Progress in Graphene-Based Hydrogels

Liu Jingjing, Chu Huijuan, Wei Hongliang, Zhu Hongzheng, Zhu Jing, He Juan

Progress in Chemistry ›› 2015, Vol. 27 ›› Issue (11) : 1591-1603.

PDF(1661 KB)
中文
PDF(1661 KB)
Progress in Chemistry ›› 2015, Vol. 27 ›› Issue (11) : 1591-1603. DOI: 10.7536/PC150512
Review and comments

Progress in Graphene-Based Hydrogels

  • Liu Jingjing, Chu Huijuan, Wei Hongliang*, Zhu Hongzheng, Zhu Jing, He Juan
Author information +
History +

Abstract

The unique properties of graphene, such as high electrical conductivity, high thermal conductivity and excellent mechanical properties, have made graphene not only a gelator to self-assemble into the graphene hydrogel with extraordinary electromechanical performance, but also a filler to blend with small molecules and macromolecules for the preparation of multifunctional graphene-based hybrid hydrogels, which fully exploits the practical applications of traditional hydrogels. Herein, recent progress in graphene-based hybrid hydrogels has been reviewed and the whole article can be divided into four sections. In the first section, a brief introduction on the development of graphene as well as the significance of the fabrication of graphene-based hydrogels is devoted. In the second section, the graphene-based hybrid hydrogels are roughly divided into three categories: graphene hydrogel, graphene/small molecules and graphene/macromolecules hybrid hydrogels according to their composition. The preparation methods of various hydrogels, as well as the mechanisms of their gelation process and the hydrogels' performance, are also presented. With the presentation of graphene/small molecules hybrid hydrogels, emphasis is given to the development of graphene-based supramolecular hydrogels, while with the presentation of graphene/macromolecules hybrid hydrogels, graphene-based intelligent hydrogels contributed a much higher proportion. In the third section, the applications of graphene-based hybrid hydrogels in supercapacitor, water purification, controlled release drug, microfluidic switch, catalyst support, etc., are introduced respectively. Finally, challenges in the development of graphene-based hydrogels are summarized briefly and future prospect is given as well.

Contents
1 Introduction
2 Categories of graphene-based hydrogels
2.1 Graphene hydrogels
2.2 Graphene/small molecules hybrid hydrogels
2.3 Graphene/macromolecules hybrid hydrogels
3 Applications of graphene-based hydrogels
3.1 Supercapacitor
3.2 Water purification
3.3 Drug-controlled release
3.4 Microfluidic switch
3.5 Catalyst support
3.6 Others
4 Conclusion

Key words

graphene / hybrid hydrogels / gelation / self-assembly / drug-controlled release

Cite this article

Download Citations
Liu Jingjing, Chu Huijuan, Wei Hongliang, Zhu Hongzheng, Zhu Jing, He Juan. Progress in Graphene-Based Hydrogels[J]. Progress in Chemistry, 2015, 27(11): 1591-1603 https://doi.org/10.7536/PC150512

References

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306:666.
[2] Sutter P W, Flege J I, Sutter E A. Nat. Mater., 2008, 7:406.
[3] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A. Science, 2006, 312:1191.
[4] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J-H, Kim P, Choi J-Y, Hong B H. Nature, 2009, 457:706.
[5] Eizenberg M, Blakely J M. Surf. Sci., 1979, 82:228.
[6] Rangappa D, Sone K, Wang M, Gautam U K, Golberg D, Itoh H, Ichihara M, Honma I. Chem. Eur. J., 2010, 16:6488.
[7] Park S, Ruoff R S. Nat. Nanotechnol., 2009, 4:217.
[8] Dreyer D R, Park S, Bielawski C W, Ruoff R S. Chem. Soc. Rev., 2010, 39:228.
[9] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80:1339.
[10] Si Y, Samulski E T. Nano Lett., 2008, 8:1679.
[11] Tung V C, Allen M J, Yang Y, Kaner R B. Nat. Nanotechnol., 2009, 4:25.
[12] Shen B, Lu D, Zhai W, Zheng W. J. Mater. Chem. C, 2013, 1:50.
[13] McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prud'homme R K, Aksay I A. Chem. Mater., 2007, 19:4396.
[14] Zhang H B, Wang J W, Yan Q, Zheng W G, Chen C, Yu Z Z. J. Mater. Chem., 2011, 21:5392.
[15] Peak C W, Wilker J J, Schmidt G. Colloid and Polymer Science, 2013, 291:2031.
[16] Li C, Shi G. Adv. Mater., 2014, 26:3992.
[17] Nardecchia S, Carriazo D, Ferrer M L, Gutierrez M C, del Monte F. Chem. Soc. Rev., 2013, 42:794.
[18] Xu Y, Sheng K, Li C, Shi G. ACS Nano, 2010, 4:4324.
[19] Zhang L, Shi G. J. Phys. Chem. C, 2011, 115:17206.
[20] Sui Z, Zhang X, Lei Y, Luo Y. Carbon, 2011, 49:4314.
[21] Zhang X, Sui Z, Xu B, Yue S, Luo Y, Zhan W, Liu B. J. Mater. Chem., 2011, 21:6494.
[22] Sheng K X, Xu Y X, Li C, Shi G Q. New Carbon Mater., 2011, 26:9.
[23] Zhang L, Chen G, Hedhili M N, Zhang H, Wang P. Nanoscale, 2012, 4:7038.
[24] Bi H, Yin K, Xie X, Zhou Y, Wan N, Xu F, Banhart F, Sun L, Ruoff R S. Adv. Mater., 2012, 24:5124.
[25] Li H, Zhang B, Lu C. Mater. Lett., 2014, 129:24.
[26] Compton O C, An Z, Putz K W, Hong B J, Hauser B G, Brinson L C, Nguyen S T. Carbon, 2012, 50:3399.
[27] Rybtchinski B. ACS Nano, 2011, 5:6791.
[28] Adhikari B, Biswas A, Banerjee A. Langmuir, 2012, 28:1460.
[29] Delbecq F, Endo H, Kono F, Kikuchi A, Kawai T. Polymer, 2013, 54:1064.
[30] Ogoshi T, Ichihara Y, Yamagishi T A, Nakamoto Y. Chem. Commun., 2010, 46:6087.
[31] Adhikari B, Biswas A, Banerjee A. ACS Appl. Mater. Interfaces, 2012, 4:5472.
[32] Cheng Q Y, Zhou D, Gao Y, Chen Q, Zhang Z, Han B H. Langmuir, 2012, 28:3005.
[33] Ai W, Du Z-Z, Liu J-Q, Zhao F, Yi M D, Xie L H, Shi N E, Ma Y W, Qian Y, Fan Q-L, Yu T, Huang W. RSC Adv., 2012, 2:12204.
[34] Qiu L, Yang X, Gou X, Yang W, Ma Z F, Wallace G G, Li D. Chem. Eur. J., 2010, 16:10653.
[35] Zhang C, Ren L, Wang X, Liu T. J. Phys. Chem. C, 2010, 114:11435.
[36] Cong H P, Ren X C, Wang P, Yu S-H. ACS Nano, 2012, 6:2693.
[37] Szejtli J. Chem. Rev., 1998, 98:1743.
[38] Zu S Z, Han B H. J. Phys. Chem. C, 2009, 113:13651.
[39] Liu J, Chen G, Jiang M. Macromolecules, 2011, 44:7682.
[40] Luan V H, Tien H N, Hoa L T, Hien N T M, Oh E S, Chung J, Kim E J, Choi W M, Kong B S, Hur S H. J. Mater. Chem. A, 2013, 1:208.
[41] van Hoang L, Chung J S, Kim E J, Hur S H. Chem. Eng. J., 2014, 246:64.
[42] Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J. Adv. Mater., 2013, 25:2219.
[43] Garcia A, Marquez M, Cai T, Rosario R, Hu Z, Gust D, Hayes M, Vail S A, Park C D. Langmuir, 2007, 23:224.
[44] Osada Y, Gong J P. Prog. Polym. Sci., 1993, 18:187.
[45] Liu F, Urban M W. Prog. Polym. Sci., 2010, 35:3.
[46] Alzari V, Nuvoli D, Sanna R, Peponi L, Piccinini M, Bon S B, Marceddu S, Valentini L, Kenny J M, Mariani A. Colloid Polym. Sci., 2013, 291:2681.
[47] Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y. Adv. Funct. Mater., 2009, 19:2297.
[48] Kim J E, Lee H S. Polymer, 2014, 55:287.
[49] Sridhar V, Oh I K. J. Colloid Interf. Sci., 2010, 348:384.
[50] Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Liu Y. J. Mater. Chem., 2011, 21:10399.
[51] Bai H, Li C, Wang X, Shi G. Chem. Commun., 2010, 46:2376.
[52] Lu N, Liu J, Li J, Zhang Z, Weng Y, Yuan B, Yang K, Ma Y. J. Mater. Chem. B, 2014, 2:3791.
[53] Zhu C H, Lu Y, Peng J, Chen J F, Yu S H. Adv. Funct. Mater., 2012, 22:4017.
[54] Huang S, Shen J, Li N, Ye M. J. Appl. Polym. Sci., 2015, doi:10.1002/app.41530.
[55] Wu Y, Cai M, Pei X, Liang Y, Zhou F. Macromol. Rapid Commun., 2013, 34:1785.
[56] Zhang E, Wang T, Lian C, Sun W, Liu X, Tong Z. Carbon, 2013, 62:117.
[57] Hou C, Zhang Q, Zhu M, Li Y, Wang H. Carbon, 2011, 49:47.
[58] Hou C, Zhang Q, Li Y, Wang H. Carbon, 2012, 50:1959.
[59] Ma X, Li Y, Wang W, Ji Q, Xia Y. Eur. Polym. J., 2013, 49:389.
[60] Jang J H, Kim J K, Huh D S. Macromol. Res., 2014, 22:1132.
[61] Lee S, Lee H, Sim J H, Sohn D. Macromol. Res., 2014, 22:165.
[62] Faghihi S, Karimi A, Jamadi M, Imani R, Salarian R. Mater. Sci. Eng. C, 2014, 38:299.
[63] Huang Y, Zeng M, Ren J, Wang J, Fan L, Xu Q. Colloids Surf. A, 2012, 401:97.
[64] Shen J, Yan B, Li T, Long Y, Li N, Ye M. Compos. Part A-Appl. S., 2012, 43:1476.
[65] Liu J, Cui L, Kong N, Barrow C J, Yang W. Eur. Polym. J., 2014, 50:9.
[66] Shen J, Yan B, Li T, Long Y, Li N, Ye M. Soft Matter, 2012, 8:1831.
[67] Liu R, Liang S, Tang X-Z, Yan D, Li X, Yu Z Z. J. Mater. Chem., 2012, 22:14160.
[68] Shi Y, Ma C, Peng L, Yu G. Adv. Funct. Mater., 2015, 25:1219.
[69] Sun S, Wu P. J. Mater. Chem., 2011, 21:4095.
[70] Li Z, Shen J, Ma H, Lu X, Shi M, Li N, Ye M. Mater. Sci. Eng. C, 2013, 33:1951.
[71] Cong H P, Wang P, Yu S H. Chem. Mater., 2013, 25:3357.
[72] Lei W, Si W, Xu Y, Gu Z, Hao Q. Microchim. Acta, 2014, 181:707.
[73] Yuan M, Liu A, Zhao M, Dong W, Zhao T, Wang J, Tang W. Sens. Actuators, B, 2014, 190:707.
[74] Chen S, Bao P, Huang X, Sun B, Wang G. Nano Res., 2014, 7:85.
[75] Zhang L L, Zhao X S. Chem. Soc. Rev., 2009, 38:2520.
[76] Li N, Tang S, Dai Y, Meng X. J. Mater. Sci., 2014, 49:2802.
[77] Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Nano Lett., 2008, 8:3498.
[78] Wang Y, Shi Z Q, Huang Y, Ma Y F, Wang C Y, Chen M M, Chen Y S. J. Phys. Chem. C, 2009, 113:13103.
[79] Quan H, Shao Y, Hou C, Zhang Q, Wang H, Li Y. Mater. Sci. Eng. B, 2013, 178:769.
[80] Chang Y, Han G, Yuan J, Fu D, Liu F, Li S. J. Power Sources, 2013, 238:492.
[81] Xu Y, Huang X, Lin Z, Zhong X, Huang Y, Duan X. Nano Res., 2013, 6:65.
[82] Zhang F, Xiao F, Dong Z H, Shi W. Electrochim. Acta, 2013, 114:125.
[83] She X, Sun P, Yu X, Zhang Q, Wu Y, Li L, Huang Y, Shang S, Jiang S. J. Inorg. Oraganomet. P., 2014, 24:884.
[84] Wang H, Xu Z, Yi H, Wei H, Guo Z, Wang X. Nano Energy, 2014, 7:86.
[85] Chen P, Yang J J, Li S S, Wang Z, Xiao T Y, Qian Y H, Yu S H. Nano Energy, 2013, 2:249.
[86] Zhao Y, Liu J, Hu Y, Cheng H, Hu C, Jiang C, Jiang L, Cao A, Qu L. Adv. Mater., 2013, 25:591.
[87] Xu J, Wang L, Zhu Y. Langmuir, 2012, 28:8418.
[88] Hou C, Zhang Q, Li Y, Wang H. J. Hazard. Mater., 2012, 205:229.
[89] Cong H P, Qiu J H, Yu S H. Small, 2015, 11:1165.
[90] Sun H, Xu Z, Gao C. Adv. Mater., 2013, 25:2554.
[91] Tiwari J N, Mahesh K, Le N H, Kemp K C, Timilsina R, Tiwari R N, Kim K S. Carbon, 2013, 56:173.
[92] Xu Y, Wu Q, Sun Y, Bai H, Shi G. ACS Nano, 2010, 4:7358.
[93] Wang X, Liu Z, Ye X, Hu K, Zhong H, Yu J, Jin M, Guo Z. Appl. Surf. Sci., 2014, 308:82.
[94] Gao H, Sun Y, Zhou J, Xu R, Duan H. ACS Appl. Mater. Interfaces, 2013, 5:425.
[95] Chen Y, Chen L, Bai H, Li L. J. Mater. Chem. A, 2013, 1:1992.
[96] Liu Z, Robinson J T, Sun X, Dai H. J. Am. Chem. Soc., 2008, 130:10876.
[97] Wang J, Liu C, Shuai Y, Cui X, Nie L. Colloids Surf. B, 2014, 113:223.
[98] Ehrbar M, Schoenmakers R, Christen E H, Fussenegger M, Weber W. Nat. Mater., 2008, 7:800.
[99] Koutsopoulos S, Zhang S. J. Controlled Release, 2012, 160:451.
[100] Wu J, Chen A, Qin M, Huang R, Zhang G, Xue B, Wei J, Li Y, Cao Y, Wang W. Nanoscale, 2015, 7:1655.
[101] Zhang E, Wang T, Hong W, Sun W, Liu X, Tong Z. J. Mater. Chem. A, 2014, 2:15633.
[102] Moon Y E, Jung G, Yun J, Kim H I. Mater. Sci. Eng. B, 2013, 178:1097.

Funding

The work was supported by Henan Province University Innovation Talents of Science and Technology Support Program(No.2012HASTIT017), the Science and Technology Department of Henan Province(No.142300410011, 102102210131,152102110073), and Henan University of Technology(No.2012JCYJ07).
PDF(1661 KB)

Accesses

Citation

Detail

Sections
Recommended

/