 2015, 48:533.
[68] Kurland N E, Ragland R B, Zhang A, Moustafa M E, Kundu S C, Yadavalli V K. Int. J. Biol. Macromol., 2014, 70:565.
[69] Kurland N E, Kundu J, Pal S, Kundu S C, Yadavalli V K. Soft Matter, 2012, 8:4952.
[70] Aramwit P, Bang N, Ratanavaraporn J, Ekgasit S. Nanoscale Res. Lett., 2014, 9:79.
[71] Hadipour-Goudarzi E, Montazer M, Latifi M, Aghaji A A. Carbohydr. Polym., 2014, 113:231.
[72] Yang M, Shuai Y, Zhou G, Mandal N, Zhu L, Mao C. ACS Appl. Mater. Interfaces, 2014, 6:13782.
[73] Yun H, Kim M K, Kwak H W, Lee J Y, Kim M H, Lee K H. Int. J. Biol. Macromol., 2016, 82:945.
[74] Zhang H, Deng L, Yang M, Min S, Yang L, Zhu L. Int. J. Mol. Sci., 2011, 12:3170.
[75] Dragan E S. Chem. Eng. J., 2014, 243:572.
[76] Kundu B, Kundu S C. Biomaterials, 2012, 33:7456.
[77] Zhang Q, Dong P, Chen L, Wang X, Lu S. J. Biomed. Mater. Res. A, 2014, 102:76.
[78] Guo S, Dipietro L A. J. Dent. Res., 2010, 89:219.
[79] Aramwit P, Palapinyo S, Srichana T, Chottanapund S, Muangman P. Arch. Dermatol. Res., 2013, 305:585.
[80] Siritientong T, Angspatt A, Ratanavaraporn J, Aramwit P. Pharm. Res., 2014, 31:104.
[81] Mori M, Rossi S, Ferrari F, Bonferoni M C, Sandri G, Riva F, Tenci M, Del Fante C, Nicoletti G, Caramella C. J. Pharm. Sci., 2016, 105:1188.
[82] Zhang Y Q, Tao M L, Shen W D, Zhou Y Z, Ding Y, Ma Y, Zhou W L. Biomaterials, 2004, 25:3751.
[83] Das S K, Dey T, Kundu S C. RSC Adv., 2014, 4:2137.
[84] Parisi O I, Fiorillo M, Scrivano L, Sinicropi M S, Dolce V, Iacopetta D, Puoci F, Cappello A R. Biomacromolecules, 2015, 16:3126.
[85] Gupta D, Chaudhary H, Gupta C. Journal of The Textile Institute, 2014, 106:366.
[86] Koley P, Sakurai M, Aono M. ACS Appl. Mater. Interfaces, 2016, 8:2380.
[87] Takeuchi A, Ohtsuki C, Kamitakahara M, Ogata S, Tanihara M, Miyazaki T, Yamazaki M, Furutani Y, Kinoshita H. Key Eng. Mater. Switzerland:Trans. Tech. Publications, 2005.
[88] Okazaki Y, Kakehi S, Xu Y, Tsujimoto K, Sasaki M, Ogawa H, Kato N. Biosci. Biotechnol. Biochem., 2010, 74:1534.
[89] Limpeanchob N, Trisat K, Duangjai A, Tiyaboonchai W, Pongcharoen S, Sutheerawattananonda M. J. Agric. Food Chem., 2010, 58:12519.
[90] Li Y G, Ji D F, Lin T B, Zhong S, Hu G Y, Chen S. Chin. Med. J. (Engl.), 2008, 121:2083.
[91] Li Y G, Ji D F, Chen S, Hu G Y. Alcohol Alcohol., 2008, 43:246.
[92] Chen Z, He Y, Song C, Dong Z, Su Z, Xue J. Neural Regen. Res., 2012, 7:197.
[93] Yazicioglu A, Demirag F, Alici I O, Yekeler E, Karaoglanoglu N. Thorac. Cardiovasc. Surg., 2016.
[94] Xie H, Yang W, Chen J, Zhang J, Lu X, Zhao X, Huang K, Li H, Chang P, Wang Z, Wang L. Adv. Healthc. Mater., 2015, 4:2195.
[95] Song Y, Zhang C, Zhang J, Sun N, Huang K, Li H, Wang Z, Huang K, Wang L. Acta Biomater., 2016.
[96] Yang M, Mandal N, Shuai Y, Zhou G, Min S, Zhu L. Biomed. Mater. Eng., 2014, 24:815.
[97] Yang M, Shuai Y, Zhang C, Chen Y, Zhu L, Mao C, OuYang H. Biomacromolecules, 2014, 15:1185.
[98] Wang H, Meng F, Cai Y, Zheng L, Li Y, Liu Y, Jiang Y, Wang X, Chen X. Adv. Mater., 2013, 25:5498.
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[3] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[4] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[5] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[6] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[7] Zixuan Cai, Bin Zhang, Liyang Jiang, Yunyi Li, Guohe Xu, Jingjun Ma. Intelligent-Responsive Hydrogels-Based Controlled Drug Release Systems and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1653-1668.
[8] Xingang Zuo, Haolan Zhang, Tong Zhou, Changyou Gao. Biomaterials for Regulating Cell Migration and Tissue Regeneration [J]. Progress in Chemistry, 2019, 31(11): 1576-1590.
[9] Xiaoyan He*, Liqin Liu, Meng Wang, Caiyun Zhang, Yunlei Zhang, Minhui Wang. The Research of the Anisotropic Hydrogel's Properties and Preparation [J]. Progress in Chemistry, 2017, 29(6): 649-658.
[10] Liu Jingjing, Chu Huijuan, Wei Hongliang, Zhu Hongzheng, Zhu Jing, He Juan. Progress in Graphene-Based Hydrogels [J]. Progress in Chemistry, 2015, 27(11): 1591-1603.
[11] Fan Guanming, Han Qian, Xiong Xingquan. Synthesis of Hydrogels via Copper-Free Click Reactions [J]. Progress in Chemistry, 2014, 26(07): 1223-1232.
[12] Zhu Lin, Chen Qiang, Xu Kun. Toughening Mechanisms of High Strength Double Network Hydrogels [J]. Progress in Chemistry, 2014, 26(06): 1032-1038.
[13] Gao Youzhi, Wang Meng, Yan Fanyong, Chen Li. Preparing Composite of Hydrogels with Metal Nanoparticles and Its Application as Catalyst [J]. Progress in Chemistry, 2014, 26(04): 626-637.
[14] Song Lifeng, Zhao Jin, Yuan Xiaoyan. Strengthening of Hydrogels Based on Polysaccharide and Polypeptide [J]. Progress in Chemistry, 2014, 26(0203): 385-393.
[15] Du Kai, Zhu Yanhong, Xu Huibi, Yang Xiangliang. Multifunctional Magnetic Nanoparticles: Synthesis, Modification and Biomedical Applications [J]. Progress in Chemistry, 2011, 23(11): 2287-2298.