中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (3): 616-629 DOI: 10.7536/PC210329 Previous Articles   Next Articles

• Review •

Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices

Yue Gong1, Yizhu Cheng1, Yinchun Hu1,2()   

  1. 1 Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology,Taiyuan 030024, China
    2 Institute of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology,Taiyuan 030024, China
  • Received: Revised: Online: Published:
  • Contact: Yinchun Hu
  • Supported by:
    National Natural Science Foundation of China(11802197); Key R&D Program of Shanxi Province (International Cooperation)(201903D421064)
Richhtml ( 110 ) PDF ( 1335 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogels are biological materials with various properties. Hydrogels are three-dimensional network polymer with high water content, high tensile strength and biocompatibility. In addition to having excellent properties of hydrogels, conductive hydrogels have good electrical conductivity, adjustable mechanical properties and self-adhesive characteristics. The appearance of conductive hydrogels enrich types of hydrogels, expand performance of hydrogels, and improve practical application value, so that hydrogels have entered into people's daily life. Conductive hydrogels have gradually become the best candidate materials for flexible wearable electronic devices. In recent years, conductive hydrogels with biocompatibility, mechanical flexibility and fatigue resistance have been extensively studied. Conductive hydrogels can monitor and covert a wide variety of physiological signals and physical signals. Flexible wearable electronic devices based on conductive hydrogel can monitor human health status in real time. Conductive hydrogels with exceedingly good performance promote the development of flexible wearable electronic devices. Flexible wearable electronic devices have gradually become main research direction in field of human-computer interaction technology and artificial intelligence. Conductive hydrogels are synthesized by using conductive polymers, conductive fillers, free ions and their mixtures. According to conductive mechanism, manufactured conductive hydrogels can be divided into electron conductive hydrogels, ion conductive hydrogels and mixed electron-ion conductive hydrogels. In this paper, preparation methods of conductive hydrogels are discussed. The research progress and application of conductive hydrogels in aspects of stretchability, conductivity, biocompatibility, self-repairing and other functions in flexible wearable electronic devices are summarized. It is expected that conductive hydrogels will get better development.

Contents

1 Introduction

2 Conductive hydrogels

2.1 Ion conductive hydrogels

2.2 Electronic conductive hydrogels

2.3 Electron-ion conductive hydrogels

3 Properties of conductive hydrogels

3.1 Mechanical property

3.2 Conductive property and strain sensitivity

3.3 Adhesive and self-healing properties

3.4 Biocompatibility

3.5 Anti-freezing and moisturizing properties

4 Application of conductive hydrogels in flexible wearable electronic devices

4.1 Application of conductive hydrogels in vivo

4.2 Energy storage components and converters

4.3 Human motion sensors

4.4 Biological electrode

4.5 Ionic skin

4.6 Electronic skin

5 Conclusion and outlook

Table 1 Advantages and disadvantages of conductive hydrogels and traditional conductive materials and their application fields[3,4,11⇓~13,19⇓⇓⇓⇓⇓⇓⇓⇓~28]
Table 2 Conductivity of conductive hydrogels and their application[40,53,55,56,58⇓⇓⇓⇓⇓⇓⇓⇓~67,69,70]
Conductive type Conductive component Network structure Conductivity GF Application ref
Ion conductive hydrogels H3PO4 Single network >17 mS·cm-1 N.A. Supercapacitor 53
Ion conductive hydrogels Li+ Double network 2.25 S·m-1 N.A. Supercapacitance 55
Ion conductive hydrogels Al3+ Single network 10 - 2 S cm - 1 2.84 Ionic skin 56
Ion conductive hydrogels PDMAPS, IL Single network 10 - 2 m - 1 N.A. Deformable sensory
systems.
40
Ion conductive hydrogels PDES, MA/ChCl Double network 4.0 × 10 - 4 cm - 1 N.A. Stretchable electronics 58
Ion conductive hydrogels PDES, ChCl/PA Single network 7.8 × 10 - 4 cm - 1 3.43 Human motion sensors 59
Ion conductive hydrogels [NTf2] Single network N.A. 1.83 Wearable optoelectronic devices 60
Ion conductive hydrogels PMMA-r-PBA Single network 1.33 mS· cm - 1 2.73 Healthcare devices 61
Electron conductive hydrogels PANI Double network 5.12 S·m-1 1.05 Human motion sensors 63
Electron conductive hydrogels PANI:PSS IPN 13 S·m-1 3.4 Wearable devices 64
Electron conductive hydrogels CNTs Double network 8.2 S· m - 1 N.A. Self-adhesive bioelectronics 65
Electron conductive hydrogels CNT Double network 7.8 × 10-2 S·m-1 N.A. Multifunctional bioactive dressings 66
Electron conductive hydrogels Ag NPs Single network 5.72 × 101 S·m-1 N.A. Nanoelectronics devices 67
Electron conductive hydrogels MXene Double network 1.1 mS· cm - 1 8.21 Human motion sensors 69
Electron-ion conductive hydrogels PEDOT:PSS;
Poly(HEAA-co-SBAA)
IPN 0.625 S·m-1 2 Strain sensor 70
Fig.1 Schematic illustration of the molecular synergistic design, including the optimized ion-rich structure predicted by DFT and the dynamic hydrogen-bond networks[40]. Copyright© 2019, American Chemical Society
Fig.2 Schematic illustration of synthesis process of the supramolecular conductive PANI/PSS-UPy hydrogels and the formation mechanism[64]. Copyright © 2019, American Chemical Society
Fig.3 Conductive, adhesive, stretchable, and biocompatible hydrogels used as wearable devices. a) Hydrogel was adhered on (1) wrist and (2) knee joint, serving as strain sensors to detect the motion of the human body. b) Hydrogel acted as the self-adhesive electrode to detect signals for the (1) EMG and (2) ECG. Transparent hydrogel allows operators to see the vein underneath the electrode (inset in b-1)[108]. Copyright© 2018, American Chemical Society
Fig.4 (a) Schematic of a soft prosthetic hand assembled with ionic skin and bent by compressed gas. (b) Capacitive signals of the sensor recorded when the soft hand touched the flexible sponge and hard stone. (c) Schematic of molecular mechanism for power generation under temperature variation and a digital photograph and infrared thermograph of ionic skin after local heating (scale bar: 2 cm). Note that to prevent water evaporation, the ionic skin was covered with a layer of gummed tape on each surface. (d) Voltage generated in response to intermittent and periodic temperature variation (ΔT = 10 ℃)[119]. Copyright© 2020, American Chemical Society
[1]
Chen D, Pei Q B. Chem. Rev., 2017, 117(17): 11239.

doi: 10.1021/acs.chemrev.7b00019
[2]
Choi S, Lee H, Ghaffari R, Hyeon T, Kim D H. Adv. Mater., 2016, 28(22): 4203.

doi: 10.1002/adma.201504150
[3]
Liu G Y, Xu K K, Yu Q, Liu Y. Science China(Informationis). 2018, 48(6):626.
(刘广玉, 徐开凯, 于奇, 刘洋. 中国科学:信息科学. 2018, 48(6):626.).
[4]
Amjadi M, Kyung K U, Park I, Sitti M. Adv. Funct. Mater., 2016, 26(11): 1678.

doi: 10.1002/adfm.201504755
[5]
Bae G Y, Pak S W, Kim D, Lee G, Kim D H, Chung Y, Cho K. Adv. Mater., 2016, 28(26): 5300.

doi: 10.1002/adma.201600408
[6]
Trung T Q, Lee N E. Adv. Mater., 2016, 28(22): 4338.

doi: 10.1002/adma.201504244
[7]
Wang X D, Zhang H L, Dong L, Han X, Du W M, Zhai J Y, Pan C F, Wang Z L. Adv. Mater., 2016, 28(15): 2896.

doi: 10.1002/adma.201503407
[8]
Xu S, Zhang Y H, Jia L, Mathewson K E, Jang K I, Kim J, Fu H R, Huang X, Chava P, Wang R H, Bhole S, Wang L Z, Na Y J, Guan Y, Flavin M, Han Z S, Huang Y G, Rogers J A. Science, 2014, 344(6179): 70.

doi: 10.1126/science.1250169
[9]
Zhong W B, Liu Q Z, Wu Y Z, Wang Y D, Qing X, Li M F, Liu K, Wang W W, Wang D. Nanoscale, 2016, 8(24): 12105.

doi: 10.1039/C6NR02678H
[10]
Hammock M L, Chortos A, Tee B C K, Tok J B H, Bao Z N. Adv. Mater., 2013, 25(42): 5997.

doi: 10.1002/adma.201302240
[11]
Li L, Lou Z, Chen D, Jiang K, Han W, Shen G Z. Small, 2018, 14(43):e1702829.
[12]
Zhao F, Bae J, Zhou X Y, Guo Y H, Yu G H. Adv. Mater., 2018, 30(48): 1801796.

doi: 10.1002/adma.201801796
[13]
Toh W S, Loh X J. Mater. Sci. Eng. C, 2014, 45: 690.

doi: 10.1016/j.msec.2014.04.026
[14]
Chortos A, Bao Z N. Mater. Today, 2014, 17(7): 321.

doi: 10.1016/j.mattod.2014.05.006
[15]
Liu Y Q, He K, Chen G, Leow W R, Chen X D. Chem. Rev., 2017, 117(20): 12893.

doi: 10.1021/acs.chemrev.7b00291
[16]
Wang J X, Lin M F, Park S, Lee P S. Mater. Today, 2018, 21(5): 508.

doi: 10.1016/j.mattod.2017.12.006
[17]
Ray T R, Choi J, Bandodkar A J, Krishnan S, Gutruf P, Tian L M, Ghaffari R, Rogers J A. Chem. Rev., 2019, 119(8): 5461.

doi: 10.1021/acs.chemrev.8b00573
[18]
Yang C H, Suo Z G. Nat. Rev. Mater., 2018, 3(6): 125.

doi: 10.1038/s41578-018-0018-7
[19]
Li J Y, Mooney D J. Nat. Rev. Mater., 2016, 1(12): 16071.

doi: 10.1038/natrevmats.2016.71
[20]
Seliktar D. Science, 2012, 336(6085): 1124.

doi: 10.1126/science.1214804 pmid: 22654050
[21]
Yuk H, Lin S T, Ma C, Takaffoli M, Fang N X, Zhao X H. Nat. Commun., 2017, 8(1): 14230.

doi: 10.1038/ncomms14230
[22]
Kim D H, Lu N, Ma R, Kim Y S, Kim R H, Wang S, Wu J, Won S M, Tao H, Islam A, Yu K J, Kim T I, Chowdhury R, Ying M, Xu L, Li M, Chung H J, Keum H, McCormick M, Liu P, Zhang Y W, Omenetto F G, Huang Y, Coleman T, Rogers J A. Science, 2011, 333(6044): 838.

doi: 10.1126/science.1206157
[23]
Minev I R, Musienko P, Hirsch A, Barraud Q, Wenger N, Moraud E M, Gandar J, Capogrosso M, Milekovic T, Asboth L, Torres R F, Vachicouras N, Liu Q, Pavlova N, Duis S, Larmagnac A, Voros J, Micera S, Suo Z, Courtine G, Lacour S P. Science, 2015, 347(6218): 159.

doi: 10.1126/science.1260318 pmid: 25574019
[24]
Feiner R, Engel L, Fleischer S, Malki M, Gal I, Shapira A, Shacham-Diamand Y, Dvir T. Nat. Mater., 2016, 15(6): 679.

doi: 10.1038/nmat4590 pmid: 26974408
[25]
Ghobril C, Charoen K, Rodriguez E K, Nazarian A, Grinstaff M W. Angew. Chem. Int. Ed., 2013, 52(52): 14070.

doi: 10.1002/anie.201308007
[26]
Grinstaff M W. Biomaterials, 2007, 28(35): 5205.

pmid: 17889330
[27]
Ghobril C, Grinstaff M W. Chem. Soc. Rev., 2015, 44(7): 1820.

doi: 10.1039/c4cs00332b pmid: 25649260
[28]
Amjadi M, Sheykhansari S, Nelson B J, Sitti M. Adv. Mater., 2018, 30(7): 1704530.

doi: 10.1002/adma.201704530
[29]
Li P P, Jin Z Y, Peng L L, Zhao F, Xiao D, Jin Y, Yu G H. Adv. Mater., 2018, 30(18): e1800124.
[30]
Kong W Q, Wang C W, Jia C, Kuang Y D, Pastel G, Chen C J, Chen G G, He S M, Huang H, Zhang J H, Wang S, Hu L B. Adv. Mater., 2018, 30(39): e1801934.
[31]
Peppas N A, Bures P, Leobandung W, Ichikawa H E. Eur. J. Pharm. Biopharm., 2000, 50(1): 27.

doi: 10.1016/s0939-6411(00)00090-4 pmid: 10840191
[32]
Holtz J H, Asher S A. Nature, 1997, 389(6653): 829.

doi: 10.1038/39834
[33]
Wang W, Zhang Y, Liu W. Prog. Polym. Sci., 2017, 4:71.

doi: 10.1016/0079-6700(75)90004-0
[34]
Shapiro Y E. Prog. Polym. Sci., 2011, 36(9): 1184.

doi: 10.1016/j.progpolymsci.2011.04.002
[35]
Caccavo D, Cascone S, Lamberti G, Barba A A. Chem. Soc. Rev., 2018, 47(7): 2357.

doi: 10.1039/c7cs00638a pmid: 29504613
[36]
Peng Q Y, Chen J S, Wang T, Peng X W, Liu J F, Wang X G, Wang J M, Zeng H B. InfoMat, 2020, 2(5): 843.

doi: 10.1002/inf2.12113
[37]
Keplinger C, Sun J Y, Foo C C, Rothemund P, Whitesides G M, Suo Z G. Science, 2013, 341(6149): 984.

doi: 10.1126/science.1240228
[38]
Chen B H, Lu J J, Yang C H, Yang J H, Zhou J X, Chen Y M, Suo Z G. ACS Appl. Mater. Interfaces, 2014, 6(10): 7840.

doi: 10.1021/am501130t
[39]
Sun J Y, Keplinger C, Whitesides G M, Suo Z G. Adv. Mater., 2014, 26(45): 7608.

doi: 10.1002/adma.201403441
[40]
Lei Z Y, Wu P Y. ACS Nano, 2018, 12(12): 12860.

doi: 10.1021/acsnano.8b08062
[41]
Cao Y, Morrissey T G, Acome E, Allec S I, Wong B M, Keplinger C, Wang C. Adv. Mater., 2017, 29(10): 1605099.

doi: 10.1002/adma.201605099
[42]
Ding Y, Zhang J J, Chang L, Zhang X Q, Liu H L, Jiang L. Adv. Mater. (Deerfield Beach, Fla), 2017, 29(47):1704253.

doi: 10.1002/adma.201704253
[43]
Shi L, Zhu T X, Gao G X, Zhang X Y, Wei W, Liu W F, Ding S J. Nat. Commun., 2018, 9(1): 2630.

doi: 10.1038/s41467-018-05165-w
[44]
Hu W L, Niu X F, Li L, Yun S, Yu Z B, Pei Q B. Nanotechnology, 2012, 23(34): 344002.

doi: 10.1088/0957-4484/23/34/344002
[45]
Yu Z B, Zhang Q W, Li L, Chen Q, Niu X F, Liu J, Pei Q B. Adv. Mater., 2011, 23(5): 664.

doi: 10.1002/adma.201003398
[46]
Tee B C K, Wang C, Allen R, Bao Z N. Nat. Nanotechnol., 2012, 7(12): 825.

doi: 10.1038/nnano.2012.192
[47]
Mähler J, Persson I. Inorg. Chem., 2012, 51(1): 425.

doi: 10.1021/ic2018693 pmid: 22168370
[48]
Keplinger C, Sun J Y, Foo C C, Rothemund P, Whitesides G M, Suo Z G. Science, 2013, 341(6149): 984.

doi: 10.1126/science.1240228
[49]
Lei Z Y, Wang Q K, Wu P Y. Mater. Horiz., 2017, 4(4): 694.

doi: 10.1039/C7MH00262A
[50]
Lei Z Y, Wu P Y. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8
[51]
Lei Z Y, Wu P Y. Mater. Horiz., 2019, 6(3): 538.

doi: 10.1039/C8MH01157E
[52]
Lei Z Y, Wu P Y. Nat. Commun., 2018, 9(1): 1.

doi: 10.1038/s41467-017-02088-w
[53]
Huang Y, Zhong M, Shi F K, Liu X Y, Tang Z J, Wang Y K, Huang Y, Hou H Q, Xie X M, Zhi C Y. Angew. Chem. Int. Ed., 2017, 56(31): 9141.

doi: 10.1002/anie.201705212 pmid: 28631401
[54]
Yang C H, Suo Z G. Nat. Rev. Mater., 2018, 3(6): 125.

doi: 10.1038/s41578-018-0018-7
[55]
Ge W J, Cao S, Yang Y, Rojas O J, Wang X H. Chem. Eng. J., 2021, 408: 127306.

doi: 10.1016/j.cej.2020.127306
[56]
Wen J, Tang J, Ning H M, Hu N, Zhu Y Y, Gong Y K, Xu C H, Zhao Q N, Jiang X P, Hu X L, Lei L, Wu D, Huang T. Adv. Funct. Mater., 2021, 31(21): 2011176.

doi: 10.1002/adfm.202011176
[57]
Li X D, Charaya H, Bernard G M, Elliott J A W, Michaelis V K, Lee B, Chung H J. Macromolecules, 2018, 51(7): 2723.

doi: 10.1021/acs.macromol.7b02498
[58]
Li R N, Fan T, Chen G X, Zhang K L, Su B, Tian J F, He M H. Chem. Mater., 2020, 32(2): 874.

doi: 10.1021/acs.chemmater.9b04592
[59]
Li R A, Fan T, Chen G X, Xie H J, Su B, He M H. Chem. Eng. J., 2020, 393: 124685.

doi: 10.1016/j.cej.2020.124685
[60]
Cao Z Q, Liu H L, Jiang L. Mater. Horiz., 2020, 7(3): 912.

doi: 10.1039/C9MH01699F
[61]
Kim Y M, Moon H C. Adv. Funct. Mater., 2020, 30(4): 1907290.

doi: 10.1002/adfm.201907290
[62]
Fu F F, Wang J L, Zeng H B, Yu J. ACS Mater. Lett., 2020, 2(10): 1287.
[63]
Wang Z W, Zhou H W, Lai J L, Yan B, Liu H B, Jin X L, Ma A J, Zhang G, Zhao W F, Chen W X. J. Mater. Chem. C, 2018, 6(34): 9200.

doi: 10.1039/C8TC02505C
[64]
Chen J S, Peng Q Y, Thundat T, Zeng H B. Chem. Mater., 2019, 31(12): 4553.

doi: 10.1021/acs.chemmater.9b01239
[65]
Han L, Liu K Z, Wang M H, Wang K F, Fang L M, Chen H T, Zhou J, Lu X. Adv. Funct. Mater., 2018, 28(3): 1704195.

doi: 10.1002/adfm.201704195
[66]
Liang Y P, Zhao X, Hu T L, Han Y, Guo B L. J. Colloid Interface Sci., 2019, 556: 514.

doi: 10.1016/j.jcis.2019.08.083
[67]
Devaki S J, Narayanan R K, Sarojam S. Mater. Lett., 2014, 116: 135.

doi: 10.1016/j.matlet.2013.10.110
[68]
Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Chem. Mater., 2017, 29(18): 7633.

doi: 10.1021/acs.chemmater.7b02847
[69]
Yuk H, Lu B Y, Zhao X H. Chem. Soc. Rev., 2019, 48(6): 1642.

doi: 10.1039/C8CS00595H
[70]
Zhang D, Tang Y J, Zhang Y X, Yang F Y, Liu Y L, Wang X Y, Yang J T, Gong X, Zheng J. J. Mater. Chem. A, 2020, 8(39): 20474.

doi: 10.1039/D0TA07390C
[71]
Wang K, Wang M, Lu H, Liu B B, Huang M M, Yang J P. RSC Adv., 2019, 9(17): 9517.

doi: 10.1039/c8ra10486g
[72]
Zhang H X, Niu W B, Zhang S F. Chem. Eng. J., 2020, 387: 124105.

doi: 10.1016/j.cej.2020.124105
[73]
Li H J, Zheng H, Tan Y J, Tor S B, Zhou K. ACS Appl. Mater. Interfaces, 2021, 13(11): 12814.

doi: 10.1021/acsami.0c19104
[74]
He H M, Li Y R, Liu H Z, Kim Y, Yan A X, Xu L Z. ACS Appl. Mater. Interfaces, 2021, 13(6): 7539.

doi: 10.1021/acsami.0c21148
[75]
Cai G, Wang J, Kai Q, Chen J, Lee P S. Adv. Sci, 2016, 4(2): 1600190.

doi: 10.1002/advs.201600190
[76]
Shao C Y, Wang M, Meng L, Chang H L, Wang B, Xu F, Yang J, Wan P B. Chem. Mater., 2018, 30(9): 3110.

doi: 10.1021/acs.chemmater.8b01172
[77]
Qian Y, Zhou Y J, Lu M J, Guo X S, Yang D J, Lou H M, Qiu X Q, Guo C F. Small Methods, 2021, 5(5): 2001311.

doi: 10.1002/smtd.202001311
[78]
Ye Y H, Zhang Y F, Chen Y, Han X S, Jiang F. Adv. Funct. Mater., 2020, 30(35): 2003430.

doi: 10.1002/adfm.202003430
[79]
Wang S, Fang Y L, He H, Zhang L, Li C A, Ouyang J Y. Adv. Funct. Mater., 2021, 31(5): 2007495.

doi: 10.1002/adfm.202007495
[80]
Wirthl D, Pichler R, Drack M, Kettlguber G, Moser R, Gerstmayr R, Hartmann F, Bradt E, Kaltseis R, Siket C M. Sci. Adv., 2017, 3(6): e1700053.

doi: 10.1126/sciadv.1700053
[81]
Lee Y, Cha S H, Kim Y W, Choi D, Sun J Y. Nat. Commun., 2018, 9(1): 1804.

doi: 10.1038/s41467-018-03954-x
[82]
Zhang C, Zhou Y S, Han H J, Zheng H X, Xu W H, Wang Z K. ACS Nano, 2021, 15(1): 1785.

doi: 10.1021/acsnano.0c09577 pmid: 33404217
[83]
Das S, Martin P, Vasilyev G, Nandi R, Amdursky N, Zussman E. Macromolecules, 2020, 53(24): 11130.

doi: 10.1021/acs.macromol.0c02060
[84]
Su X, Wang H, Tian Z L, Duan X C, Chai Z H, Feng Y T, Wang Y X, Fan Y, Huang J Y. ACS Appl. Mater. Interfaces, 2020, 12(26): 29757.
[85]
Zhao S W, Tseng P, Grasman J, Wang Y, Li W Y, Napier B, Yavuz B, Chen Y, Howell L, Rincon J, Omenetto F G, Kaplan D L. Adv. Mater., 2018, 30(25): 1800598.

doi: 10.1002/adma.201800598
[86]
Liao M H, Wan P B, Wen J R, Gong M, Wu X X, Wang Y G, Shi R, Zhang L Q. Adv. Funct. Mater., 2017, 27(48): 1703852.

doi: 10.1002/adfm.201703852
[87]
Dong R N, Zhao X, Guo B L, Ma P X. ACS Appl. Mater. Interfaces, 2016, 8(27): 17138.

doi: 10.1021/acsami.6b04911
[88]
Sui X J, Guo H S, Cai C C, Li Q S, Wen C Y, Zhang X Y, Wang X D, Yang J, Zhang L. Chem. Eng. J., 2021, 419: 129478.

doi: 10.1016/j.cej.2021.129478
[89]
Liu J H, Khanam Z, Ahmed S, Wang T, Wang H T, Song S H. ACS Appl. Mater. Interfaces, 2021, 13(14): 16454.

doi: 10.1021/acsami.1c02242
[90]
Sun H L, Zhao Y, Jiao S L, Wang C F, Jia Y P, Dai K, Zheng G Q, Liu C T, Wan P B, Shen C Y. Adv. Funct. Mater., 2021, 31(24): 2101696.

doi: 10.1002/adfm.202101696
[91]
Zeng W, Shu L, Li Q, Chen S, Wang F, Tao X M. Adv. Mater., 2014, 26(31): 5310.

doi: 10.1002/adma.201400633
[92]
Wagner S, Bauer S. MRS Bull., 2012, 37(3): 207.

doi: 10.1557/mrs.2012.37
[93]
Yao S S, Zhu Y. Adv. Mater., 2015, 27(9): 1479.

doi: 10.1002/adma.201570061
[94]
Yan C Y, Lee P S. Small, 2014, 10(17): 3443.

doi: 10.1002/smll.201302806
[95]
Zhang W, Feng P, Chen J, Sun Z M, Zhao B X. Prog. Polym. Sci., 2019, 88: 220.

doi: 10.1016/j.progpolymsci.2018.09.001
[96]
Zhao X, Wu H, Guo B L, Dong R N, Qiu Y S, Ma P X. Biomaterials, 2017, 122: 34.

doi: S0142-9612(17)30019-4 pmid: 28107663
[97]
Qu J, Zhao X, Ma P X, Guo B L. Acta Biomater., 2018, 72: 55.

doi: 10.1016/j.actbio.2018.03.018
[98]
Guo B L, Qu J, Zhao X, Zhang M Y. Acta Biomater., 2019, 84: 180.

doi: 10.1016/j.actbio.2018.12.008
[99]
Zhai M L, Ha H F. University Chemistry, 2001, 16(5): 22.
(翟茂林, 哈鸿飞. 大学化学, 2001, 16(5): 22.).
[100]
Shan L, Liu M Z, Qiu J H, Gao C M, Zhang G H, Qin L J. Progress in Chemistry, 2011, 23(5): 923.
(邵亮, 柳明珠, 邱建辉, 高春梅, 张国宏, 秦利军. 化学进展, 2011, 23(5): 923.).
[101]
Bi M, Hao H, Li T, Zhao Y L. Ion Exchange and Adsorption, 2008, 24(2): 188.
(毕曼, 郝红, 李涛, 赵亚玲. 离子交换与吸附, 2008, 24(2): 188.).
[102]
Wang Z W, Cong Y, Fu J. J. Mater. Chem. B, 2020, 8(16): 3437.

doi: 10.1039/C9TB02570G
[103]
Deng J, Yuk H, Wu J J, Varela C E, Chen X Y, Roche E T, Guo C F, Zhao X H. Nat. Mater., 2021, 20(2): 229.

doi: 10.1038/s41563-020-00814-2
[104]
Shi L, Jia K, Gao Y Y, Yang H, Ma Y M, Lu S Y, Gao G X, Bu H T, Lu T Q, Ding S J. Research, 2020, 2020: 1.
[105]
Pu X, Liu M M, Chen X Y, Sun J M, Du C H, Zhang Y, Zhai J Y, Hu W G, Wang Z L. Sci. Adv., 2017, 3(5): e1700015.

doi: 10.1126/sciadv.1700015
[106]
Morelle X P, Illeperuma W R, Tian K, Bai R B, Suo Z G, Vlassak J J. Adv. Mater., 2018, 30(35): 1801541.

doi: 10.1002/adma.201801541
[107]
Liu Y J, Cao W T, Ma M G, Wan P B. ACS Appl. Mater. Interfaces, 2017, 9(30): 25559.

doi: 10.1021/acsami.7b07639
[108]
Han L, Yan L W, Wang M H, Wang K F, Fang L M, Zhou J, Fang J, Ren F Z, Lu X. Chem. Mater., 2018, 30(16): 5561.

doi: 10.1021/acs.chemmater.8b01446
[109]
Cai G F, Wang J X, Qian K, Chen J W, Li S H, Lee P S. Adv. Sci., 2017, 4(2): 1600190.

doi: 10.1002/advs.201600190
[110]
Ohm Y, Pan C F, Ford M J, Huang X N, Liao J H, Majidi C. Nat. Electron., 2021, 4(3): 185.

doi: 10.1038/s41928-021-00545-5
[111]
Ji S B, Wan C J, Wang T, Li Q S, Chen G, Wang J W, Liu Z Y, Yang H, Liu X J, Chen X D. Adv. Mater., 2020, 32(26): 2001496.

doi: 10.1002/adma.202001496
[112]
Yuk H, Lu B Y, Zhao X H. Chem. Soc. Rev., 2019, 48(6): 1642.

doi: 10.1039/C8CS00595H
[113]
Mu J K, Wang G, Yan H P, Li H Y, Wang X M, Gao E L, Hou C Y, Pham A T C, Wu L J, Zhang Q H, Li Y G, Xu Z P, Guo Y, Reichmanis E, Wang H Z, Zhu M F. Nat. Commun., 2018, 9: 590.

doi: 10.1038/s41467-018-03032-2
[114]
Whitesides G M. Angew. Chem. Int. Ed., 2018, 57(16): 4258.

doi: 10.1002/anie.201800907 pmid: 29517838
[115]
Wang H B, Totaro M, Beccai L. Adv. Sci., 2018, 5(9): 1800541.

doi: 10.1002/advs.201800541
[116]
Kim C C, Lee H H, Oh K H, Sun J Y. Science, 2016, 353(6300): 682.

doi: 10.1126/science.aaf8810
[117]
Wang G, Huang W, Eastham N D, Fabiano S, Manley E F, Zeng L, Wang B H, Zhang X N, Chen Z H, Li R, Chang R P H, Chen L X, Bedzyk M J, Melkonyan F S, Facchetti A, Marks T J. Proc. Natl. Acad. Sci. U.S.A., 2017, 114(47): E10066.
[118]
Liu Z Y, Wang Y, Ren Y Y, Jin G Q, Zhang C C, Chen W, Yan F. Mater. Horiz., 2020, 7(3): 919.

doi: 10.1039/C9MH01688K
[119]
Zhang Z X, Wang L, Yu H T, Zhang F, Tang L, Feng Y Y, Feng W. ACS Appl. Mater. Interfaces, 2020, 12(13): 15657.

doi: 10.1021/acsami.9b22707
[120]
Peng X, Dong K, Ye C Y, Jiang Y, Zhai S Y, Cheng R W, Liu D, Gao X P, Wang J, Wang Z L. Sci. Adv., 2020, 6(26): eaba9624.

doi: 10.1126/sciadv.aba9624
[121]
Zhao L J, Wang L L, Zheng Y Q, Zhao S F, Wei W, Zhang D W, Fu X Y, Jiang K, Shen G Z, Han W. Nano Energy, 2021, 84: 105921.

doi: 10.1016/j.nanoen.2021.105921
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[3] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[4] Zixuan Cai, Bin Zhang, Liyang Jiang, Yunyi Li, Guohe Xu, Jingjun Ma. Intelligent-Responsive Hydrogels-Based Controlled Drug Release Systems and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1653-1668.
[5] Xingang Zuo, Haolan Zhang, Tong Zhou, Changyou Gao. Biomaterials for Regulating Cell Migration and Tissue Regeneration [J]. Progress in Chemistry, 2019, 31(11): 1576-1590.
[6] Xiaoyan He*, Liqin Liu, Meng Wang, Caiyun Zhang, Yunlei Zhang, Minhui Wang. The Research of the Anisotropic Hydrogel's Properties and Preparation [J]. Progress in Chemistry, 2017, 29(6): 649-658.
[7] Xiao Xiao, Changsheng Chen, Weiqiang Liu, Yeshun Zhang. Structure, Features and Biomedical Applications of Silk Sericin [J]. Progress in Chemistry, 2017, 29(5): 513-523.
[8] Liu Jingjing, Chu Huijuan, Wei Hongliang, Zhu Hongzheng, Zhu Jing, He Juan. Progress in Graphene-Based Hydrogels [J]. Progress in Chemistry, 2015, 27(11): 1591-1603.
[9] Fan Guanming, Han Qian, Xiong Xingquan. Synthesis of Hydrogels via Copper-Free Click Reactions [J]. Progress in Chemistry, 2014, 26(07): 1223-1232.
[10] Zhu Lin, Chen Qiang, Xu Kun. Toughening Mechanisms of High Strength Double Network Hydrogels [J]. Progress in Chemistry, 2014, 26(06): 1032-1038.
[11] Gao Youzhi, Wang Meng, Yan Fanyong, Chen Li. Preparing Composite of Hydrogels with Metal Nanoparticles and Its Application as Catalyst [J]. Progress in Chemistry, 2014, 26(04): 626-637.
[12] Song Lifeng, Zhao Jin, Yuan Xiaoyan. Strengthening of Hydrogels Based on Polysaccharide and Polypeptide [J]. Progress in Chemistry, 2014, 26(0203): 385-393.
[13] Jiang Caiyun, Qian Weiping. Composites of Intelligent PNIPAM Hydrogels and Au Nanoparticles [J]. Progress in Chemistry, 2010, 22(08): 1626-1632.
[14] . Research Progress of Hydrogel-modified Bio-Electrodes [J]. Progress in Chemistry, 2010, 22(06): 1195-1202.
[15] . Cyclodextrin-Containing Supramolecular Hydrogels [J]. Progress in Chemistry, 2010, 22(05): 916-926.