中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (10): 1887-1899 DOI: 10.7536/PC200921 Previous Articles   Next Articles

• Review •

Development and Application of DNA Hydrogel in Biosensing

Kaiyu Zhang1, Guowei Gao1,2, Yansheng Li1,3(), Yu Song1, Yongqiang Wen4(), Xueji Zhang5   

  1. 1 Key Laboratory of Sensors, Beijing Information Science and Technology University,Beijing 100101,China
    2 MOE Key Laboratory of Modern Measurement and Control Technology, Beijing Information Science and Technology University,Beijing 100192, China
    3 CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences,Beijing 100190, China
    4 School of Chemistry and Biological Engineering,University of Science and Technology Beijing,Beijing 100083, China
    5 School of Biomedical Engineering, Shengzhen University,Shenzhen 518060, China
  • Received: Revised: Online: Published:
  • Contact: Yansheng Li, Yongqiang Wen
  • Supported by:
    CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Chinese Academy of Sciences and National Natural Science Foundation of China(61901042); CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Chinese Academy of Sciences and National Natural Science Foundation of China(21975019); CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Chinese Academy of Sciences and National Natural Science Foundation of China(31870816)
Richhtml ( 79 ) PDF ( 1192 ) Cited
Export

EndNote

Ris

BibTeX

Deoxyribonucleic acid(DNA) is an important biological molecule with many unique properties such as information transmission, molecular recognition, editability, etc. DNA hydrogels have the advantages of both DNA molecules and the hydrogel materials, and can introduce other nanomaterials to obtain multifunctional hybrid hydrogels. Compared with traditional hydrogels, DNA hydrogels have good specific recognition ability and the properties that can be designed on demand, so they are widely used in the field of biosensing. This article reviews the synthesis, response mechanism and application of DNA hydrogels in the field of sensing. According to different synthesis methods, DNA hydrogels can be divided into linear DNA strand interwinded hydrogel, dendritic DNA self-assembly hydrogel, and hybrid DNA hydrogel. According to the different sensing mechanism, DNA hydrogels can be divided into encapsulation type DNA hydrogels and non-encapsulation type DNA hydrogels. The encapsulation method is divided into: enzyme embedding release, antigen-antibody embedding release, and nanomaterial embedding release. This article summarizes the application and research of DNA hydrogels in the detection of heavy metal ions, nucleic acid detection, glucose detection, protein and metabolic small molecule detection, and cell detection in recent years, and finally prospects its future development.

Contents

1 Introduction

2 Synthesis of DNA Hydrogel

2.1 Ultralong linear DNA intertwined hydrogel

2.2 Dendritic DNA assembled hydrogel

2.3 Hybrid DNA hydrogel

3 Biosensing mechanisms

3.1 Encapsulation

3.2 Non-encapsulation

4 Application of DNA hydrogel biosensing device

4.1 Environmental monitoring

4.2 DNA hydrogel for medical sensing

5 Conclusion and outlook

Fig. 1 Design principle of the DNA initiator triggered self-assembly process[41].(A) Structures of the hairpin strands H1-dimer and H2, and strand Ⅰ.(B) Details of the C-HCR process initiated by Ⅰ.(C) Hydrogel formation process
Fig. 2 DNA hydrogel working process[55]. When adenosine is present, the binding of adenosine to Acry-A-Apt results in complete cleavage of the DNA hydrogel, releasing G-quadruplex/heme and Au @HKUST-1
Fig. 3 (A) Schematic illustration of the DNA-based hydrogel for the detection of Pb2+.(B) DNA hydrogel film is formed[65]
Fig. 4 Specificity of DNA hydrogel.(A) Response of hydrogel to 1 mM cations and 1 μM Pb2+.(B) The corresponding absorbance at 520 nm of the supernatant.(C) Responses of DNA hydrogel to different concentrations of lead ion in seawater[80]
Fig. 5 (A) The working principle of the target response DNA hydrogel volume bar graph chip;(B) Different travel distance of the ink bar with different concentration of Pb2+ in buffer and digested blood sample;(C) The linear response of ink bar distance to Pb2+ concentration[80]
Fig.6 Detection process of microcystin-LR.(A) MC-LR responds to the synthesis process of hydrogel.(B)The specific aptamers competitively binded with the MC-LR and form target-aptamer complexes due to high affinity between aptamer and target, causing the disintegration of hydrogels and the release of preloaded Cu/Au/Pt TNs[84]
Fig. 7 (A) The designing/working principle of the self-driven DNA hydrogel sensor;(B) The preparation process of the self-driven DNA hydrogel sensor;(C) The principle of the visual and quantitative detection of miRNA by using the proposed sensor[87]
Fig. 8 Schematic depicting the rapid detection of the T-2 toxin with DNA hydrogel[89]. The addition of T-2 toxin changed the structure of aptamers, resulting in the collapse of hydrogels and the formation of large amounts of I2. The AuNRs with different aspect ratio and color were obtained by etching AuNRs along the longitudinal direction with I2
Fig. 9 Working principle of DNA hydrogel containing embedded AuNPs for visual detection of glucose. In the presence of glucose complex, the DNA hydrogel is disrupted and encapsulated AuNPs are released to the supernatant. The supernatant's red color can be observed by the naked eye[95]
Fig. 10 Schematic of aptamer-ligand responsive nucleic acid/acrylamide hydrogels via the promoter-induced hybridization chain reaction(HCR), which crosslinks hairpin-modified acrylamide chains[97].(A) Preparation of ATP-responsive hydrogel microcapsules;(B) Preparation of cocaine-responsive hydrogel microcapsules;(C) Schematic of the ligand-driven unlocking of the aptamer-bridged hydrogel microcapsules
Fig. 11 (A) DNA hydrogels that are based on branched DNA and built on surfaces adhere specifically cells when they are decorated with bait molecules.(B) The formation of DNA networks on glass surfaces[100]
[1]
Harding S E, Channell G, Phillips-Jones M K. Biochem. Soc. Trans., 2018, 46(5): 1171.

doi: 10.1042/BST20180158
[2]
Seeman N C. J. Theor. Biol., 1982, 99(2): 237.

pmid: 6188926
[3]
Cangialosi A, Yoon C, Liu J Y, Huang Q, Guo J K, Nguyen T D, Gracias D H, Schulman R. Science, 2017, 357(6356): 1126.

doi: 10.1126/science.aan3925 pmid: 28912239
[4]
Li F, Tang J P, Geng J H, Luo D, Yang D Y. Prog. Polym. Sci., 2019, 98: 101163.

doi: 10.1016/j.progpolymsci.2019.101163
[5]
Wang Y Y, Ma B, Abdeen A A, Chen G J, Xie R S, Saha K, Gong S Q. ACS Appl. Mater. Interfaces, 2018, 10(38): 31915.

doi: 10.1021/acsami.8b09642
[6]
Nishikawa M, Ogawa K, Umeki Y, Mohri K, Kawasaki Y, Watanabe H, Takahashi N, Kusuki E, Takahashi R, Takahashi Y, Takakura Y. J. Control. Release, 2014, 180: 25.

doi: 10.1016/j.jconrel.2014.02.001
[7]
Gao X, Li X Y, Sun X Z, Zhang J Y, Zhao Y C, Liu X J, Li F. Anal. Chem., 2020, 92(6): 4592.

doi: 10.1021/acs.analchem.0c00018
[8]
Onaciu, Munteanu, Moldovan, Moldovan, Berindan-Neagoe. Pharmaceutics, 2019, 11(9): 432.

doi: 10.3390/pharmaceutics11090432
[9]
Townsend J M, Beck E C, Gehrke S H, Berkland C J, Detamore M S. Prog. Polym. Sci., 2019, 91: 126.

doi: 10.1016/j.progpolymsci.2019.01.003 pmid: 31571701
[10]
Tang J P, Yao C, Gu Z, Jung S, Luo D, Yang D Y. Angew. Chem. Int. Ed., 2020, 59(6): 2490.

doi: 10.1002/anie.v59.6
[11]
Li F Y, Lyu D Y, Liu S, Guo W W. Adv. Mater., 2020, 32(3): 1806538.

doi: 10.1002/adma.v32.3
[12]
Li J, Mo L T, Lu C H, Fu T, Yang H H, Tan W H. Chem. Soc. Rev., 2016, 45(5): 1410.
[13]
Ejaz A, Shuman S. J. Biol. Chem., 2018, 293(45): 17491.

doi: 10.1074/jbc.RA118.005296
[14]
Heimes M, Kolmar L, Brieke C. Chem. Commun., 2018, 54(90): 12718.

doi: 10.1039/C8CC05913F
[15]
Li Q Y, Xie N B, Xiong J, Yuan B F, Feng Y Q. Anal. Chem., 2018, 90(24): 14622.

doi: 10.1021/acs.analchem.8b04833
[16]
Li C, Rowland M J, Shao Y, Cao T Y, Chen C, Jia H Y, Zhou X, Yang Z Q, Scherman O A, Liu D S. Adv. Mater., 2015, 27(21): 3298.

doi: 10.1002/adma.v27.21
[17]
Tang D P, Xia B Y, Tang Y, Zhang J, Zhou Q. Microchimica Acta, 2019, 186(5): 1.

doi: 10.1007/s00604-018-3127-5
[18]
Zhou L P, Jiao X Y, Liu S Y, Hao M D, Cheng S Y, Zhang P X, Wen Y Q. J. Mater. Chem. B, 2020, 8(10): 1991.
[19]
Abou Assi H, Garavís M, González C, Damha M J. Nucleic Acids Res., 2018, 46(16): 8038.
[20]
Rhee S, Han Z J, Liu K L, Miles H T, Davies D R. Biochemistry, 1999, 38(51): 16810.

pmid: 10606513
[21]
Phan A T. Nucleic Acids Res., 2002, 30(21): 4618.

doi: 10.1093/nar/gkf597
[22]
Huppert J L, Balasubramanian S. Nucleic Acids Res., 2007, 35(2): 406.

pmid: 17169996
[23]
Hu Y W, Cecconello A, Idili A, Ricci F, Willner I. Angew. Chem. Int. Ed., 2017, 56(48): 15210.
[24]
Hasuike E, Akimoto A M, Kuroda R, Matsukawa K, Hiruta Y, Kanazawa H, Yoshida R. Chem. Commun., 2017, 53(21): 3142.

doi: 10.1039/C7CC00279C
[25]
Li T, Wang E K, Dong S J. J. Am. Chem. Soc., 2009, 131(42): 15082.

doi: 10.1021/ja9051075
[26]
Pan F, Roland C, Sagui C. Nucleic Acids Res., 2014, 42(22): 13981.
[27]
Zhang Z L, Wu Y Y, Xi K, Sang J P, Tan Z J. Biophys. J., 2017, 113(3): 517.
[28]
Wang C, Fadeev M, Vázquez-González M, Willner I. Adv. Funct. Mater., 2018, 28(35): 1803111.

doi: 10.1002/adfm.v28.35
[29]
Yang D Y, Hartman M R, Derrien T L, Hamada S, An D, Yancey K G, Cheng R, Ma M L, Luo D. Acc. Chem. Res., 2014, 47(6): 1902.

doi: 10.1021/ar5001082
[30]
Zhang Z K, Liu Y, Liu P F, Yang L, Jiang X Y, Luo D, Yang D Y. Nanoscale, 2017, 9(48): 19367.

doi: 10.1039/C7NR07337B
[31]
Li J, Yu J T, Huang Y S, Zhao H R, Tian L L. ACS Appl. Mater. Interfaces, 2018, 10(31): 26075.

doi: 10.1021/acsami.8b09152
[32]
Li F, Dong Y H, Zhang Z K, Lv M, Wang Z, Ruan X H, Yang D Y. Biosens. Bioelectron., 2018, 117: 562.

doi: 10.1016/j.bios.2018.06.053
[33]
Liao R K, Yang P L, Wu W Y, Luo D, Yang D Y. Environ. Sci. Technol., 2018, 52(4): 1695.

doi: 10.1021/acs.est.7b02928
[34]
Yang L, Yao C, Li F, Dong Y H, Zhang Z K, Yang D Y. Small, 2018, 14(16): 1800185.

doi: 10.1002/smll.201800185 pmid: 29575604
[35]
Kim J, Lee J B. Nanoscale Res. Lett., 2016, 11(1): 1.

doi: 10.1186/s11671-015-1209-4
[36]
Nagahara S, Matsuda T. Polym. Gels Netw., 1996, 4(2): 111.

doi: 10.1016/0966-7822(96)00001-9
[37]
Um S H, Lee J B, Park N, Kwon S Y, Umbach C C, Luo D. Nat. Mater., 2006, 5(10): 797.

doi: 10.1038/nmat1741
[38]
Lee J B, Peng S M, Yang D Y, Roh Y H, Funabashi H, Park N, Rice E J, Chen L W, Long R, Wu M M, Luo D. Nat. Nanotechnol., 2012, 7(12): 816.

doi: 10.1038/nnano.2012.211
[39]
Xu W L, Huang Y S, Zhao H R, Li P, Liu G Y, Li J, Zhu C S, Tian L L. Chem. Eur. J., 2017, 23(72): 18276.

doi: 10.1002/chem.201704390
[40]
Nöll T, Wenderhold-Reeb S, Schönherr H, Nöll G. Angew. Chem. Int. Ed., 2017, 56(39): 12004.

doi: 10.1002/anie.201705001
[41]
Wang J B, Chao J, Liu H J, Su S, Wang L H, Huang W, Willner I, Fan C H. Angew. Chem. Int. Ed., 2017, 56(8): 2171.

doi: 10.1002/anie.201610125
[42]
Shin M, Ryu J H, Park J P, Kim K, Yang J W, Lee H. Adv. Funct. Mater., 2015, 25(8): 1270.
[43]
Kahn J S, Hu Y W, Willner I. Acc. Chem. Res., 2017, 50(4): 680.

doi: 10.1021/acs.accounts.6b00542
[44]
Singh S, Mishra A, Kumari R, Sinha K K, Singh M K, Das P. Carbon, 2017, 114: 169.
[45]
Eguchi Y, Kato T, Tanaka T, Maruyama T. Chem. Commun., 2017, 53(43): 5802.

doi: 10.1039/C7CC02435E
[46]
Zhou L, Chen C E, Ren J S, Qu X G. Chem. Commun., 2014, 50(71): 10255.

doi: 10.1039/C4CC04791E
[47]
Geng J H, Yao C, Kou X H, Tang J P, Luo D, Yang D Y. Adv. Healthcare Mater., 2018, 7(5): 1700998.

doi: 10.1002/adhm.v7.5
[48]
Buenger D, Topuz F, Groll J. Prog. Polym. Sci., 2012, 37(12): 1678.

doi: 10.1016/j.progpolymsci.2012.09.001
[49]
Echeverria C, Fernandes S, Godinho M, Borges J, Soares P. Gels, 2018, 4(2): 54.
[50]
Tang L, Gong L, Zhou G Y, Liu L Y, Zhang D, Tang J X, Zheng J. Polymer, 2019, 173: 182.

doi: 10.1016/j.polymer.2019.04.052
[51]
Guebitz G M, Nyanhongo G S. Trends Biotechnol., 2018, 36(10): 1040.

doi: S0167-7799(18)30141-0 pmid: 29914650
[52]
Michaelis L, Menten M L. Biochem. Z., 1912, 49.
[53]
Ishii-Mizuno Y, Umeki Y, Onuki Y, Watanabe H, Takahashi Y, Takakura Y, Nishikawa M. Int. J. Pharm., 2017, 5161-5162: 392.
[54]
Mao Y, Li J X, Yan J M, Ma Y L, Song Y L, Tian T, Liu X, Zhu Z, Zhou L J, Yang C Y. Chem. Commun., 2017, 53(47): 6375.

doi: 10.1039/C7CC01360D
[55]
Lin Y N, Wang X Y, Sun Y L, Dai Y X, Sun W Y, Zhu X D, Liu H, Han R, Gao D D, Luo C N. Sens. Actuat. B: Chem., 2019, 289: 56.

doi: 10.1016/j.snb.2019.03.075
[56]
Bai W, Gariano N A, Spivak D A. J. Am. Chem. Soc., 2013, 135(18): 6977.

doi: 10.1021/ja400576p
[57]
Okumura A, Sato Y, Kyo M, Kawaguchi H. Anal. Biochem., 2005, 339(2): 328.

pmid: 15797574
[58]
Li Y S, Ma Y L, Jiao X Y, Li T Y, Lv Z, Yang C J, Zhang X J, Wen Y Q. Nat. Commun., 2019, 10(1): 1.
[59]
Yang H H, Liu H P, Kang H Z, Tan W H. J. Am. Chem. Soc., 2008, 130(20): 6320.

doi: 10.1021/ja801339w
[60]
Zhu Z, Wu C C, Liu H P, Zou Y, Zhang X L, Kang H Z, Yang C, Tan W H. Angew. Chem. Int. Ed., 2010, 49(6): 1052.

doi: 10.1002/anie.v49:6
[61]
Zhu Z, Guan Z, Jia S, Lei Z, Lin S, Zhang H, Ma Y, Tian Z, Yang C. Angew. Chem. Int. Ed., 2014, 53(46), 12503.
[62]
Lin H X, Zou Y, Huang Y S, Chen J, Zhang W Y, Zhuang Z X, Jenkins G, Yang C J. Chem. Commun., 2011, 47(33): 9312.

doi: 10.1039/c1cc12290h
[63]
Yin B C, Ye B C, Wang H, Zhu Z, Tan W H. Chem. Commun., 2012, 48(9): 1248.

doi: 10.1039/C1CC15639J
[64]
Huang Y S, Fang L T, Zhu Z, Ma Y L, Zhou L J, Chen X, Xu D M, Yang C Y. Biosens. Bioelectron., 2016, 85: 496.

doi: 10.1016/j.bios.2016.05.008
[65]
Khimji I, Kelly E Y, Helwa Y, Hoang M, Liu J W. Methods, 2013, 64(3): 292.

doi: 10.1016/j.ymeth.2013.08.021 pmid: 23978515
[66]
Zhu X L, Mao X X, Wang Z H, Feng C, Chen G F, Li G X. Nano Res., 2017, 10(3): 959.

doi: 10.1007/s12274-016-1354-9
[67]
Pourreza N, Ghomi M. Talanta, 2018, 179: 92.

doi: S0039-9140(17)31075-5 pmid: 29310320
[68]
Mao X X, Chen G F, Wang Z H, Zhang Y G, Zhu X L, Li G X. Chem. Sci., 2018, 9(4): 811.

doi: 10.1039/C7SC03716C
[69]
Wu H L, Wang X Z, He X J, Zhang S B, Liang R B, Shen J. Sci. Total. Environ., 2017, 598: 697.

doi: 10.1016/j.scitotenv.2017.04.150
[70]
Wang R, Li Y. Biosens. Bioelectron., 2013, 42: 148.

doi: 10.1016/j.bios.2012.10.038
[71]
Jiang C, Li Y S, Wang H, Chen D S, Wen Y Q. Sens. Actuat. B: Chem., 2020, 307: 127625.

doi: 10.1016/j.snb.2019.127625
[72]
Elbaz J, Shlyahovsky B, Willner I. Chem. Commun., 2008(13): 1569.
[73]
Li T, Dong S J, Wang E K. Anal. Chem., 2009, 81(6): 2144.

doi: 10.1021/ac900188y
[74]
Zhou W H, Vazin M, Yu T M, Ding J S, Liu J W. Chem. Eur. J., 2016, 22(28): 9835.

doi: 10.1002/chem.201601426
[75]
Liu J W, Lu Y. J. Am. Chem. Soc., 2007, 129(32): 9838.
[76]
Peracchi A. J. Biol. Chem., 2000, 275(16): 11693.

pmid: 10766789
[77]
Mitchell A, Dass C R, Sun L Q, Khachigian L M. Nucleic Acids Res., 2004, 32(10): 3065.

pmid: 15181171
[78]
Dave N, Chan M Y, Huang P J J, Smith B D, Liu J W. J. Am. Chem. Soc., 2010, 132(36): 12668.

doi: 10.1021/ja106098j
[79]
Joseph K A, Dave N, Liu J W. ACS Appl. Mater. Interfaces, 2011, 3(3): 733.

doi: 10.1021/am101068c
[80]
Huang Y S, Ma Y L, Chen Y H, Wu X M, Fang L T, Zhu Z, Yang C J. Anal. Chem., 2014, 86(22): 11434.

doi: 10.1021/ac503540q
[81]
Tan B, Zhao H M, Du L, Gan X R, Quan X. Biosens. Bioelectron., 2016, 83: 267.

doi: 10.1016/j.bios.2016.04.065
[82]
Liu R D, Huang Y S, Ma Y L, Jia S S, Gao M X, Li J X, Zhang H M, Xu D M, Wu M, Chen Y, Zhu Z, Yang C Y. ACS Appl. Mater. Interfaces, 2015, 7(12): 6982.
[83]
Ma Y L, Mao Y, Huang D, He Z, Yan J M, Tian T, Shi Y Z, Song Y L, Li X R, Zhu Z, Zhou L J, Yang C J. Lab on a Chip, 2016, 16(16): 3097.

doi: 10.1039/C6LC00474A
[84]
Wu P, Li S, Ye X S, Ning B A, Bai J L, Peng Y, Li L, Han T, Zhou H Y, Gao Z X, Ding P. Anal. Chimica Acta, 2020, 1134: 96.

doi: 10.1016/j.aca.2020.08.004
[85]
Baeissa A, Dave N, Smith B D, Liu J W. ACS Appl. Mater. Interfaces, 2010, 2(12): 3594.

doi: 10.1021/am100780d
[86]
Sun L P, Hu N, Peng J, Chen L Y, Weng J. Adv. Funct. Mater., 2014, 24(44): 6905.

doi: 10.1002/adfm.201402191
[87]
Wang H, Wang H H, Li Y S, Jiang C, Chen D S, Wen Y Q, Li Z P. Sens. Actuat. B: Chem., 2020, 313: 128036.

doi: 10.1016/j.snb.2020.128036
[88]
Zhang L, Lei J P, Liu L, Li C F, Ju H X. Anal. Chem., 2013, 85(22): 11077.

doi: 10.1021/ac4027725 pmid: 24138007
[89]
Sun Y F, Li S, Chen R P, Wu P, Liang J. Sens. Actuat. B: Chem., 2020, 311: 127912.

doi: 10.1016/j.snb.2020.127912
[90]
Zhang Z, Du J, Li Y L, Wu J C, Yu F, Chen Y. J. Mater. Chem. B, 2017, 5(30): 5974.

doi: 10.1039/C7TB00883J
[91]
Li J, Zheng C, Cansiz S, Wu C C, Xu J H, Cui C, Liu Y, Hou W J, Wang Y Y, Zhang L Q, Teng I T, Yang H H, Tan W H. J. Am. Chem. Soc., 2015, 137(4): 1412.

doi: 10.1021/ja512293f
[92]
Liu S, Su W, Li Y, Zhang L, Ding X. Biosens. Bioelectron., 2018, 103: 1.

doi: 10.1016/j.bios.2017.12.021
[93]
Lai J P, Li S H, Shi X C, Coyne J, Zhao N, Dong F P, Mao Y W, Wang Y. Chem. Sci., 2017, 8(11): 7306.
[94]
Zhong R B, Tang Q, Wang S P, Zhang H B, Zhang F, Xiao M S, Man T T, Qu X M, Li L, Zhang W J, Pei H. Adv. Mater., 2018, 30(12): 1706887.

doi: 10.1002/adma.v30.12
[95]
Xiang B B, He K Y, Zhu R, Liu Z L, Zeng S, Huang Y, Nie Z, Yao S Z. ACS Appl. Mater. Interfaces, 2016, 8(35): 22801.

doi: 10.1021/acsami.6b03572
[96]
Ma Y L, Mao Y, An Y, Tian T, Zhang H M, Yan J M, Zhu Z, Yang C J. Anal., 2018, 143(7): 1679.

doi: 10.1039/C8AN00010G
[97]
Liao W C, Lilienthal S, Kahn J S, Riutin M, Sohn Y S, Nechushtai R, Willner I. Chem. Sci., 2017, 8(5): 3362.

doi: 10.1039/C6SC04770J
[98]
Xu T, Zhao W X, Zhu J M, Albanna M Z, Yoo J J, Atala A. Biomaterials, 2013, 34(1): 130.

doi: 10.1016/j.biomaterials.2012.09.035
[99]
Richards E, Li S H, Chen N C, Battig M R, Wang Y. Biomacromolecules, 2014, 15(12): 4561.

doi: 10.1021/bm501347s pmid: 25329361
[100]
Finke A, Bußkamp H, Manea M, Marx A. Angew. Chem. Int. Ed., 2016, 55(34): 10136.

doi: 10.1002/anie.201604687
[1] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[2] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[3] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[4] Shuang Yang, Xianpeng Yang, Baojun Wang, Lei Wang. Design and Applications of Fluorogenic Nucleic Acid-Based Paper Biosensors [J]. Progress in Chemistry, 2021, 33(12): 2309-2315.
[5] Yaoyao Li, Jingmin Liu, Guozhen Fang, Dongdong Zhang, Qinghua Wang, Shuo Wang. Biosensor Detection and Imaging Based on Persistence Luminescence Nanoprobe [J]. Progress in Chemistry, 2017, 29(6): 667-682.
[6] Hongxi Wang, Yuting Xiong, Guangyan Qing*, Taolei Sun*. Biomolecular Responsive Polymer Materials [J]. Progress in Chemistry, 2017, 29(4): 348-358.
[7] Dekai Ye, Xiaolei Zuo, Chunhai Fan. DNA Nanostructure-Based Engineering of the Biosensing Interface for Biomolecular Detection [J]. Progress in Chemistry, 2017, 29(1): 36-46.
[8] Song Ping, Ye Dekai, Song Shiping, Wang Lihua, Zuo Xiaolei. Preparation and Biological Applications of DNA Hydrogel [J]. Progress in Chemistry, 2016, 28(5): 628-636.
[9] Fu Junqing, Wang Xiaoyan, Li Jinhua, Chen Lingxin. Ion Imprinting Technology for Heavy Metal Ions [J]. Progress in Chemistry, 2016, 28(1): 83-90.
[10] Du Juan, Lu Ying, Wang Yilong, Guo Guiping, Pan Yingjie. Properties and Applications of Janus Nanomaterials [J]. Progress in Chemistry, 2014, 26(12): 2019-2026.
[11] Yu Xiaoping, Wu Jie, Ju Huangxian. The Application of Micro/Nanomotor in Biosensing [J]. Progress in Chemistry, 2014, 26(10): 1712-1719.
[12] Tu Wenwen, Lei Jianping, Ju Huangxian. Nanoassembly and Biosensing of Porphyrins [J]. Progress in Chemistry, 2011, 23(10): 2113-2118.
[13] Jiang Caiyun, Qian Weiping. Composites of Intelligent PNIPAM Hydrogels and Au Nanoparticles [J]. Progress in Chemistry, 2010, 22(08): 1626-1632.
[14] Ma Zhanfang Si Guoli Chu Yiming Chen Ying. Advances on Triangular Silver Nanoprisms [J]. Progress in Chemistry, 2009, 21(09): 1847-1856.
[15] Lu Liping,Zhu Miaoli,Yang Pin**. Progress on Pyrrole-Imidazole Polyamides Specifically Recognizing DNA [J]. Progress in Chemistry, 2004, 16(03): 422-.