中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (6): 1010-1025 DOI: 10.7536/PC200691 Previous Articles   Next Articles

• Review •

Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution

Liqing Li1, Panwang Wu1, Jie Ma2,3,*()   

  1. 1 Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology,Ganzhou 341000, China
    2 Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
    3 Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
  • Received: Revised: Online: Published:
  • Contact: Jie Ma
  • About author:
    * Corresponding author e-mail:
Richhtml ( 41 ) PDF ( 806 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, with the rapid development of industry, the water pollution crisis is one of the major threats facing the world. The development of new environmentally functional materials and technologies to achieve efficient removal of water pollutants is a hot topic in the current research. Double network hydrogels are high molecular polymers with a three-dimensional network structure. They have superior mechanical properties with high strength, can withstand high levels of tensile and compression deformation. The low swelling rate allows the hydrogels to hold a large amount of water, but still maintains the stable morphological and network structures. In addition, due to their unique cross-linking, the hydrogels also have fast self-healing property and significant fatigue performance. The application effect of double network hydrogels as an adsorbent in the removal of heavy metal ions and other pollutants is significantly effective. Therefore, they are adsorption materials with great potential and have attracted widespread attention in the field of water treatment. This paper reviews the physicochemical properties and classifications of the double network hydrogels adsorbents, and their latest application progress to remove heavy metals, antibiotics, dyes and other pollutants from water. Through this review, new ideas, new methods and new technologies are provided for the in-depth development of double network hydrogels adsorbents and engineering applications in water purification.

Contents

1 Introduction

2 Properties

2.1 Mechanical properties

2.2 Swelling properties

2.3 Self-healing properties

3 Classifications

3.1 Organic-organic double network gel

3.2 Organic-inorganic double network gel

3.3 Modified double network gel

4 Removal of pollutants in water

4.1 Heavy metals

4.2 Dyes

4.3 Antibiotics

4.4 Other pollutants

5 Conclusion and outlook

Fig.1 Schematic diagram of standard Double Network hydrogels structure[40]. Copyright 2015, Royal Society of Chemistry
Fig.2 Classification of double network gels
Fig.3 (a) Scheme of CA/PAM double-network hydrogel[92]. Copyright 2015, Springer;(b) Schematics of preparation of gelatin/PAMAAc-Fe3+ hydrogel with tunable mechanical properties by ionic coordination interactions and the chemical structures of monomers used in this work[66]. Copyright 2019, Wiley Online Library;(c) Schematic illustration of the synthesis of tough PHEA/PAMPS DN gels with a contrast double-network structure using a neutral polymer as the first network[50]. Copyright 2012, Wiley Online Library;(d) Preparation of thermoresponsive and recoverable Agar/PAM DN gels[42]. Copyright 2013, Wiley Online Library
Fig.4 (a) The scheme and mechanism of the coagulation-flocculation-sedimentation process form GO/PAA double network and the mechanism of the interaction of GO with dyes, heavy metal ions, and nanoparticles[100]. Copyright 2020, Wiley Online Library;(b) Schematic diagram of formation mechanism of 3D GO/PAA double network[105]. Copyright 2019, Taylor & Francis Group;(c) Schematic diagrams of the self-assembly of HAp into the BC network and the preparation process of the BC-GEL/HAp DN hydrogel [106]. Copyright 2017, Elsevier;(d) Schematic illustration of the synthesis of PSA/GO gel[107]. Copyright 2015, Elsevier
Fig.5 (a) Schematic of one-pot fabrication of agar-PAM/GO DN hydrogels[101]. Copyright 2016, Wiley Online Library;(b) Illustration of preparation and network structure of the Gelatin/PAM/GO NC-DN gel[57]. Copyright 2018, Elsevier;(c) Preparation route of the SA/PVA/GO hydrogels[114]. Copyright 2017, Royal Society of Chemistry;(d) Schematic illustration of CA/PAA/GO DNC gel preparation[33]. Copyright 2020, Elsevier
Table 1 The Comparison of Adsorption for heavy metal ions by various double network gel adsorbents
Year Double Network hydrogels Adsorbed pollutant Maximum adsorption capacity(mg/g) Regenerability Kinetic model Adsorption isotherm Adsorption thermodynamics adsorption mechanism ref
2012 PAA/SiO2 Cu(Ⅱ)
Cr2 O 7 2 -
690.00
19.10
- - Freundlich - Electrostatic interactions 31
2015 PVA/PAA Cd(Ⅱ)
Pb(Ⅱ)
194.99
115.88
After 5 adsorption-desorption cycles, the removal rate remained nearly 100% P2 Langmuir Spontaneous and endothermic Ion exchange 82
2015 PSA/GO Cd(Ⅱ)
Mn(Ⅱ)
238.30
165.50
After 4 cycles, the removal efficiency was maintained at about 85% P2 Langmuir Spontaneous and endothermic Electrostatic interactions and ion exchange 107
2016 Alginate/RGO Cu(Ⅱ)
Cr2 O 7 2 -
169.50
72.46
After 10 cycles, the adsorption capacities of Cu2+and Cr2 O 7 2 - were maintained at 92.12 mg/g and 48.23 mg/g, respectively - Langmuir Spontaneous and endothermic Electrostatic interactions 17
2016 N H 2 a -
Starch/PAA
Cd(Ⅱ) 256.40 After 5 cycles, the removal efficiency decreased slightly to 97.7% P2 Langmuir Spontaneous and endothermic Chemisorption 90
2017 CTSb/PAM Cd(Ⅱ)
Cu(Ⅱ)
Pb(Ⅱ)
86.00
99.44
138.41
After 5 cycles, the removal efficiency decreases by less than 3% P2 Langmuir Spontaneous and endothermic Ion exchange 87
2018 Cellulose/PAM Cd(Ⅱ)
Cu(Ⅱ)
Pb(Ⅱ)
198.48
138.90
382.80
After 10 cycles, the observed adsorption difference was negligible P2 Langmuir Spontaneous and endothermic Electrostatic interactions and ion exchange 88
2018 Jute/PAA Pb(Ⅱ)
Cd(Ⅱ)
542.9
401.7
After 5 cycles, the removal efficiency remained 81% and 94% respectively P2 Langmuir Spontaneous and endothermic Chemisorption 81
2018 PAA/HSc Pb(Ⅱ)
Cu(Ⅱ)
Cd(Ⅱ)
360.5
151.00
412.76
After 5 cycles, the adsorption capacity of the three decreased by only 7%, 3% and 1% respectively Elovich Langmuir-Freundlich Spontaneous and endothermic Coordination interaction and
electrostatic interactions
27
2018 PVA/PAMPS Pb(Ⅱ)
Cd(Ⅱ)
340.00
155.10
After 5 cycles, the removal efficiency remained 94% and 93%, respectively P2 Langmuir Spontaneous and endothermic Ion exchange
and complexation
129
2018 GO/PAA aerogeld Cu(Ⅱ) 390.34 After 7 cycles, the removal efficiency was still over 95% P2 Langmuir - - 130
2018 GO/SA Mn(Ⅱ) 56.49 After 7 cycles, the adsorption capacity remained unchanged at 18.11 mg/g P2 Freundlich Spontaneous and endothermic - 29
2019 RH-CTSe/ PAM Pb(Ⅱ)
Cu(Ⅱ)
Cd(Ⅱ)
374.32
196.68
268.98
After 5 cycles, the adsorption rate decreased by only 2.3%, 1.8% and 3.1%, respectively P2 Freundlich Spontaneous and endothermic Chelation or coordination interaction 32
2019 CMC/PEI Cr(Ⅵ) 312.46 After four cycles, the removal rate decreased by 8.70% P2 Freundlich Spontaneous and endothermic Electrostatic attraction, redox, coordination and sediment 28
2020 GO-CA/PAA Cd(Ⅱ) 119.98 After 5 cycles, the adsorption capacity of the adsorbent is almost not reduced P2 Langmuir Spontaneous and endothermic Ion exchange 33
2020 TR f /PAA Cr(Ⅲ)
Pb(Ⅱ)
Fe(Ⅲ)
206.19
253.16
94.88
After 7 cycles, the adsorption efficiency of Cr(Ⅲ), Fe(Ⅲ) and Pb(Ⅱ) decreased by 9.9%, 5.0% and 16.7% respectively P2 Freundlich - Chelation, coordination, ion
exchange and
electrostatic
interactions
30
Year Double Network hydrogels Adsorbed pollutant Maximum adsorption capacity(mg/g) Regenerability Kinetic model Adsorption isotherm Adsorption thermodynamics adsorption mechanism ref
2020 N H 2 g -GR/Alginate Cu(Ⅱ) 153.91 - P2 Langmuir - Chemisorption 76
2020 CTS/SA Pb(Ⅱ)
Cu(Ⅱ)
Cd(Ⅱ)
400.90
71.10
99.46
- P1,P2 Freundlich Spontaneous and endothermic Electrostatic interactions, coordination interaction 131
2020 SA/PAA/nZnh Pb(Ⅱ) 200.00 - P2 Freundlich Spontaneous and exothermic Chemisorption 109
Table 2 The Comparison of Adsorption for dyes by various double network gel adsorbents
Year Double Network hydrogels Adsorbed pollutant Maximum adsorption capacity(mg/g) Regenerability Kinetic model Adsorption isotherm Adsorption thermodynamics adsorption mechanism ref
2013 GO-SA/PAM Cationic dyes and anionic dyes - - - - - - 14
2014 SA/SAPa RB4 245 After 5 sorption-desorption cycles, the adsorption capacity remained almost unchanged P1 Langmuir Spontaneous and endothermic - 137
2016 Alginate/GO MB 2300 After 10 cycles, the removal rate was reduced to 60.2% P2 Langmuir - Electrostatic interactions, hydrogen bond, hydrophobic interactions 93
2018 Alginate/PVAb MB 313.09 - P2 Langmuir Spontaneous and endothermic - 49
2018 Alginate/
PAMc
MB 1124 After 5 cycles, the adsorption removal rate was slightly reduced P2 Langmuir - Electrostatic interactions 138
2018 PNIPAM@
PS/CS/PAA
Cationic dyes - - P2 Langmuir - Electrostatic interactions 122
2019 CA/PVA MB 1437.48 - P2 Langmuir Spontaneous and endothermic Electrostatic interactions 22
2019 starch/PVA/borax MB 144.68 - - - - Electrostatic interactions 121
2019 GO/PAA CV
MB
851.31
771.14
- P2 Langmuir,
D-R
- Electrostatic interactions, π-π
interactions
105
2019 Alginate/PAM/OA-POSS MB 75.41 - P2 Redlich-Peterson Spontaneous and endothermic - 21
2020 GO/PAA MB - - - - - Electrostatic interactions, π-π
interactions
100
2020 GO/AAMd MB
Rh B
- After 10~14 cycles, the
adsorption efficiency remained almost unchanged
P2 - - Electrostatic interactions, π-π
interactions
23
2020 Starch/PAA MB
CR
133.65
64.73
- P2 Freundlich - Electrostatic interactions 75
Table 3 The Comparison of Adsorption for antibiotics by various double network gel adsorbents
[1]
Godiya C B, Cheng X, Li D W, Chen Z, Lu X L. J. Hazard. Mater., 2019, 364:28.

doi: 10.1016/j.jhazmat.2018.09.076
[2]
Fu F L, Wang Q. J. Environ. Manag., 2011, 92(3):407.

doi: 10.1016/j.jenvman.2010.11.011
[3]
Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J, Mayes A M. Nature, 2008, 452:301.

doi: 10.1038/nature06599
[4]
Ali I. Chem. Rev., 2012, 112:5073.

doi: 10.1021/cr300133d
[5]
Uddin M K. Chem. Eng. J., 2017, 308:438.

doi: 10.1016/j.cej.2016.09.029
[6]
Wang Y M, Peng C S, Padilla-Ortega E, Robledo-Cabrera A, López-Valdivieso A. J. Environ. Chem. Eng., 2020, 8:104031.

doi: 10.1016/j.jece.2020.104031
[7]
Siyal A A, Shamsuddin M R, Low A, Rabat N E. J. Environ. Manag., 2020, 254:109797.

doi: 10.1016/j.jenvman.2019.109797
[8]
Myung D, Waters D, Wiseman M, Duhamel P E, Noolandi J, Ta C N, Frank C W. Polym. Adv. Technol., 2008, 19:647.

doi: 10.1002/(ISSN)1099-1581
[9]
Zhu H, Yang X, Cranston E D, Zhu S P. Adv. Mater., 2016, 28:7652.

doi: 10.1002/adma.201601351
[10]
Lei C S, Zhu X F, Zhu B C, Jiang C J, Le Y, Yu J G. J. Hazard. Mater., 2017, 321:801.

doi: 10.1016/j.jhazmat.2016.09.070
[11]
Brandl F, Sommer F, Goepferich A. Biomaterials, 2007, 28:134.

doi: 10.1016/j.biomaterials.2006.09.017
[12]
Vashist A, Vashist A, Gupta Y K, Ahmad S. J. Mater. Chem. B, 2014, 2:147.

doi: 10.1039/c3tb21016b pmid: 32261602
[13]
Malda J, Visser J, Melchels F P, Jüngst T, Hennink W E, Dhert W J A, Groll J, Hutmacher D W. Adv. Mater., 2013, 25:5011.

doi: 10.1002/adma.201302042
[14]
Fan J C, Shi Z X, Lian M, Li H, Yin J. J. Mater. Chem. A, 2013, 1:7433.

doi: 10.1039/c3ta10639j
[15]
Tanaka Y, Gong J P, Osada Y. Prog. Polym. Sci., 2005, 30:1.

doi: 10.1016/j.progpolymsci.2004.11.003
[16]
Gong J P, Katsuyama Y, Kurokawa T, Osada Y. Adv. Mater., 2003, 15:1155.

doi: 10.1002/adma.200304907
[17]
Zhuang Y, Yu F, Chen H, Zheng J, Ma J, Chen J H. J. Mater. Chem. A, 2016, 4:10885.

doi: 10.1039/C6TA02738E
[18]
Tanaka Y, Kuwabara R, Na Y H, Kurokawa T, Gong J P, Osada Y. J. Phys. Chem. B, 2005, 109:11559.

doi: 10.1021/jp0500790
[19]
Na Y H, Tanaka Y, Kawauchi Y, Furukawa H, Sumiyoshi T, Gong J P, Osada Y. Macromolecules, 2006, 39:4641.

doi: 10.1021/ma060568d
[20]
Gong J P. Soft Matter, 2010, 6:2583.

doi: 10.1039/b924290b
[21]
Bahrami Z, Akbari A, Eftekhari-Sis B. Int. J. Biol. Macromol., 2019, 129:187.

doi: S0141-8130(18)34906-7 pmid: 30742927
[22]
Kong Y, Zhuang Y, Han Z Y, Yu J W, Shi B Y, Han K, Hao H T. J. Environ. Sci., 2019, 78:81.

doi: 10.1016/j.jes.2018.07.006
[23]
Sahoo S D, Prasad E. Soft Matter, 2020, 16:2075.

doi: 10.1039/C9SM02525A
[24]
Lei K, Li Z, Zhu D D, Sun C Y, Sun Y L, Yang C C, Zheng Z, Wang X L. J. Mater. Chem. B, 2020, 8:794.

doi: 10.1039/C9TB01679A
[25]
Tarashi S, Nazockdast H, Sodeifian G. Polymer, 2020, 188:122138.

doi: 10.1016/j.polymer.2019.122138
[26]
Bi S C, Wang P J, Hu S H, Li S K, Pang J H, Zhou Z Z, Sun G H, Huang L, Cheng X J, Xing S C, Chen X G. Carbohydr. Polym., 2019, 224:115176.

doi: 10.1016/j.carbpol.2019.115176
[27]
Ma J H, Luo J M, Liu Y T, Wei Y F, Cai T, Yu X W, Liu H, Liu C B, Crittenden J C. J. Mater. Chem. A, 2018, 6:20110.

doi: 10.1039/C8TA07250G
[28]
Song L, Liu F Q, Zhu C Q, Li A M. Chem. Eng. J., 2019, 369:641.

doi: 10.1016/j.cej.2019.03.126
[29]
Yang X Z, Zhou T Z, Ren B Z, Hursthouse A, Zhang Y Z. Sci. Rep., 2018, 8:10717.

doi: 10.1038/s41598-018-29133-y
[30]
Zhang S Z, Liu C Z, Yuan Y K, Fan M H, Zhang D D, Wang D F, Xu Y. Bioresour. Technol., 2020, 311:123520.

doi: 10.1016/j.biortech.2020.123520
[31]
Fei C L, Huang D Q, Feng S. J. Polym. Res., 2012, 19:9929.

doi: 10.1007/s10965-012-9929-y
[32]
Ma J H, Li T, Liu Y T, Cai T, Wei Y F, Dong W Y, Chen H. Bioresour. Technol., 2019,290.
[33]
Tang J X, Huang J M, Zhou G Y, Liu S H. J. Chem. Thermodyn., 2020, 141:105918.

doi: 10.1016/j.jct.2019.105918
[34]
Chen Q, Zhu L, Chen H, Yan H L, Huang L N, Yang J, Zheng J. Adv. Funct. Mater., 2015, 25:1598.

doi: 10.1002/adfm.201404357
[35]
Yan X Q, Chen Q, Zhu L, Chen H, Wei D D, Chen F, Tang Z Q, Yang J, Zheng J. J. Mater. Chem. B, 2017, 5:7683.

doi: 10.1039/C7TB01780D
[36]
Wei D D, Yang J, Zhu L, Chen F, Tang Z Q, Qin G, Chen Q. Polym. Test., 2018, 69:167.

doi: 10.1016/j.polymertesting.2018.05.025
[37]
Zhou L J, Pei X J, Fang K, Zhang R, Fu J. Polymer, 2020, 192:122319.

doi: 10.1016/j.polymer.2020.122319
[38]
Zheng Q F, Zhao L Y, Wang J, Wang S, Liu Y X, Liu X F. Colloids Surfaces A: Physicochem. Eng. Aspects, 2020, 589:124402.

doi: 10.1016/j.colsurfa.2019.124402
[39]
Zhao L Y, Zheng Q F, Liu Y X, Wang S, Wang J, Liu X F. Eur. Polym. J., 2020, 124:109474.

doi: 10.1016/j.eurpolymj.2020.109474
[40]
Chen Q, Chen H, Zhu L, Zheng J. Macromol. Chem. Phys., 2016, 217:1017.

doi: 10.1002/macp.v217.9
[41]
Sun T L, Kurokawa T, Kuroda S, Ihsan A B, Akasaki T, Sato K, Haque M A, Nakajima T, Gong J P. Nat. Mater., 2013, 12:932.

doi: 10.1038/nmat3713
[42]
Chen Q, Zhu L, Zhao C, Wang Q M, Zheng J. Adv. Mater., 2013, 25:4171.

doi: 10.1002/adma.201300817
[43]
Sun J Y, Zhao X H, Illeperuma W R K, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J, Suo Z G.. Nature, 2012, 489:133.

doi: 10.1038/nature11409
[44]
Yu H C, Li C Y, Du M, Song Y H, Wu Z L, Zheng Q. Macromolecules, 2019, 52:629.

doi: 10.1021/acs.macromol.8b02269
[45]
Gong J P. Science, 2014, 344:161.

doi: 10.1126/science.1252389
[46]
Chen Q, Zhu L, Huang L N, Chen H, Xu K, Tan Y, Wang P X, Zheng J. Macromolecules, 2014, 47:2140.

doi: 10.1021/ma402542r
[47]
Webber R E, Creton C, Brown H R, Gong J P. Macromolecules, 2007, 40:2919.

doi: 10.1021/ma062924y
[48]
Zhuang Y, Yu F, Ma J, Chen J H. J. Colloid Interface Sci., 2017, 507:250.

doi: 10.1016/j.jcis.2017.07.033
[49]
Liu C Y, Liu H Y, Xiong T H, Xu A R, Pan B L, Tang K Y. Polymers, 2018, 10:835.

doi: 10.3390/polym10080835
[50]
Nakajima T, Sato H, Zhao Y, Kawahara S, Kurokawa T, Sugahara K, Gong J P. Adv. Funct. Mater., 2012, 22:4426.

doi: 10.1002/adfm.v22.21
[51]
Nakajima T, Fukuda Y, Kurokawa T, Sakai T, Chung U I, Gong J P. ACS Macro Lett., 2013, 2:518.

doi: 10.1021/mz4002047
[52]
Zhang Y, Liu Y, Wang X, Sun Z, Ma J, Wu T, Xing F, Gao J. Carbohydr. Polym., 2014, 101:392.

doi: 10.1016/j.carbpol.2013.09.066
[53]
Yuan N X, Xu L, Wang H L, Fu Y P, Zhang Z, Liu L, Wang C L, Zhao J H, Rong J H. ACS Appl. Mater. Interfaces, 2016, 8:34034.

doi: 10.1021/acsami.6b12243
[54]
Zhang H J, Sun T L, Zhang A K, Ikura Y, Nakajima T, Nonoyama T, Kurokawa T, Ito O, Ishitobi H, Gong J P. Adv. Mater., 2016, 28:4884.

doi: 10.1002/adma.v28.24
[55]
Chen H, Liu Y L, Ren B P, Zhang Y X, Ma J, Xu L J, Chen Q, Zheng J. Adv. Funct. Mater., 2017, 27:1703086.

doi: 10.1002/adfm.v27.44
[56]
Chen W P, Hao D Z, Hao W J, Guo X L, Jiang L. ACS Appl. Mater. Interfaces, 2018, 10(1):1258.

doi: 10.1021/acsami.7b17118
[57]
Yan X Q, Yang J, Chen F, Zhu L, Tang Z Q, Qin G, Chen Q, Chen G M. Compos. Sci. Technol., 2018, 163:81.

doi: 10.1016/j.compscitech.2018.05.011
[58]
Li Z Q, Shen J F, Ma H W, Lu X, Shi M, Li N, Ye M X. Mater. Sci. Eng.: C, 2013, 33:1951.

doi: 10.1016/j.msec.2013.01.004
[59]
Huang W S, Shen J F, Li N, Ye M X. Polym. Eng. Sci., 2015, 55:1361.

doi: 10.1002/pen.24076
[60]
Mohammadi S, Keshvari H, Eskandari M, Faghihi S. React. Funct. Polym., 2016, 106:120.

doi: 10.1016/j.reactfunctpolym.2016.07.015
[61]
Dai X Y, Zhang Y Y, Gao L N, Bai T, Wang W, Cui Y L, Liu W G. Adv. Mater., 2015, 27:3566.

doi: 10.1002/adma.v27.23
[62]
Kamata H, Akagi Y, Kayasuga-Kariya Y, Chung U I, Sakai T. Science, 2014, 343:873.

doi: 10.1126/science.1247811
[63]
Ducrot E, Chen Y, Bulters M, Sijbesma R P, Creton C. Science, 2014, 344:186.

doi: 10.1126/science.1248494
[64]
Cong H P, Wang P, Yu S H. Chem. Mater., 2013, 25:3357.

doi: 10.1021/cm401919c
[65]
Zhang H J, Zhai D D, He Y. RSC Adv., 2014, 4:44600.

doi: 10.1039/C4RA07576E
[66]
Fan X L, Liu H, Wang J R, Tang K Y. J. Appl. Polym. Sci., 2020, 137:48805.

doi: 10.1002/app.v137.24
[67]
Nakajima T, Furukawa H, Tanaka Y, Kurokawa T, Osada Y, Gong J P. Macromolecules, 2009, 42:2184.

doi: 10.1021/ma802148p
[68]
Zhao Y, Nakajima T, Yang J J, Kurokawa T, Liu J, Lu J S, Mizumoto S, Sugahara K, Kitamura N, Yasuda K, Daniels A U D, Gong J P. Adv. Mater., 2014, 26:436.

doi: 10.1002/adma.201303387
[69]
Chen Q, Wei D D, Chen H, Zhu L, Jiao C C, Liu G, Huang L N, Yang J, Wang L B, Zheng J. Macromolecules, 2015, 48:8003.

doi: 10.1021/acs.macromol.5b01938
[70]
Chen Q, Chen H, Zhu L, Zheng J. J. Mater. Chem. B, 2015, 3:3654.

doi: 10.1039/C5TB00123D
[71]
Haque M A, Kurokawa T, Kamita G, Gong J P. Macromolecules, 2011, 44:8916.

doi: 10.1021/ma201653t
[72]
Wu D B, Xu J Y, Chen Y, Yi M R, Wang Q G. Carbohydr. Polym., 2018, 181:167.

doi: 10.1016/j.carbpol.2017.10.076
[73]
Lin P, Ma S H, Wang X L, Zhou F. Adv. Mater., 2015, 27:2054.

doi: 10.1002/adma.v27.12
[74]
Kang M M, Liu S L, Oderinde O, Yao F, Fu G D, Zhang Z H. Mater. Des., 2018, 148:96.

doi: 10.1016/j.matdes.2018.03.047
[75]
Sarmah D, Karak N. Carbohydr. Polym., 2020, 242:116320.

doi: 10.1016/j.carbpol.2020.116320
[76]
Sun Y R, Zhou T, Li W Y, Yu F, Ma J. Chemosphere, 2020, 241:125110.

doi: 10.1016/j.chemosphere.2019.125110
[77]
Gong Z Y, Zhang G P, Zeng X L, Li J H, Li G, Huang W P, Sun R, Wong C. ACS Appl. Mater. Interfaces, 2016, 8:24030.

doi: 10.1021/acsami.6b05627
[78]
Zhang H J, Xia H S, Zhao Y. ACS Macro Lett., 2012, 1:1233.

doi: 10.1021/mz300451r
[79]
Tuncaboylu D C, Sari M, Oppermann W, Okay O. Macromolecules, 2011, 44:4997.

doi: 10.1021/ma200579v
[80]
Taylor D L, in het Panhuis M. Adv. Mater., 2016, 28:9060.

doi: 10.1002/adma.v28.41
[81]
Zhou G Y, Luo J M, Liu C B, Chu L, Crittenden J. Water Res., 2018, 131:246.

doi: 10.1016/j.watres.2017.12.067
[82]
Chu L, Liu C B, Zhou G Y, Xu R, Tang Y H, Zeng Z B, Luo S L. J. Hazard. Mater., 2015, 300:153.

doi: 10.1016/j.jhazmat.2015.06.070
[83]
Yue Y Y, Wang X H, Han J Q, Yu L, Chen J Q, Wu Q L, Jiang J C. Carbohydr. Polym., 2019, 206:289.

doi: 10.1016/j.carbpol.2018.10.105
[84]
Peak C W, Wilker J J, Schmidt G. Colloid Polym. Sci., 2013, 291:2031.

doi: 10.1007/s00396-013-3021-y
[85]
Gao G R, Du G L, Cheng Y J, Fu J. J. Mater. Chem. B, 2014, 2:1539.

doi: 10.1039/c3tb21554g
[86]
Nakayama A, Kakugo A, Gong J P, Osada Y, Takai M, Erata T, Kawano S. Adv. Funct. Mater., 2004, 14:1124.

doi: 10.1002/(ISSN)1616-3028
[87]
Ma J H, Zhou G Y, Chu L, Liu Y T, Liu C B, Luo S L, Wei Y F. ACS Sustainable Chem. Eng., 2017, 5:843.

doi: 10.1021/acssuschemeng.6b02181
[88]
Ma J H, Liu Y T, Ali O, Wei Y F, Zhang S Q, Zhang Y M, Cai T, Liu C B, Luo S L. J. Hazard. Mater., 2018, 344:1034.

doi: 10.1016/j.jhazmat.2017.11.041
[89]
Yu F, Cui T R, Yang C F, Dai X H, Ma J. Chemosphere, 2019, 237:124417.

doi: 10.1016/j.chemosphere.2019.124417
[90]
Zhou G Y, Liu C B, Chu L, Tang Y H, Luo S L. Bioresour. Technol., 2016, 219:451.

doi: 10.1016/j.biortech.2016.07.038
[91]
Li L Q, Zhao J H, Sun Y R, Yu F, Ma J. Chem. Eng. J., 2019, 372:1091.

doi: 10.1016/j.cej.2019.05.007
[92]
Wang J L, Wei J H, Su S H, Qiu J J, Wang S R. J. Mater. Sci., 2015, 50:5458.

doi: 10.1007/s10853-015-9091-0
[93]
Zhuang Y, Yu F, Chen J H, Ma J. J. Environ. Chem. Eng., 2016, 4:147.

doi: 10.1016/j.jece.2015.11.014
[94]
Yasui T, Kamio E, Matsuyama H. Langmuir, 2018, 34:10622.

doi: 10.1021/acs.langmuir.8b01930
[95]
Liang X Q, Wu X, Hu J, Zhao J J, Zeng X C. Commun. Phys., 2018, 1:74.

doi: 10.1038/s42005-018-0078-4
[96]
Yu F, Sun S N, Han S, Zheng J, Ma J. Chem. Eng. J., 2016, 285:588.

doi: 10.1016/j.cej.2015.10.039
[97]
Yusuf M, Elfghi F M, Zaidi S A, Abdullah E C, Khan M A. RSC Adv., 2015, 5:50392.

doi: 10.1039/C5RA07223A
[98]
Liu H Y, Kuila T, Kim N H, Ku B C, Lee J H. J. Mater. Chem. A, 2013, 1:3739.

doi: 10.1039/c3ta01228j
[99]
Huang P, Chen W F, Yan L F. Nanoscale, 2013, 5:6034.

doi: 10.1039/c3nr00214d pmid: 23715534
[100]
Lin S Y, Li Q L, Zhong Y J, Li J, Zhao X L, Wang M, Zhao G K, Pan J L, Zhu H W. Glob. Challenges, 2020, 4:1900051.
[101]
Zhu P, Hu M, Deng Y H, Wang C Y. Adv. Eng. Mater., 2016, 18:1799.

doi: 10.1002/adem.201600272
[102]
Zhang Q, Hou Q X, Huang G X, Fan Q. Environ. Sci. Pollut. Res., 2020, 27:190.

doi: 10.1007/s11356-019-06683-w
[103]
Kamio E, Yasui T, Iida Y, Gong J P, Matsuyama H. Adv. Mater., 2017, 29:1704118.

doi: 10.1002/adma.v29.47
[104]
Li Y S, Hu X M, Cheng W M, Shao Z A, Xue D, Zhao Y Y, Lu W. Fuel, 2020, 263:116779.

doi: 10.1016/j.fuel.2019.116779
[105]
Han Q Q, Li W X, Zhou Z Y, Fang Z, Chen L, Xu Z W, Qian X M. Polym. -Plast. Technol. Mater., 2019, 58:1638.
[106]
Ran J B, Jiang P, Liu S N, Sun G L, Yan P, Shen X Y, Tong H. Mater. Sci. Eng.: C , 2017, 78:130.

doi: 10.1016/j.msec.2017.04.062
[107]
Xu R, Zhou G Y, Tang Y H, Chu L, Liu C B, Zeng Z B, Luo S L. Chem. Eng. J., 2015, 275:179.

doi: 10.1016/j.cej.2015.04.040
[108]
Wang J J, Zhang N, Jiang C Y, Zhang C S. J. Mater. Res., 2018, 33:3898.

doi: 10.1557/jmr.2018.385
[109]
Wang B, Chi H J, Hou Y T, Wang S X, Feng S J, Lv Y, Li Q R, Li M L. Polym. -Plast. Technol. Mater., 2020, 59:1010.
[110]
Nurly H, Yan Q, Song B, Shi Y S. Eur. Polym. J., 2019, 110:114.

doi: 10.1016/j.eurpolymj.2018.11.006
[111]
Pourhashem S, Saba F, Duan J Z, Rashidi A, Guan F, Nezhad E G, Hou B R. J. Ind. Eng. Chem., 2020, 88:29.

doi: 10.1016/j.jiec.2020.04.029
[112]
Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22:3906.

doi: 10.1002/adma.201001068
[113]
Wang Q, Hou R X, Cheng Y J, Fu J. Soft Matter, 2012, 8:6048.

doi: 10.1039/c2sm07233e
[114]
Zhuang Y, Kong Y, Han K, Hao H T, Shi B Y. New J. Chem., 2017, 41:15127.

doi: 10.1039/C7NJ03392C
[115]
Srivastava N K, Majumder C B. J. Hazard. Mater., 2008, 151:1.

pmid: 17997034
[116]
Sud D, Mahajan G, Kaur M. Bioresour. Technol., 2008, 99:6017.

doi: 10.1016/j.biortech.2007.11.064
[117]
Zare E N, Motahari A, Sillanpää M. Environ. Res., 2018, 162:173.

doi: 10.1016/j.envres.2017.12.025
[118]
Carolin C F, Kumar P S, Saravanan A, Joshiba G J, Naushad M. J. Environ. Chem. Eng., 2017, 5:2782.

doi: 10.1016/j.jece.2017.05.029
[119]
Khan M, Lo I M C. Water Res., 2016, 106:259.

doi: 10.1016/j.watres.2016.10.008
[120]
Peralta Ramos M L, González J A, Albornoz S G, Pérez C J, Villanueva M E, Giorgieri S A, Copello G J. Chem. Eng. J., 2016, 285:581.

doi: 10.1016/j.cej.2015.10.035
[121]
Qin Y, Wang J P, Qiu C, Xu X M, Jin Z Y. J. Agric. Food Chem., 2019, 67:3966.

doi: 10.1021/acs.jafc.8b05147
[122]
Zhang R, Peng H W, Zhou T X, Li M, Guo X H, Yao Y. Aust. J. Chem., 2018, 71:846.

doi: 10.1071/CH18228
[123]
Wang Y Z, Wang W B, Wang A Q. Chem. Eng. J., 2013, 228:132.

doi: 10.1016/j.cej.2013.04.090
[124]
Yu F, Li Y, Ma J.. New Polymer Nanocomposites for Environmental Remediation. Amsterdam:Elsevier, 2018: 47.
[125]
Zhang M Y, Song L H, Jiang H F, Li S, Shao Y F, Yang J Q, Li J F. J. Mater. Chem. A, 2017, 5:3434.

doi: 10.1039/C6TA10513K
[126]
Areal M P, Arciniegas M L, Horst F, Lassalle V, Sánchez F H, Alvarez V A, Gonzalez J S. J. Polym. Environ., 2018, 26:3129.

doi: 10.1007/s10924-018-1197-4
[127]
Zhang S J, Shi Q T, Christodoulatos C, Meng X G. Chemosphere, 2019, 233:405.

doi: 10.1016/j.chemosphere.2019.05.190
[128]
Hadi P, Barford J, McKay G. Environ. Sci. Technol., 2013, 47(15):8248.
[129]
Ma J H, Zhang Y M, Tang Y H, Wei Y F, Liu Y T, Liu C B. Water Sci. Technol., 2018, 78:982.

doi: 10.2166/wst.2018.380
[130]
Han Q Q, Chen L, Li W X, Zhou Z Y, Fang Z, Xu Z W, Qian X M. Environ. Sci. Pollut. Res., 2018, 25:34438.

doi: 10.1007/s11356-018-3409-9
[131]
Tang S X, Yang J Y, Lin L Z, Peng K L, Chen Y, Jin S H, Yao W S. Chem. Eng. J., 2020, 393:124728.

doi: 10.1016/j.cej.2020.124728
[132]
Forgacs E, Cserháti T, Oros G. Environ. Int., 2004, 30:953.

pmid: 15196844
[133]
Attia A A, Rashwan W E, Khedr S A. Dye. Pigment., 2006, 69:128.

doi: 10.1016/j.dyepig.2004.07.009
[134]
Hameed B H, Ahmad A A, Aziz N. Chem. Eng. J., 2007, 133:195.

doi: 10.1016/j.cej.2007.01.032
[135]
Mall I D, Srivastava V C, Agarwal N K. Dye. Pigment., 2006, 69:210.

doi: 10.1016/j.dyepig.2005.03.013
[136]
Srivastava S, Sinha R, Roy D. Aquat. Toxicol., 2004, 66:319.

pmid: 15129773
[137]
Dhanapal V, Subramanian K. Carbohydr. Polym., 2014, 108:65.

doi: 10.1016/j.carbpol.2014.03.013
[138]
Zhang P B, Tang A Q, Wang Z H, Lu J Y, Zhu B K, Zhu L P. Chin. J. Polym. Sci., 2018, 36:1251.

doi: 10.1007/s10118-018-2163-2
[139]
Li W X, Cao J, Xiong W P, Yang Z H, Sun S W, Jia M Y, Xu Z Y. Chem. Eng. J., 2020, 392:124844.

doi: 10.1016/j.cej.2020.124844
[140]
Michael I, Rizzo L, McArdell C S, Manaia C M, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D. Water Res., 2013, 47:957.

doi: 10.1016/j.watres.2012.11.027 pmid: 23266388
[141]
Luo Y, Mao D Q, Rysz M, Zhou Q X, Zhang H J, Xu L, Alvarez P J J. Environ. Sci. Technol., 2010, 44:7220.

doi: 10.1021/es100233w pmid: 20509603
[142]
Homem V, Santos L. J. Environ. Manag., 2011, 92:2304.

doi: 10.1016/j.jenvman.2011.05.023
[143]
Gao Y, Li Y, Zhang L, Huang H, Hu J J, Shah S M, Su X G. J. Colloid Interface Sci., 2012, 368:540.

doi: 10.1016/j.jcis.2011.11.015
[144]
Rivera-Utrilla J, Sánchez-Polo M, Ferro-García M Á, Prados-Joya G, Ocampo-Pérez R. Chemosphere, 2013, 93:1268.

doi: 10.1016/j.chemosphere.2013.07.059 pmid: 24025536
[145]
Ma J, Sun Y R, Zhang M Z, Yang M X, Gong X, Yu F, Zheng J. Environ. Sci. Technol., 2017, 51:12283.

doi: 10.1021/acs.est.7b02227
[146]
Fares M M, Al-Rub F A A, Mohammad A R. ACS Omega, 2020, 5:4457.

doi: 10.1021/acsomega.9b03636 pmid: 32175493
[147]
Busca G, Berardinelli S, Resini C, Arrighi L. J. Hazard. Mater., 2008, 160:265.

doi: 10.1016/j.jhazmat.2008.03.045
[148]
Öztürk H, Barşçı S, Turkay O, Veli S. J. Environ. Eng., 2019, 145:04019014.

doi: 10.1061/(ASCE)EE.1943-7870.0001514
[149]
Sun Y B, Shao D D, Chen C L, Yang S B, Wang X K. Environ. Sci. Technol., 2013, 47:9904.

doi: 10.1021/es401174n
[150]
Özkahraman B, Özbaş Z. J. Polym. Environ., 2020, 28:689.

doi: 10.1007/s10924-019-01636-3
[151]
Zhao P, Zhang W, Kaneti Y V, Azhar A, Alshehri A A, Yamauchi Y, Hu M. Bull. Chem. Soc. Jpn., 2018, 91:1357.

doi: 10.1246/bcsj.20180083
[1] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[4] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[5] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[6] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
[7] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[8] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[9] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[10] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[11] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[12] Jinfeng Wang, Aisen Li, Zhen Li. The Progress of Room Temperature Phosphorescent Gel [J]. Progress in Chemistry, 2022, 34(3): 487-498.
[13] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[14] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[15] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.