中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (4): 516-535 DOI: 10.7536/PC180810 Previous Articles   Next Articles

Applications of Localized Surface Plasmon Resonance Effect in Photocatalysis

Guoying Yao, Qinglu Liu, Zongyan Zhao**()   

  1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • Received: Online: Published:
  • Contact: Zongyan Zhao
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21473082); 18th Yunnan Province Young Academic and Technical Leaders Reserve Talent Project(2015HB015)
Richhtml ( 65 ) PDF ( 2965 ) Cited
Export

EndNote

Ris

BibTeX

The surface plasmon effect is a typical representative of the application of physical effects in photocatalysis technology. And as new control technology of light field, it has opened up new directions and new ideas for the development of photocatalysis technology. The bottleneck of the development of photocatalytic technology can be solved from a new perspective, and has been extensively studied in the past decade. The localized surface plasmon resonance effect can regulate the spectral response range of the photocatalytic system by adjusting the composition, morphology and medium environment of the nanoparticles. In addition, the photocatalyst redox reaction rate, mass transfer, and adsorbed molecules on the surface of the polarized photocatalytic material can be increased by enhancing light scattering, hot electron injection, inducing a strong local electric field, and heating the surrounding environment, thereby further enhancing the photocatalytic properties of the material. Integrating these advantages into a photocatalytic material system can significantly improve the solar energy conversion efficiency of conventional photocatalytic materials, which is a very interesting development direction. In this review, the basic principles, material composition, regulation and recent progress of surface plasmon resonance in photocatalytic systems are presented in detail. Not only the process of generation and migration of hot electrons, but also the relationship between interband transition and surface plasmon resonance in noble metals is discussed. Finally, the prospective and challenges for future development of plasmonic photocatalysis are summarized.

Fig. 1 The principle of surface plasmons polaritions.(a) SPP mechanism diagram;(b) the electric field of SPP decreases exponentially in the vertical direction;(c) dispersion curve of Surface Plasmon Polariton [40]. Copyright 2003, Springer Nature.
Fig. 2 The mechanism of LSPR generation of metal spheres [42]. Copyright 2003, American Chemical Society.
Fig. 3 The process of generating and relaxing hot electrons in metals [46]. Copyright 2015, Springer Nature.
Fig. 4 Energy transfer mechanism in metal/semiconductor structures[51]. Copyright 2015, American Chemical Society.
Fig. 5 Plasmon-induced direct electron injection mechanism [54]. Copyright 2016, Springer Nature.
Fig. 6 Theoretically calculate the far-field extinction efficiency of nanospheres(black solid lines) and nanoshells(blue solid lines):(A) Ag;(B) Au;(C) Cu; ε'and ε″ are the real and imaginary parts of material dielectric functions, respectively [61]. Copyright 2005, American Chemical Society.
Fig. 7 Two phonon energy modes; like-LSPR mode(green thick line) and like-interband transition mode(red thin line) [62]. Copyright 2011, American Chemical Society.
Fig. 8 Spatial distributions of the E-field intensity(|E|2) of a nanosphere(a=10 nm) described by(a) the Drude model and(b) the Lorentz model in the noninteracting cases as well as(c~e) the DL model in the strong interaction case.(f) Optical absorption spectra of the nanospheres described by the Drude(red line), Lorentz(green line), and DL models(dark line)[62]. Copyright 2011, American Chemical Society.
Fig. 9 The LSPR absorption of five metals nanosphere and corresponding electric field strength; green shading is the interband transition of the metal, and red dashed line is the dielectric function of the metal
Fig. 10 Representative UV-vis-NIR absorption spectra of bimetallic Au/Ag core-shell superstructures;(A) with different discontinuous Ag shell thicknesses:(a) 8,(b) 12,(c) 15,(d) 18,(e) 20, and(f) 22 nm; corresponding inset photographs of solution color.(B) Plot of longitudinal absorption peak intensity versus thickness of Ag shell[82]. Copyright 2017, American Chemical Society.
Fig. 11 Calculated energies of three possible Cu-Ag shapes for different atomic fractions of Ag under the condition where the crescent is the equilibrium structure, such division matches the experimentally obtained results [86]. Copyright 2018, American Chemical Society.
Fig. 12 Energy band diagram of nanostructures(a) Ag/AgCl/BiOCl and(b) Ag/AgBr/BiOBr [90]. Copyright 2012, American Chemical Society.
Fig. 13 Bi nanoparticles control the position of the resonance peak according to the morphology, environmental permittivity and size [102]. Copyright 2012, American Chemical Society.
Fig. 14 The time evolution of the visible-near-infrared spectroscopy of stoichiometry in toluene during air exposure oxidation and the evolution of the XRD patterns. Nanocrystals in Vis-NIR in toluene Extinction spectrum(a) Cu2-xS(x=0, black curve),(c) Cu2-xSe(x=0, black curve) and(e) Cu2-xTe(x > 0). The time evolution of the XRD patterns of(b) Cu2-xS,(d) Cu2-xSe,(f) Cu2-xTe shown in the oxidation period(a, c, e) [116]. Copyright 2012, American Chemical Society.
Fig. 15 Cu2-xS is further replaced by In3+ into CuInS2[120]. Copyright 2015, American Chemical Society.
Fig. 16 Dielectric properties of ZnO and Al-doped ZnO(AZO) in near-infrared measured by ellipsometry [115]. Copyright 2012, National Academy of Sciences.
Fig. 17 Schematic of two types of LSPR of metallic nanorods;(a) lateral resonance;(b) longitudinal resonance[144]. Copyright 2018, Multidisciplinary Digital Publishing Institute.
Fig. 18 Optical properties of Cu2-xS/MoS2 nano-octahedra [122]. Copyright 2018, American Chemical Society.
Fig. 19 (a) Photocatalytic hydrogen generation rate of different heterogeneous nanocrystals; The extinction spectrum obtained with(b) Auvertex-Cu2O,(c) Auvertex-exp-Cu2O and(d) AuHOH@Cu2O heterogeneous nanocrystals.(e) Schematic diagram of possible plasmon-induced charge separation processes for Auvertex-Cu2O heterogeneous nanocrystals.(f) FDTD simulation model heterogeneous nanocrystals used to calculate | E | Auvertex-Cu2O(Ⅰ,Ⅴ), Auvertex-exp-Cu2O(Ⅱ,Ⅵ), AuHOH @Cu2O(Ⅲ,Ⅶ) and Ausphere @Cu2O Heteronanocrystals(Ⅳ,Ⅷ) [148]. Copyright 2016, American Chemical Society.
[1]
Fujishima A, Honda K . Nature, 1972,238(5358):37.
[2]
Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S. Appl. Catal . B: Environ., 2003,42(4):403.
[3]
Xu M, Da P M, Wu H Y, Zhao D Y ,Zheng G F. Nano Lett, 2012,12(3):1503.
[4]
Yin G N, Ma J X, Jiang H, Li J, Yang D, Gao F, Zeng J H, Liu Z K ,Liu S D. ACS Appl Mater. Interfaces, 2017,9(12):10752.
[5]
Long R, English N J . J. Phys. Chem. C, 2009,113(21):9423.
[6]
Long R, English N J . J. Phys. Chem. C, 2010,114(27):11984.
[7]
Mowbray D J, Martinez J I, Lastra J M G, Thygesen K S, Jacobsen K W. J. . Phys. Chem. C, 2010,113(28):12301.
[8]
Song J N, Zheng M J, Yuan X L, Li Q, Wang F, Ma L G, You Y X, Liu S H, Liu P J, Jiang D K, Ma L, Shen W Z . Mater. Sci., 2017,52(12):6976.
[9]
Han X X, Huang J, Jing X X, Yang D Y, Lin H, Wang Z G, Li P, Chen Y . ACS Nano, 2018,12(5):4545.
[10]
Nishioka S, Hyodo J, Vequizo J J M, Yamashita S, Kumagai H, Kimoto K, Yamakata A, Yamazaki Y, Maeda K . ACS Catalysis, 2018,8(8):7190.
[11]
Bessekhouad Y, Robert D, Weber J V . J. Photochem. Photobiol. A: Chem., 2004,163(3):569.
[12]
Wang Y J, Wang Q S, Zhan X Y, Wang F M, Safdar M, He J . Nanoscale, 2013,5(18):8326.
[13]
Guo L, Yang Z, Marcus K, Li Z, Luo B, Zhou L, Wang X, Du Y, Yang Y. Energy Environ . Sci., 2018,11(1):106.
[14]
Gong Y J, Lin J H, Wang X L, Shi G, Lei S D, Lin Z, Zou X L, Ye G L, Vajtai R ,Yakobson B I. Nat. Mater, 2014,13(12):1135.
[15]
Zhang J, Wang J H, Chen P, Sun Y, Wu S, Jia Z Y, Lu X B, Yu H, Chen W ,Zhu J Q. Adv. Mater, 2015,28:1950
[16]
Chen H L, Wen X W, Zhang J, Wu T M, Gong Y J, Zhang X, Yuan J T, Yi C Y, Lou J ,Ajayan P M. Nat. Commun, 2016,7:12512.
[17]
Tada H, Suzuki F, Ito S, Akita T, Tanaka K, Kawahara T, Kobayashi H . J. Phys. Chem. B, 2002,106(34):8714.
[18]
Yan H J, Yang J H, Ma G J, Wu G P, Zong X, Lei Z B, Shi J Y, Li C . Catal., 2009,266(2):165.
[19]
Foo W J, Zhang C, Ho G W . Nanoscale, 2013,5(2):759.
[20]
An B, Zhang J Z, Cheng K, Ji P F, Wang C, Lin W B . Am. Chem. Soc., 2017,139(10):3834. https://www.ncbi.nlm.nih.gov/pubmed/28209054

doi: 10.1021/jacs.7b00058 pmid: 28209054
[21]
Chau L K, Lin Y F, Cheng S F ,Lin T J. Sens. Actuator. B: Chem., 2006,113(1):100.
[22]
Homola J . Chem.Rev., 2008,108(2):462.
[23]
Zhang S H, Huang Q, Zhang L J, Zhang H, Han Y B, Sun Q, Cheng Z X, Qin H Z, Dou S X, Li Z . Nanoscale, 2018,10(7):3130.
[24]
Wang F F, Wang H J, Liu X Y, Wu D P, Jiang K, Li Q ,Xu D S. Adv. Energy Mater, 2018,8(20):1800136.
[25]
Kardarian K, Nunes D, Maria Sberna P, Ginsburg A, Keller D A, Vaz Pinto J, Deuermeier J, Anderson A Y, Zaban A, Martins R ,Fortunato E. Sol. Energy Mater. Sol. Cells, 2016,147:27.
[26]
Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T . Am. Chem. Soc., 2008,130(5):1676. https://www.ncbi.nlm.nih.gov/pubmed/18189392

doi: 10.1021/ja076503n pmid: 18189392
[27]
Wang P, Huang B B, Qin X Y, Zhang X Y, Dai Y, Wei J Y ,Whangbo M H. Angew. Chem. Int. Edi., 2008,47(41):7931.
[28]
Wang P, Huang B B, Zhang X Y, Qin X Y, Jin H, Dai Y, Wang Z Y, Wei J Y, Zhan J, Wang S Y, Wang J P, Whangbo M H . Chem. -A Eur. J., 2009,15(8):1821.
[29]
Chen X, Zhu H Y, Zhao J C, Zheng Z F ,Gao X P. Angew. Chem. Int Edit., 2008,47(29):5353.
[30]
Jain P K, Lee K S , El-Sayed I H, El-Sayed M A . J. Phys. Chem. B, 2006,110(14):7238.
[31]
Linic S, Christopher P ,Ingram D B. Nat. Mater, 2011,10(12):911.
[32]
Zhou C G, Wang S M, Zhao Z Y, Shi Z, Yan S C ,Zou Z G. Adv. Funct. Mater, 2018,28(31):1801214.
[33]
Yang J H, Guo Y Z, Jiang R B, Qin F, Zhang H, Lu W Z, Wang J F, Yu J C . Am. Chem. Soc., 2018,140(27):8497. https://www.ncbi.nlm.nih.gov/pubmed/29905477

doi: 10.1021/jacs.8b03537 pmid: 29905477
[34]
Patnaik S, Swain G, Parida K M . Nanoscale, 2018,10(13):5950.
[35]
Zeng Z P, Li T, Li Y B, Dai X C, Huang M H, He Y H, Xiao G C, Xiao F X . J. Mater. Chem. A, 2018, DOI: 10.1039/C8TA08841A.
[36]
Lou Z Z, Wang Z Y, Huang B B, Dai Y . ChemCatChem, 2014,6(9):2456.
[37]
Wang Z Y, Liu Y Y, Huang B B, Dai Y, Lou Z Z, Wang G, Zhang X Y ,Qin X Y. Phys. Chem. Chem Phys., 2014,16(7):2758.
[38]
Liu L Q, Zhang X N, Yang L F, Ren L T, Wang D F ,Ye J H. Nat. Sci. Rev, 2017,4(5):761.
[39]
Zhang N, Han C, Fu X Z, Xu Y J . Chem, 2018,4(8):1832.
[40]
Barnes W L, Dereux A, Ebbesen T W . Nature, 2003,424:824.
[41]
Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R ,Tian Z Q. Nat. Rev. Mater, 2016,1:16021.
[42]
Kelly K L, Coronado E, Zhao L L, Schatz G C . J. Phys. Chem. B, 2003,107(3):668.
[43]
Sambles J R, Bradbery G W, Yang F . Contemp. Phys 1991,32(3):173.
[44]
Eustis S, ,El-Sayed M A. Chem. Soc. Rev., 2006,35(3):209.
[45]
Barolo G, Livraghi S, Chiesa M, Paganini M C, Giamello E . J. Phys. Chem. C, 2012,116(39):20887.
[46]
Linic S, Aslam U, Boerigter C, Morabito M . Nat. Mater 2015,14(6):567.
[47]
Low J X, Qiu S Q, Xu D F, Jiang C J ,Cheng B. Appl. Surf. Sci, 2018,434:423.
[48]
Li M, Xing Z P, Jiang J J, Li Z Z, Yin J W, Kuang J Y, Tan S Y, Zhu Q, Zhou W . Taiwan Inst. Chem. Eng., 2018,82:198.
[49]
Tanaka A, Hashimoto K, Kominami H . Chem. Commun 2017,53(35):4759.
[50]
Jiao Z B, Shang M D, Liu J M, Lu G X, Wang X S, Bi Y P . Nano Energy, 2017,31:96.
[51]
Cushing S K, Li J, Meng F, Senty T R, Suri S, Zhi M, Li M, Bristow A D, Wu N . J Am Chem Soc, 2012,134(36):15033.
[52]
Lu B, Liu A P, Wu H P, Shen Q P, Zhao T Y, Wang J S . Langmuir, 2016,32(12):3085.
[53]
Li J T, Cushing S K, Bright J, Meng F, Senty T R, Zheng P, Bristow A D ,Wu N Q. ACS Catal, 2014,3(1):47.
[54]
Ma X C, Dai Y, Yu L, Huang B B . Light: Sci. Appl., 2016,5:e16017.
[55]
Christopher P, Xin H, Linic S . Nat. Chem 2011,3:467.
[56]
Liu L C, Ji Z Y, Zou W X, Gu X R, Deng Y, Gao F, Tang C J, Dong L . ACSCatal., 2013,3(9):2052.
[57]
Meng X G, Wang T, Liu L Q, Ouyang S X, Li P, Hu H L, Kako T, Iwai H, Tanaka A ,Ye J H. Angew. Chem. Int. Edit., 2014,53(43):11478.
[58]
Liu H M, Meng X G, Dao T D, Zhang H B, Li P, Chang K, Wang T, Li M, Nagao T ,Ye J H. Angew. Chem. Int. Edit., 2015,54(39):11545.
[59]
Schelm S ,Smith G B. Appl. Phys. Lett, 2003,82(24):4346.
[60]
Chen C J ,Chen D H. Chem. Eng. J, 2012,180(6):337.
[61]
Wang H, Tam F, Grady N K, Halas N J . J. Phys. Chem. B, 2005,109(39):18218.
[62]
Pakizeh T . J. Phys. Chem. C, 2011,115(44):21826.
[63]
Zhang Z S, Liu L H, Fang W H, Long R, Tokina M V, Prezhdo O V . Chem, 2018,4(5):1112.
[64]
Long R, Prezhdo O V . Am. Chem. Soc., 2014,136(11):4343. https://www.ncbi.nlm.nih.gov/pubmed/24568726

doi: 10.1021/ja5001592 pmid: 24568726
[65]
Powell C J . Phys. Rev., 1965,15(22):852.
[66]
Powell C J . Phys. Rev., 1968,175(3):972.
[67]
Hagemann H J, Gudat W, Kunz C . Opt. Soc. Am., 1975,65(6):742.
[68]
Sugawa K, Yamaguchi D, Tsunenari N, Uchida K, Tahara H, Takeda H, Tokuda K, Jin S, Kusaka Y, Fukuda N. ACS Appl . Mater. Interfaces, 2016,9(1):750.
[69]
Sugawa K, Tsunenari N, Takeda H, Fujiwara S, Akiyama T, Honda J, Igari S, Inoue W, Tokuda K, Takeshima N, Watanuki Y, Tsukahara S, Takase K, Umegaki T, Kojima Y, Nishimiya N, Fukuda N, Kusaka Y, Ushijima H, Otsuki J . Langmuir, 2017,33(23):5685.
[70]
Mcmahon J M, Schatz G C ,Gray S K. Phys. Chem. Chem. Phys., 2013,15(15):5415.
[71]
Xiao F X, Zeng Z P, Liu B . Am. Chem. Soc., 2015,137(33):10735. https://www.ncbi.nlm.nih.gov/pubmed/26258281

doi: 10.1021/jacs.5b06323 pmid: 26258281
[72]
Gao Y, Lin J Y, Zhang Q Z, Yu H, Ding F, Xu B T, Sun Y G ,Xu Z H. Appl. Catal. B: Environ., 2018,224:586.
[73]
Cheng W R, Su H, Tang F M, Che W, Huang Y Y, Zheng X S, Yao T, Liu J K, Hu F C, Jiang Y, Liu Q H, Wei S Q . J. Mater. Chem. A, 2017,5(37):19649.
[74]
Kumari G, Zhang X Q, Devasia D, Heo J, Jain P K . ACS Nano, 2018,12(8):8330.
[75]
Liu L Q, Ouyang S X ,Ye J H. Angew. Chem, 2013,125(26):6821.
[76]
Liu L Q, Dao T D, Kodiyath R, Kang Q, Abe H, Nagao T ,Ye J H. Adv. Funct. Mater, 2014,24(48):7754.
[77]
Zhu M S, Cai X Y, Fujitsuka M, Zhang J Y ,Majima T. Angew. Chem. Int Edit., 2017,129(8):2096.
[78]
Zhang Z Y, Cao S W, Liao Y S, Xue C. Appl. Catal . B: Environ., 2015,162:204.
[79]
Verma P, Yuan K, Kuwahara Y, Mori K, Yamashita H. Appl. Catal . B: Environ., 2018,223:10.
[80]
Zhou Y X, Wang D S ,Li Y D. Chem. Commun, 2014,50(46):6141.
[81]
Cui Q L, Shen G Z, Yan X H, Li L D, Möhwald H, Bargheer M. ACS Appl . Mater. Interfaces, 2014,6(19):17075.
[82]
Dai L W, Song L P, Huang Y J, Zhang L, Lu X F, Zhang J W, Chen T . Langmuir, 2017,33(22):5378.
[83]
Pellarin M, Issa I, Langlois C, Lebeault M A, Ramade J, Lermé J, Broyer M, Cottancin E J . J. Phys. Chem. C, 2015,119(9):5002.
[84]
Govorov A O, Zhang H, Gun’ko Y K . J. Phys. Chem. C, 2013,117(32):16616.
[85]
Liu L Q, Li P, Adisak B, Ouyang S, Umezawa N, Ye J H, Kodiyath R, Tanabe T, Ramesh G V, Ueda S . J. Mater. Chem. A, 2014,2(25):9875.
[86]
Osowiecki W T, Ye X C, Satish P, Bustillo K C, Clark E L, Alivisatos A P . Am. Chem. Soc., 2018,140(27):8569. https://www.ncbi.nlm.nih.gov/pubmed/29909616

doi: 10.1021/jacs.8b04558 pmid: 29909616
[87]
Wang P, Huang B B, Lou Z Z, Zhang X Y, Qin X Y, Dai Y, Zheng Z K, Wang X N . Chem.-A Eur. J., 2009,16(2):538.
[88]
Cheng H F, Huang B B, Dai Y, Qin X Y, Zhang X Y . Langmuir, 2010,26(9):6618.
[89]
Liang X Z, Wang P, Li M M, Zhang Q Q, Wang Z Y, Dai Y, Zhang X Y, Liu Y Y, Whangbo M H ,Huang B B. Appl. Catal. B: Environ., 2018,220:356.
[90]
Ye L Q, Liu J Y, Gong C Q, Tian L H, Peng T Y, Zan L. ACS Catal ., 2012,2(8):1677.
[91]
Zhang P Y, Song T, Wang T T ,Zeng H P. RSC Adv, 2017,7(29):17873.
[92]
Zhang P Y, Song T, Wang T T ,Zeng H P. Appl. Catal. B: Environ., 2018,225:172.
[93]
Zhang P Y, Song T, Wang T T ,Zeng H P. Int. J. Hydrogen Energy, 2017,42(21):14511.
[94]
Zhang P Y, Wang T T ,Zeng H P. Appl. Surf. Sci, 2017,391:404.
[95]
Gavade N L, Babar S B, Kadam A N, Gophane A D ,Garadkar K M. Ind. Eng. Chem. Res., 2017,56(49):14489.
[96]
Yang L, Pillai S ,Green M A. Sci. Rep, 2015,5:11852.
[97]
He W J, Sun Y J, Jiang G M, Huang H W, Zhang X M, Dong F. Appl. Catal . B: Environ., 2018,232:340.
[98]
He W J, Sun Y J, Jiang G M, Li Y H, Zhang X M, Zhang Y X, Zhou Y, Dong F. Appl. Catal . B: Environ., 2018,239; 619.
[99]
Lv Y H, Cao X F, Jiang H Y, Song W J, Chen C C ,Zhao J C. Appl. Catal.B:Environ., 2016,194:150.
[100]
Cheng Y H, Lin Y J, Xu J P, He J, Wang T Z, Yu G J, Shao D W, Wang W H, Lu F, Li L, Du X, Wang W C, Liu H ,Zheng R K. Appl. Surf. Sci, 2016,366:120.
[101]
Nie J ,Patrocinio A O T, Hamid S, Sieland F, Sann J, Xia S, Bahnemann D W , Schneider. Phys. Chem. Chem. Phys., 2018,20(7):5264. https://www.ncbi.nlm.nih.gov/pubmed/29400385

doi: 10.1039/c7cp07762a pmid: 29400385
[102]
Toudert J, Serna R ,Jiménez De Castro M. J. Phys. Chem. C, 2012,116(38):20530.
[103]
Sun Y J, Zhao Z W, Zhang W D, Gao C F, Zhang Y X, Dong F . Colloid Interface Sci., 2017,485:1. https://www.ncbi.nlm.nih.gov/pubmed/27639168

doi: 10.1016/j.jcis.2016.09.018 pmid: 27639168
[104]
Li X W, Zhang W D, Cui W, Sun Y J, Jiang G M, Zhang Y X, Huang H W, Dong F. Appl. Catal . B: Environ., 2018,221:482.
[105]
Wang H, Zhang W D, Li X W, Li J Y, Cen W L, Li Q Y, Dong F. Appl. Catal . B: Environ., 2018,225:218.
[106]
Yang F, Zhu X M, Fang J Z, Chen D D, Feng W H ,Fang Z Q. Ceram. Int, 2018,44(6):6918.
[107]
Chen D D, Wu S X, Fang J Z, Lu S Y, Zhou G Y, Feng W H, Yang F, Chen Y ,Fang Z Q. Sep. Purif. Technol, 2018,193:232.
[108]
Hu J L, Chen L, Lian Z C, Cao M, Li H J, Sun W B, Tong N L, Zeng H B . J. Phys. Chem. C, 2012,116(29):15584.
[109]
Ahmadivand A ,Golmohammadi S. Opt. Laser Technol, 2015,66:9.
[110]
Ghori M Z, Veziroglu S, Hinz A, Shurtleff B B, Polonskyi O, Strunskus T, Adam J, Faupel F ,Aktas O C. ACS Appl. Nano Mater, 2018, DOI: 10.1021/acsanm.8b00853.
[111]
Liu Y, Liu M X, Swihart M T . J. Phys. Chem. C, 2017,121(25):13435.
[112]
Lin R, Wan J W, Xiong Y, Wu K L, Cheong W C, Zhou G, Wang D S, Peng Q, Chen C, Li Y D . Am. Chem. Soc., 2018,140(29):9078. https://www.ncbi.nlm.nih.gov/pubmed/29979871

doi: 10.1021/jacs.8b05293 pmid: 29979871
[113]
Song G S, Shen J, Jiang F R, Hu R G, Li W Y, An L, Zou R J, Chen Z G, Qin Z Y ,Hu J Q. ACS Appl Mater Interfaces, 2014,6(6):3915.
[114]
Gordon T R, Paik T, Klein D R, Naik G V, Caglayan H, Boltasseva A ,Murray C B. Nano Lett, 2013,13(6):2857.
[115]
Naik G V, Liu J J, Kildishev A V, Shalaev V M ,Boltasseva A. Proc. Natl. Acad. Sci. U. S A., 2012,109(23):8834.
[116]
Kriegel I, Jiang C, Rodríguezfernández J, Schaller R D, Talapin D V, Da C E, Feldmann J . Am. Chem. Soc., 2012,134(3):1583. https://www.ncbi.nlm.nih.gov/pubmed/22148506

doi: 10.1021/ja207798q pmid: 22148506
[117]
Ren K, Yin P F, Zhou Y Z, Cao X Z, Dong C K, Cui L, Liu H, Du X W . Small, 2017,13(36):1700867.
[118]
Zhu D X, Tang A W, Kong Q H, Zeng B, Yang C H, Teng F . J. Phys. Chem. C, 2017,121(29):15922.
[119]
Shu Q W, Yang M J . Alloys Compd., 2016,660:361.
[120]
Van Der Stam W, Berends A C, Rabouw FT, Willhammar T, Ke X, Meeldijk J D, Bals S, De Mello Donega C . Chem. Mater., 2015,27(2):621.
[121]
Lee S, Baek S, Park J P, Park J H, Hwang D Y, Kwak S K ,Kim S W. Chem. Mater, 2016,28(10):3337.
[122]
Maiti P S, Ganai A K, Bar-Ziv R, Enyashin A N, Houben L ,Bar Sadan M. Chem. Mater, 2018,30(14):4489.
[123]
Niezgoda J S, Yap E, Keene J D, Mcbride J R ,Rosenthal S J. Nano Lett, 2014,14(6):3262.
[124]
Su Z H, Sun K W, Han Z L, Liu F Y, Lai Y Q, Li J, Liu Y X . Mater. Chem., 2012,22(32):16346.
[125]
Li Y W, Ling W D, Han Q F, Kim T W, Shi W Z . Alloys Compd., 2015,633:347.
[126]
Lu X T, Zhuang Z B, Peng Q ,Li Y D . Chem. Commun, 2011,47(11):3141.
[127]
Li M, Zhou W-H, Guo J, Zhou Y L, Hou Z L, Jiao J, Zhou Z J, Du Z L, Wu S X . J. Phys. Chem. C, 2012,116(50):26507.
[128]
Lou Z Z, Gu Q, Xu L, Liao Y S, Xue C . Chem.-Asian J., 2015,10(6):1291.
[129]
Lou Z Z, Xue C . CrystEngComm, 2016,18(43):8406.
[130]
Pan L, Zhang J W, Jia X, Ma Y H, Zhang X W, Wang L ,Zou J J. Chin. J. Catal, 2017,38(2):253.
[131]
Lou Z Z, Zhu M S, Yang X G, Zhang Y, Whangbo M H, Li B J ,Huang B B. Appl. Catal. B: Environ., 2018,226:10.
[132]
Tan X J, Wang L Z, Cheng C, Yan X F, Shen B ,Zhang J L. Chem. Commun, 2016,52(14):2893.
[133]
Cheng H F, Kamegawa T, Mori K, Yamashita H . Angew. Chem 2014,126(11):2954.
[134]
Yin H B, Kuwahara Y, Mori K, Cheng H F, Wen M C, Yamashita H . J. Mater. Chem. A, 2017,5(19):8946.
[135]
Greenberg B L, Ganguly S, Held J T, Kramer N J, Mkhoyan K A, Aydil E S ,Kortshagen U R. Nano Lett, 2015,15(12):8162.
[136]
Cheng H F, Wen M C, Ma X C, Kuwahara Y, Mori K, Dai Y, Huang B B, Yamashita H . Am. Chem. Soc., 2016,138(29):9316. https://www.ncbi.nlm.nih.gov/pubmed/27384437

doi: 10.1021/jacs.6b05396 pmid: 27384437
[137]
Milla M J, Barho F, González-Posada F, Cerutti L, Bomers M, Rodriguez J B, Tournié E, Taliercio T . Nanotechnology, 2016,27(42):425201.
[138]
Chen L, Sun H H, Zhao Y J, Zhang Y, Wang Y X, Liu Y, Zhang X, Jiang Y H, Hua Z ,Yang J H. RSC Adv, 2017,7(27):16553.
[139]
Himstedt R, Rusch P, Hinrichs D, Kodanek T, Lauth J, Kinge S ,Siebbeles L D A, Dorfs D . Chem. Mater., 2017,29(17):7371.
[140]
Wang Z L, Quan X J, Zhang Z M, Cheng P . Quant. Spectrosc. Radiat. Transf., 2018,205:291.
[141]
Wang H J, Yang K H, Hsu S C, Huang M H . Nanoscale, 2016,8(2):965.
[142]
Ghodselahi T, Vesaghi M A . Physica B, 2011,406(13):2678.
[143]
Seh Z W, Liu S H, Low M, Zhang S Y, Liu Z L, Mlayah A ,Han M Y. Adv. Mater, 2012,24(17):2310.
[144]
Yao G Y, Liu Q L, Zhao Z Y . Catalysts, 2018,8(6):236.
[145]
Takahata R, Yamazoe S, Koyasu K, Imura K, Tsukuda T . Am. Chem. Soc., 2018,140(21):6640. https://www.ncbi.nlm.nih.gov/pubmed/29694041

doi: 10.1021/jacs.8b02884 pmid: 29694041
[146]
Mu H W, Lv J W, Liu C, Sun T, Chu P K ,Zhang J P. Opt. Commun, 2017,402:216.
[147]
Han C, Quan Q, Chen H M, Sun Y, Xu Y J . Small, 2017,13(14):1602947.
[148]
Hong J W, Wi D H, Lee S U, Han S W . Am. Chem. Soc., 2016,138(48):15766. https://www.ncbi.nlm.nih.gov/pubmed/27933998

doi: 10.1021/jacs.6b10288 pmid: 27933998
[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[3] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[4] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[5] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[6] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[7] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[8] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[9] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[10] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[11] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[12] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[13] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[14] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[15] Hanqiang Zhou, Mingfei Yu, Qiaoshan Chen, Jianchun Wang, Jinhong Bi. Synthesis, Modification of Bismuth Oxyiodide Photocatalyst for Purification of Nitric Oxide [J]. Progress in Chemistry, 2021, 33(12): 2404-2412.