中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (9): 1911-1934 DOI: 10.7536/PC211101 Previous Articles   Next Articles

• Review •

Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances

Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang(), Yinxian Peng()   

  1. School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology,Zhenjiang 212100, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: wangjingalice@just.edu.cn (Jing Wang);pyxhx@just.edu.cn (Yinxian Peng)
  • About author:
    These authors contributed equally to this work.
  • Supported by:
    Discharge Control of Ship Painting and Hazardous Waste Treatment Technology and Equipment Program of the Ministry of Industry and Information Technology of China(MC-202003-Z01-07); Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX20_3151)
Richhtml ( 36 ) PDF ( 714 ) Cited
Export

EndNote

Ris

BibTeX

With the development of nanotechnology, it has been possible to easily adjust the compositions, morphologies, and sizes of nanomaterials to control their properties. In order to endow nanomaterials with new functions and expand their applications in the fields of materials, chemistry, biology and medicine, it is very meaningful to develop new types of nanomaterials that can achieve multiple functions at the same time. One of the methods for obtaining multifunctional nanomaterials is achieved by coating the surface of simple nanoparticles with functional materials, and the resulting composite structure is called a core-shell structure. The core and shell of the core-shell structure can be composed of the same or different materials. By changing the compositions, structures and surface properties of the core and shell materials, the nanomaterials can be endowed with special optical, electrical, magnetic, catalytic, adsorption and biological activities. The hollow and yolk-shell structure can be formed by the controllable transformation of the core and the shell, in which the inner cavity can be used as a high-performance nanoreactor in various fields of catalysis. In this review, the design and application of core-shell structured nanoreactors with different structures in the field of catalysis are discussed, with emphases on the applications in catalytic degradation of dye pollutants, catalytic hydrogenation, catalytic oxidation, and catalytic cascade reactions. Finally, some prospects are put forward for the future research and development of multifunctional core-shell structured nanoreactors.

Contents

1 Introduction

2 Classification of core-shell structured nanoreactors

2.1 Traditional core-shell structure

2.2 Hollow core-shell structure

3 Application of core-shell nanoreactors in catalytic reactions

3.1 Catalytic degradation of dye pollutants

3.2 Catalytic hydrogenation

3.3 Catalytic oxidation

3.4 Catalytic cascade reaction

4 Conclusion and outlook

Fig. 1 Various core-shell nanostructures. (a) Traditional core-shell nanostructure, (b) yolk-shell nanostructure formed by partial removal of shell, (c) yolk-shell nanostructure formed by partial removal of core
Fig.2 Various types of spherical core-shell structures. (a) Cores with single or multiple particles, (b) cores with different shapes, (c) shells of various types
Fig. 3 Other shapes of core-shell nanostructures, including (a) nanotubes, (b) nanocubes, (c) dodecahedrons, (d) nanorings
Table 1 Core-shell structured nanoreactors
Fig. 4 Some common hollow core-shell structures. (a, b) multiple cores single shell, (c) yolk-shell, (d) multi-core yolk-shell, (e) multi shells, (f) single core multi shells, (g, h) multi-cores/shells
Table 2 Core-shell structured nanoreactors for Fischer-Tropsch synthesis reaction
Fig. 5 (a) Strategy for preparing hollow and yolk-shell HSNs. (b) Hydrogenation of nitrobenzene with different catalysts[110]. Copyright 2020, American Chemical Society
Fig. 6 (a) Multistep self-assembly illustration of preparation of the Gd2O3@Pt@ZIF nanoreactor[114]. (b) UV-vis spectra of the reduction of 4-NP with Gd2O3@ZIF-8 and with Gd2O3@Pt@ZIF-8. (c) The recycling of Gd2O3@Pt@ZIF-8 nanoreactor for the reduction of 4-NP. Copyright 2020, American Chemical Society
Fig. 7 (a) TEM images of a PS-b-P2VP particle with ordered microphase separation structure[120]. (b) UV-Vis spectra of the reduction of 4-nitrophenol using Au@PDA particles as nanoreactors without NIR irradiation at 39.3℃ and under NIR irradiation. (c) Schematic illustration for the synthesis process of PNIPAM/Au@meso-SiO2[124]. (d) Time-dependence conversion curves of reduction of 4-nitrophenol catalyzed by PNIPAM/Au@SiO2 at 30℃ and 50℃. Copyright 2012, American Chemical Society
Table 3 The performances of nanoreactors with different core-shell structures in the hydrogenation of nitroaromatic compounds
Fig. 8 (a) Schematic illustration for the preparation of multifunctional amphiphilic nanoreactor[141]; (b) Kinetic plots of aerobic oxidation of 4-methoxybenzyl alcohol over different catalysts. Copyright 2018, American Chemical Society; (c) Schematic illustration of the synthetic route to the PIL@SiO2-Pd nanoreactor[143]. Copyright 2015, American Chemical Society; (d) Overall flowchart for the fabrication of the Y@HWS-TiO2 via three sequential steps[146]; (e) Comparison of photocatalytic activity of C-TiO2, Y@S-TiO2, Y@WS-TiO2 and Y@HWS-TiO2 structures in selective oxidation of benzyl alcohol under UV and visible conditions
Fig. 9 (a) Formation of AuPt nanoalloy yolk@shell hollow particles in ordered mesoporous silica microspheres from AuPt@RF@SiO2 aerosol particles[150]. (b) Conversion of styrene and selectivity to styrene oxide at different reaction times. Copyright 2016, American Chemical Society
Fig. 10 TEM images of Co3O4 (a), CeO2@Co3O4 (b), CeO2 (c). (d) Toluene conversion over Co3O4, CeO2@Co3O4, CeO2[156]. Copyright 2020, American Chemical Society. (e) A schematic illustration of the fabrication of Pd/h-NiCoOx and NiCoOx nanosheets[158]. (f) The catalytic activities of h-NiCoOx samples with different Pd loadings. Copyright 2020, American Chemical Society. (g) Schematic illustration for synthesizing PtxRuy/ZrO2 nanocomposites[159]. (h) Toluene conversion as a function of reaction temperature over different catalysts. Copyright 2020, American Chemical Society
Fig. 11 (a) Schematic illustration for preparation of polymersome nanoreactors for cooperative cancer therapy via systemic administration[168]. (b) Time-dependent H2O2 production of G@R-NRs and G@N-NRs. (c) Fe2/3+ release from Fe/G@R-NRs and Fe/G@NNRs in the absence or presence of glucose after 24 h incubation. Copyright 2019, American Chemical Society
[1]
Tao A R, Habas S, Yang P D. Small, 2008, 4:310.

doi: 10.1002/smll.200701295
[2]
Wang J, Xu X, Chen H, Zhang S, Peng Y. Molecules, 2019, 24:4508.

doi: 10.3390/molecules24244508
[3]
Schärtl W. Nanoscale, 2010, 2:829.

doi: 10.1039/c0nr00028k
[4]
El-Toni A M, Habila M A, Labis J P, ALOthman Z A, Alhoshan M, Elzatahry A A, Zhang F. Nanoscale, 2016, 8:2510.

doi: 10.1039/C5NR07004J
[5]
Wang J, Xu X, Qiu X, Zhang S, Peng Y. Analyst, 2019, 144:7489.

doi: 10.1039/C9AN01541H
[6]
Zuo B, Li W F, Wu X Q, Wang S G, Deng Q Y, Huang M X. Chem. Asian J., 2020, 15:1248.

doi: 10.1002/asia.202000045
[7]
Cao A M, Lu R W, Veser G. Phys. Chem. Chem. Phys., 2010, 12:13499.

doi: 10.1039/c0cp00729c
[8]
Liu J, Qiao S Z, Hu Q H, Lu G Q. Small, 2011, 7:425.

doi: 10.1002/smll.201001402
[9]
Lou X W, Archer L A, Yang Z C. Adv. Mater., 2008, 20:3987.

doi: 10.1002/adma.200800854
[10]
Zhang Q, Wang W S, Goebl J, Yin Y D. Nano Today, 2009, 4:494.

doi: 10.1016/j.nantod.2009.10.008
[11]
Zhao Y, Jiang L. Adv. Mater., 2009, 21:3621.

doi: 10.1002/adma.200803645
[12]
Vriezema D M, Aragonès M C, Elemans J A A W, Cornelissen J J L M, Rowan A E, Nolte R J M. Chem. Rev., 2005, 105:1445.

pmid: 15826017
[13]
Chaudhuri R G, Paria S. Chem. Rev., 2012, 112:2373.

doi: 10.1021/cr100449n pmid: 22204603
[14]
Chiozzi V, Rossi F. Nanoscale Adv., 2020, 2: 5090.

doi: 10.1039/D0NA00411A
[15]
Bao Y, Shi C H, Wang T, Li X L, Ma J Z. Micropor. Mesopor. Mat., 2016, 227:121.

doi: 10.1016/j.micromeso.2016.02.040
[16]
Wang J, Pan M W, Yuan J F, Lin Q Q, Zhang X P, Liu G, Zhu L. Nanoscale, 2020, 12:10863.

doi: 10.1039/D0NR01709D
[17]
Jun Y W, Choi J S, Cheon J. Chem. Commun., 2007, 12:1203.
[18]
Wang J, Zhang S, Xu X, Fei K, Peng Y. Nanomaterials, 2018, 8:1027.

doi: 10.3390/nano8121027
[19]
Shao Y, Zhou L, Bao C, Wu Q, Wu W, Liu M. New J. Chem., 2016, 40:9684.

doi: 10.1039/C6NJ01388K
[20]
Srdic V V, Mojic B, Nikolic M, Ognjanovic S. Process. Appl. Ceram., 2013, 7:45.

doi: 10.2298/PAC1302045S
[21]
Caruso F. Adv. Mater., 2001, 13:11.

doi: 10.1002/1521-4095(200101)13:1【-逻*辑*与-】#x00026;lt;11::AID-ADMA11【-逻*辑*与-】#x00026;gt;3.0.CO;2-N
[22]
Guerrero-Martinez A, Perez-Juste J, Liz-Marzan L M. Adv. Mater., 2010, 22:1182.

doi: 10.1002/adma.200901263
[23]
Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Adv. Mater., 2010, 22:2729.

doi: 10.1002/adma.201000260
[24]
Hu J, Chen M, Fang X, Wu L. Chem. Soc. Rev., 2011, 40:5472.

doi: 10.1039/c1cs15103g
[25]
Fei J, Cui Y, Yan X, Qi W, Yang Y, Wang K, He Q, Li J. Adv. Mater., 2008, 20:452.

doi: 10.1002/adma.200701231
[26]
Liu X, Li Y, Zhu W, Fu P. CrystEngComm, 2013, 15:4937.

doi: 10.1039/c3ce40221e
[27]
Yang X F, Yang J H, Zhong Y L, Gariepy V, Trudeau M L, Zaghib K, Ying J Y. ChemSusChem, 2014, 7:1618.

doi: 10.1002/cssc.201400152
[28]
Zhang Z A, Li Q, Jiang S F, Zhang K, Lai Y Q, Li J. Chem. Eur. J., 2015, 21:1343.

doi: 10.1002/chem.201404686
[29]
Lee J, Kim S M, Lee I S. Nano Today, 2014, 9: 631.

doi: 10.1016/j.nantod.2014.09.003
[30]
Tan L, Chen D, Liu H, Tang F. Adv. Mater., 2010, 22:4885.

doi: 10.1002/adma.201002277
[31]
Yeo K M, Choi S, Anisur R M, Kim J, Lee I S. Angew. Chem. Int. Ed., 2011, 50:745.

doi: 10.1002/anie.201005775
[32]
Prieto G, Tüysüz H, Duyckaerts N, Knossalla J, Wang G H, Schüth F. Chem. Rev., 2016, 116:14056.

doi: 10.1021/acs.chemrev.6b00374
[33]
Lee H L, Wei H R, Kim K, Choe H S, Park H, Yu T, Lee C H, Kim J H, Kim J H,. Small, 2020, 16:2002311.

doi: 10.1002/smll.202002311
[34]
Liu J, Yang H Q, Kleitz F, Chen Z G, Yang T Y, Strounina E, Lu G Q, Qiao S Z. Adv. Funct. Mater., 2012, 22:591.

doi: 10.1002/adfm.201101900
[35]
Shaik F. ChemNanoMat, 2020, 6:1449.

doi: 10.1002/cnma.202000354
[36]
Ye R P, Wang X Y, Price C H, Liu X Y, Yang Q H, Jaroniec M, Liu J. Small, 2021, 17:1906250.

doi: 10.1002/smll.201906250
[37]
Chen J S, Li C M, Zhou W W, Yan Q Y, Archer L A, Lou X W. Nanoscale, 2009, 1:280.

doi: 10.1039/b9nr00102f
[38]
Chen J S, Luan D, Li C M, Boey F Y C, Qiao S Z, Lou X W. Chem. Commun., 2010, 46:8252.

doi: 10.1039/c0cc02973d
[39]
Chen J S, Zhu T, Yang X H, Yang H G, Lou X W. J. Am. Chem. Soc., 2010, 132:13162.

doi: 10.1021/ja1060438
[40]
Choi Y H, Kim D H, Han H S, Shin S, Hong S H, Hong K S. Langmuir, 2014, 30:700.

doi: 10.1021/la404098s
[41]
Gao S, Yang S, Shu J, Zhang S, Li Z, Jiang K. J. Phys. Chem. C, 2008, 112:19324.

doi: 10.1021/jp808545r
[42]
Guan H, Wang X, Li H, Zhi C, Zhai T, Bando Y, Golberg D. Chem. Commun., 2012, 48:4878.

doi: 10.1039/c2cc30843f
[43]
Liang Z, Zhao D, Xiong W L. Adv. Mater., 2012, 24:745.

doi: 10.1002/adma.201104407
[44]
Liu J, Qiao S Z, Chen J S, Lou X W, Xing X R, Lu G Q. Chem. Commun., 2011, 47:12578.

doi: 10.1039/c1cc13658e
[45]
Lou X W, Chen J S, Chen P, Archer L A. Chem. Mater., 2009, 21:2868.

doi: 10.1021/cm900613d
[46]
Luo J, Xia X, Luo Y, Guan C, Liu J, Qi X, Ng C F, Yu T, Zhang H, Fan H J. Adv. Energy Mater., 2013, 3:737.

doi: 10.1002/aenm.201200953
[47]
Pan A, Wu H B, Yu L, Lou X W. Angew. Chem., 2013, 125:2282.

doi: 10.1002/ange.201209535
[48]
Pan A, Zhu T, Wu H B, Lou X W. Chem. Eur. J., 2013, 19:494.

doi: 10.1002/chem.201203596
[49]
Wang Z, Lou X W. Adv. Mater., 2012, 24:4124.

doi: 10.1002/adma.201104546
[50]
Wu H B, Pan A, Hng H H, Lou X W. Adv. Funct. Mater., 2013, 23:5669.

doi: 10.1002/adfm.201300976
[51]
Wu Y, Wen Z, Feng H, Li J. Small, 2012, 8:858.

doi: 10.1002/smll.201101838
[52]
Xia Y, Xiao Z, Dou X, Huang H, Lu X, Yan R, Gan Y, Zhu W, Tu J, Zhang W, Tao X. ACS Nano, 2013, 7:7083.

doi: 10.1021/nn4023894
[53]
Xiong W, Chang M, Archer L A. Adv. Mater., 2010, 21:2536.

doi: 10.1002/adma.200803439
[54]
Yin X M, Li C C, Zhang M, Hao Q Y, Liu S, Chen L B, Wang T H. J. Phys. Chem. C, 2010, 114:8084.

doi: 10.1021/jp100224x
[55]
Zhong J, Cao C, Liu Y, Li Y, Khan W S. Chem. Commun., 2010, 46:3869.

doi: 10.1039/c0cc00204f
[56]
Zhou L, Zhao D, Lou X W. Angew. Chem. Int. Ed., 2012, 51:239.

doi: 10.1002/anie.201106998
[57]
Fang X L, Zhao X J, Fang W J, Chen C, Zheng N F. Nanoscale, 2013, 5: 2205.

doi: 10.1039/c3nr34006f
[58]
Li X B, Yang Y, Yang Q H. J. Mater. Chem. A, 2013, 1:1525.

doi: 10.1039/C2TA00077F
[59]
Li Y S, Shi J L. Adv. Mater., 2014, 26:3176.

doi: 10.1002/adma.201305319
[60]
Anisur R M, Shin J, Choi H H, Yeo K M, Kang E J, Lee I S. J. Mater. Chem., 2010, 20:10615.

doi: 10.1039/c0jm02647f
[61]
Chen Z, Cui Z M, Li P, Cao C Y, Hong Y L, Wu Z Y, Song W G. J. Phys. Chem. C, 2012, 116:14986.

doi: 10.1021/jp303992g
[62]
Ikeda S, Ikoma Y, Kobayashi H, Harada T, Torimoto T, Ohtani B, Matsumura M. Chem. Commun., 2007, 36: 3753.
[63]
Kim S M, Jeon M, Kim K W, Park J, Lee I S. J. Am. Chem. Soc., 2013, 135:15714.

doi: 10.1021/ja4083792
[64]
Lee J, Park J C, Bang J U, Song H. Chem. Mater., 2008, 20:5839.

doi: 10.1021/cm801149w
[65]
Li S, Boucheron T, Tuel A, Farrusseng D, Meunier F. Chem. Commun., 2014, 50:1824.

doi: 10.1039/c3cc48648f
[66]
Ng Y H, Ikeda S, Harada T, Sakata T, Mori H, Takaoka A, Matsumura M. Langmuir, 2008, 24:6307.

doi: 10.1021/la800045u
[67]
Fang X, Liu Z, Hsieh M F, Chen M, Liu P, Chen C, Zheng N. ACS Nano, 2012, 6:4434.

doi: 10.1021/nn3011703
[68]
Shi J, Chen L, Ren N, Zhang Y, Tang Y. Chem. Commun., 2012, 48:8583.

doi: 10.1039/c2cc33701k
[69]
Yang Y, Liu X, Li X, Zhao J, Bai S, Liu J, Yang Q. Angew. Chem. Int. Ed., 2012, 51:9164.

doi: 10.1002/anie.201204829 pmid: 22865743
[70]
Ge M, Hu Z, He Q. Prog. Chem., 2021, 33:1648.
( 葛明, 胡征, 贺全宝. 化学进展, 2021, 33:1648.).

doi: 10.7536/PC200851
[71]
Rauf M A, Ashraf S S. Chem. Eng. J., 2009, 151:10.

doi: 10.1016/j.cej.2009.02.026
[72]
Fan L L, Zhang Y, Li X J, Luo C N, Lu F G, Qiu H M. Colloid. Surface. B, 2012, 91:250.

doi: 10.1016/j.colsurfb.2011.11.014
[73]
Pal S, Ghorai S, Das C, Samrat S, Ghosh A, Panda A B. Ind. Eng. Chem. Res., 2012, 51:15546.

doi: 10.1021/ie301134a
[74]
Levec J, Pintar A. Catal. Today, 2007, 124:172.

doi: 10.1016/j.cattod.2007.03.035
[75]
Bautista P, Mohedano A F, Casas J A, Zazo J A, Rodriguez J J. J. Chem. Technol. Biotechnol., 2008, 83:1323.
[76]
Pliego G, Zazo J A, Blasco S, Casas J A, Rodriguez J J. Ind. Eng. Chem. Res., 2012, 51:2888.

doi: 10.1021/ie202587b
[77]
Cybulski A. Ind. Eng. Chem. Res., 2007, 46:4007.

doi: 10.1021/ie060906z
[78]
Li K, Wei J, Yu H, Xu P, Wang J, Yin H, Stuart M A C, Wang J, Zhou S. Angew. Chem. Int. Ed., 2018, 57:16458.

doi: 10.1002/anie.201810777
[79]
Xu P, Li K, Yu H, Stuart M A C, Wang J, Zhou S. Ind. Eng. Chem. Res., 2019, 58:3726.

doi: 10.1021/acs.iecr.9b00735
[80]
Yao Y J, Yin H Y, Zhang Y Y, Wei F Y, Hu H W, Tang Y H, Wang S B. Chem. Eng. J., 2021, 426:131801.

doi: 10.1016/j.cej.2021.131801
[81]
Mao Y, Jiang W, Wang S, Liu M, Xuan S, Gong X, Leung K C. J. Alloy. Compd., 2016, 680:406.

doi: 10.1016/j.jallcom.2016.04.139
[82]
Li W, Jia X, Li P, Zhang B, Zhang H, Geng W, Zhang Q. ACS Sustain. Chem. Eng., 2015, 3:1101.

doi: 10.1021/acssuschemeng.5b00033
[83]
Jiang D H, Jing H H, Liu Z R, Jia C K, Liu Q C. J. Phys. Chem. C, 2021, 125:15316.

doi: 10.1021/acs.jpcc.1c04065
[84]
Liu X, Zhang T T, Li Y D, Zhang J, Du Y C, Yang Y L, Jiang Y Q, Lin K F. Chem. Eng. J., 2021, 423:130138.

doi: 10.1016/j.cej.2021.130138
[85]
Liu L M, Yang W Y, Sun W Z, Li Q, Shang J K. ACS Appl. Mater. Interfaces, 2015, 7:1465.

doi: 10.1021/am505861c
[86]
Yao D W, Wang Y, Li Y, Zhao Y J, Lv J, Ma X B. ACS Catal., 2018, 8:1218.

doi: 10.1021/acscatal.7b03026
[87]
Yang Y, Liu Q, Cai C, Tan J, Wang T, Ma L. Prog. Chem., 2016, 28: 363.

doi: 10.7536/PC150820
( 杨越, 刘琪英, 蔡炽柳, 谈金, 王铁军, 马隆龙. 化学进展, 2016, 28:363.).

doi: 10.7536/PC150820
[88]
Lee J H, Bonte W, Corthals S, Krumeich F, Ruitenbeek M, van Bokhoven J A. Ind. Eng. Chem. Res., 2019, 58:5140.

doi: 10.1021/acs.iecr.8b05755
[89]
Lan G J, Yao Y, Zhang X M, Guo M, Tang H D, Li Y, Yang Q H. Catal. Sci. Technol., 2016, 6:2181.

doi: 10.1039/C5CY01027F
[90]
Chen Y P, Batalha N, Marinova M, ImpÉror-Clerc M, Ma C R, Ersen O, Baaziz W, Stewart J A, Curulla-FerrÉ D, Khodakov A Y, Ordomsky V V. J. Catal., 2018, 365:429.

doi: 10.1016/j.jcat.2018.06.023
[91]
Subramanian V, Cheng K, Lancelot C, Heyte S, Paul S, Moldovan S, Ersen O, Marinova M, Ordomsky V V, Khodakov A Y. ACS Catal., 2016, 6:1785.

doi: 10.1021/acscatal.5b01596
[92]
Xu Y F, Wang J, Ma G Y, Lin J H, Ding M Y. ACS Sustain. Chem. Eng., 2019, 7:18125.

doi: 10.1021/acssuschemeng.9b05217
[93]
Phaahlamohlaka T N, Dlamini M W, Kumi D O, Forbes R, Jewell L L, Coville N J. Appl. Catal. A, 2020, 599:117617.

doi: 10.1016/j.apcata.2020.117617
[94]
Yamane N, Wang Y, Li J, He Y L, Zhang P P, Nguyen L, Tan L, Ai P P, Peng X B, Wang Y, Yang G H, Tsubaki N. Catal. Sci. Technol., 2017, 7:1996.

doi: 10.1039/C7CY00224F
[95]
Sun B, Yu G, Lin J, Xu K, Pei Y, Yan S, Qiao M, Fan K, Zhang X, Zong B. Catal. Sci. Technol., 2012, 2:1625.

doi: 10.1039/c2cy20155k
[96]
Li B, Sun B, Qian X, Li W, Wu Z, Sun Z, Qiao M, Duke M, Zhao D. J. Am. Chem. Soc., 2013, 135:1181.

doi: 10.1021/ja309194z
[97]
Espinosa G, Domínguez J M, Morales-Pacheco P, Tobon A, Aguilar M, Benítez J. Catal. Today, 2011, 166:47.

doi: 10.1016/j.cattod.2011.01.025
[98]
Yu S Y, Ma Y, Zhi Y X, Jing H, Su H Q. Integr. Ferroelectr., 2013, 147:59.

doi: 10.1080/10584587.2013.790737
[99]
Kang J, Cheng K, Zhang L, Zhang Q, Ding J, Hua W, Lou Y, Zhai Q, Wang Y. Angew. Chem. Int. Ed., 2011, 50:5200.

doi: 10.1002/anie.201101095
[100]
Cheng Q, Tian Y, Lyu S, Zhao N, Ma K, Ding T, Jiang Z, Wang L, Zhang J, Zheng L, Gao F, Dong L, Tsubaki N, Li X. Nat. Commun., 2018, 9:3250.

doi: 10.1038/s41467-018-05755-8
[101]
Sun J, Li X, Taguchi A, Abe T, Niu W, Lu P, Yoneyama Y, Tsubaki N. ACS Catal., 2014, 4:1.

doi: 10.1021/cs4008842
[102]
Kim J C, Lee S, Cho K, Na K, Lee C, Ryoo R. ACS Catal., 2014, 4:3919.

doi: 10.1021/cs500784v
[103]
Li J, He Y L, Tan L, Zhang P P, Peng X B, Oruganti A, Yang G H, Abe H, Wang Y, Tsubaki N. Nat. Catal., 2018, 1:787.

doi: 10.1038/s41929-018-0144-z
[104]
Hao Y J, Jiao X, Zou H B, Yang H Q, Liu J. J. Mater. Chem. A, 2017, 5:16162.

doi: 10.1039/C6TA11124F
[105]
Dong C, Yu Q, Ye R P, Su P P, Liu J, Wang G H. Angew. Chem. Int. Ed., 2020, 59:18374.

doi: 10.1002/anie.202007297
[106]
Ren X M, Guo M, Li H, Li C B, Yu L, Liu J, Yang Q H. Angew. Chem. Int. Ed., 2019, 58:14483.

doi: 10.1002/anie.201908602
[107]
Yang S L, Cao C Y, Peng L, Huang P P, Sun Y B, Wei F, Song W G. Chem. Commun., 2016, 52:1575.

doi: 10.1039/C5CC09104G
[108]
Yan P, Tian P, Li K, Stuart M A C, Wang J, Yu X, Zhou S. Chem. Eng. J., 2020, 397:125484.

doi: 10.1016/j.cej.2020.125484
[109]
Song S Y, Li K, Pan J, Wang F, Li J Q, Feng J, Yao S, Ge X, Wang X, Zhang H J. Adv. Mater., 2017, 29:1605331.
[110]
Lan X C, Ali B, Wang Y, Wang T F. ACS Appl. Mater. Interfaces, 2020, 12:3624.

doi: 10.1021/acsami.9b19364
[111]
Tamura M, Yuasa N, Nakagawa Y, Tomishige K. Chem. Commun., 2017, 53:3377.

doi: 10.1039/C7CC00653E
[112]
Wang S H, Dai J Y, Shi Z Q, Xiong Z S, Zhang Z T, Qiu S L, Wang R W. ChemPlusChem, 2020, 85:247.

doi: 10.1002/cplu.201900657
[113]
Peng J, Lan G, Guo M, Wei X, Li C, Yang Q. Chem. Eur. J., 2015, 21:10490.

doi: 10.1002/chem.201500762
[114]
Ning L M, Liao S Y, Dong C Q, Zhang M T, Gu W, Liu X. ACS Appl. Mater. Interfaces, 2020, 12:7198.

doi: 10.1021/acsami.9b19867
[115]
Zhu Y Y, Wang W D, Sun X, Fan M Y, Hu X W, Dong Z P. ACS Appl. Mater. Interfaces, 2020, 12:7285.

doi: 10.1021/acsami.9b21802
[116]
Kumar B S, Amali A J, Pitchumani K. ACS Sustain. Chem. Eng., 2017, 5:667.

doi: 10.1021/acssuschemeng.6b02025
[117]
Zhao X H, Liu X, Yi C X, Li J R, Su Y H, Guo M. ACS Appl. Nano Mater., 2020, 3:6574.

doi: 10.1021/acsanm.0c01038
[118]
Shaik F, Zhang W Q, Niu W X. J. Phys. Chem. C, 2017, 121:9572.

doi: 10.1021/acs.jpcc.7b01365
[119]
Kang M, Kim Y. Colloids Surf. A, 2020, 600:124957.

doi: 10.1016/j.colsurfa.2020.124957
[120]
Mei S L, Kochovski Z, Roa R, Gu S S, Xu X H, Yu H T, Dzubiella J, Ballauff M, Lu Y. Nano-Micro Lett., 2019, 11:1.
[121]
Hirokawa Y, Tanaka T, Sato Matsuo E. J. Chem. Phys., 1992, 96:8641.
[122]
Li L Y, He W D, Li W T, Zhang K R, Pan T T, Ding Z L, Zhang B Y. J. Polym. Sci. A, 2010, 48:5018.

doi: 10.1002/pola.24298
[123]
Wang Y, Yan R, Zhang J, Zhang W. J. Mol. Catal. A, 2010, 317:81.

doi: 10.1016/j.molcata.2009.10.026
[124]
Chen Z, Cui Z M, Cao C Y, He W D, Jiang L, Song W G. Langmuir, 2012, 28:13452.

doi: 10.1021/la3022535 pmid: 22909224
[125]
Dong L, Liu S, Gao H, Ding N, Tremel W, Xiong C, Zhu Q, Knoll W. Small, 2009, 5:1153.
[126]
Luciani C V, Choi K Y. Macromol. Theory Simul., 2014, 23:110.

doi: 10.1002/mats.201300128
[127]
Wang X, Liu D P, Song S Y, Zhang H J. J. Am. Chem. Soc., 2013, 135:15864.

doi: 10.1021/ja4069134
[128]
Wang Y Q, Ye C, Wu L H, Hu Y Z. J. Pharmaceut. Biomed., 2010, 53:235.

doi: 10.1016/j.jpba.2010.02.028
[129]
Wang X, Guan B Y, He Y P, An D, Zhang Y, Cao Y, Li X, Liu Y L, Huo Q S. Nanoscale, 2015, 7:3719.

doi: 10.1039/c4nr06341d pmid: 25640736
[130]
Yang F, Long S F, Zhou S J, Li X M, Liu X F, Gao S Y, Kong Y. RSC Adv., 2016, 6:30852.

doi: 10.1039/C6RA05494C
[131]
Liu X W, Jiao Z, Song T T, Wu M H, Zhang H J. J. Colloid Interf. Sci., 2017, 490:497.

doi: 10.1016/j.jcis.2016.11.083
[132]
Wu L, Zhang H J, Wu M H, Zhong Y F, Liu X W, Jiao Z. Micropor. Mesopor. Mat., 2016, 228:318.

doi: 10.1016/j.micromeso.2016.03.040
[133]
Dong K, Liu Z, Ren J S. CrystEngComm, 2013, 15:6329.

doi: 10.1039/c3ce40350e
[134]
Zou H B, Wang R W, Li X X, Wang X, Zeng S J, Ding S, Li L, Zhang Z T, Qiu S L. J. Mater. Chem. A, 2014, 2:12403.

doi: 10.1039/C4TA01943A
[135]
Vo N T, Patra A K, Kim D. ChemistrySelect, 2018, 3:1772.

doi: 10.1002/slct.201702918
[136]
Kottappara R, Palantavida S, Vijayan B K. J. Chem. Sci., 2020, 132:115.

doi: 10.1007/s12039-020-01814-0
[137]
Wang S H, Fan Y N, Teng J, Fan Y Z, Jiang J J, Wang H P, Grützmacher H, Wang D W, Su C Y. Small, 2016, 12:5702.

doi: 10.1002/smll.201601873
[138]
Gao S G, Zhang L, Yu H T, Wang H Q, He Z W, Huang K. Carbon, 2021, 175:307.

doi: 10.1016/j.carbon.2021.01.023
[139]
Yang W J, Zhao J H, Tian H, Wang L Z, Wang X Y, Ye S, Liu J, Huang J. Small, 2020, 16:2002236.

doi: 10.1002/smll.202002236
[140]
Jing W D, Wang Y, Shi Z Q, Peng B L, Luo J H, Wang R W, Qiu S L, Zhang Z T. ACS Appl. Mater. Interfaces, 2020, 12:40684.

doi: 10.1021/acsami.0c11984
[141]
Dai J Y, Zou H B, Shi Z Q, Yang H Q, Wang R W, Zhang Z T, Qiu S L. ACS Appl. Mater. Interfaces, 2018, 10:33474.

doi: 10.1021/acsami.8b11888
[142]
Dai J Y, Zou H B, Wang R W, Wang Y, Shi Z Q, Qiu S L. Green Chem., 2017, 19:1336.

doi: 10.1039/C6GC02926D
[143]
Yang Y, Ambrogi M, Kirmse H, Men Y J, Antonietti M, Yuan J Y. Chem. Mater., 2015, 27:127.

doi: 10.1021/cm5035535
[144]
Chen H R, Shen K, Mao Q, Chen J Y, Li Y W. ACS Catal., 2018, 8:1417.

doi: 10.1021/acscatal.7b03270
[145]
Tian H, Zhao J, Wang X, Wang L, Liu H, Wang G, Huang J, Liu J, Lu G Q. Natl. Sci. Rev., 2020, 7:1647.

doi: 10.1093/nsr/nwaa080 pmid: 34691500
[146]
Ziarati A, Badiei A, Luque R, Ouyang W. J. Mater. Chem. A, 2018, 6:8962.

doi: 10.1039/C8TA02012D
[147]
Ziarati A, Badiei A, Luque R. Appl. Catal. B, 2019, 240:72.

doi: 10.1016/j.apcatb.2018.08.058
[148]
Afzali N, Tangestaninejad S, Moghadam M, Mirkhani V, Mechler A, Mohammadpoor-Baltork I, Kardanpour R, Zadehahmadi F. Appl. Organomet. Chem., 2018, 32:e3958.

doi: 10.1002/aoc.3958
[149]
Shen Y R, Jiang P P, Wang Y C, Bian G, Wai P T, Dong Y M. J. Solid State Chem., 2018, 264:156.

doi: 10.1016/j.jssc.2018.05.005
[150]
Li X C, Zheng W J, Chen B, Wang L, He G H. ACS Sustain. Chem. Eng., 2016, 4:2780.

doi: 10.1021/acssuschemeng.6b00260
[151]
Shen Y, Jiang P, Wai P T, Zhang P, Dong Y. J. Saudi Chem. Soc., 2019, 23:1157.

doi: 10.1016/j.jscs.2019.07.004
[152]
Li Z H, Huang R K, Zhu L, Zhou X, Cao C Y, Song W G. ChemNanoMat, 2020, 6:751.

doi: 10.1002/cnma.201900770
[153]
Shah K W, Li W X. Nanomaterials, 2019, 9:910.

doi: 10.3390/nano9060910
[154]
Kamal M S, Razzak S A, Hossain M M. Atmos. Environ., 2016, 140:117.

doi: 10.1016/j.atmosenv.2016.05.031
[155]
Peng H G, Dong T, Zhang L, Wang C L, Liu W M, Bao J F, Wang X, Zhang N, Wang Z, Wu P, Zhang P F, Dai S. Appl. Catal. B, 2019, 256:117807.

doi: 10.1016/j.apcatb.2019.117807
[156]
Fang W, Chen J H, Zhou X Y, Chen J J, Ye Z P, Li J H. Ind. Eng. Chem. Res., 2020, 59:10328.

doi: 10.1021/acs.iecr.9b07028
[157]
Wu E, Feng X, Zheng Y, Lin D, Luo Y, You Y, Huang B, Qian Q, Chen Q. ACS Sustain. Chem. Eng., 2020, 8:5787.

doi: 10.1021/acssuschemeng.0c01497
[158]
Qu J F, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. ACS Sustain. Chem. Eng., 2020, 8:10581.

doi: 10.1021/acssuschemeng.0c03755
[159]
Wang M M, Chen D, Li N J, Xu Q F, Li H, He J H, Lu J M. ACS Appl. Mater. Interfaces, 2020, 12:13781.

doi: 10.1021/acsami.9b20929
[160]
Wang X, He Y, Ma Y, Liu J, Liu Y, Qiao Z A, Huo Q. Dalton Trans., 2018, 47:9072.

doi: 10.1039/c8dt02254b pmid: 29932204
[161]
You C, Yu C, Yang X, Li Y, Huo H, Wang Z, Jiang Y, Xu X, Lin K. New J. Chem., 2018, 42:4095.

doi: 10.1039/C7NJ04670G
[162]
Rodriguez-Abetxuko A, Muñumer P, Okuda M, Calvo J, Knez M, Beloqui A. Adv. Funct. Mater., 2020, 30:2002990.

doi: 10.1002/adfm.202002990
[163]
Chen W H, Vázquez-González M, Zoabi A, Abu-Reziq R, Willner I. Nat. Catal., 2018, 1:689.

doi: 10.1038/s41929-018-0117-2
[164]
Xu Y Q, Fei J B, Li G L, Yuan T T, Xu X, Li J B. Angew. Chem. Int. Ed., 2019, 58:5572.

doi: 10.1002/anie.201813771
[165]
Qiao F, Wang Z, Xu K, Ai S. Analyst, 2015, 140:6684.

doi: 10.1039/C5AN01268F
[166]
Kang Z W, Kankala R K, Chen B Q, Fu C P, Wang S B, Chen A Z. ACS Appl. Mater. Interfaces, 2019, 11:28781.

doi: 10.1021/acsami.9b05688
[167]
Mukerabigwi J F, Yin W, Zha Z S, Ke W D, Wang Y H, Chen W J, Japir A W M M, Wang Y, Ge Z S. J. Control. Release, 2019, 303:209.

doi: 10.1016/j.jconrel.2019.04.032
[168]
Ke W, Li J, Mohammed F, Wang Y, Tou K, Liu X, Wen P, Kinoh H, Anraku Y, Chen H, Kataoka K, Ge Z. ACS Nano, 2019, 13:2357.
[169]
Xu X, Zeng Z, Chen J, Huang B, Guan Z, Huang Y, Huang Z, Zhao C. Chem. Eng. J., 2020, 390:124628.

doi: 10.1016/j.cej.2020.124628
[1] Wenliang Liu, Yuqi Wang, Xiaohan Li, Xuanyu Zhang, Jiqian Wang. Design and Application of Chiral Plasmonic Core-Shell Nanostructures [J]. Progress in Chemistry, 2023, 35(8): 1168-1176.
[2] Fengshou Xiao, Qinming Wu, Chengtao Wang. Condensed Matter Chemistry in Catalysis by Zeolites [J]. Progress in Chemistry, 2023, 35(6): 886-903.
[3] Hai Wang, Chengtao Wang, Hang Zhou, Liang Wang, Fengshou Xiao. Condensed Matter Chemistry in Catalytic Conversion of Small Molecules [J]. Progress in Chemistry, 2023, 35(6): 861-885.
[4] Xuetao Qin, Ziqiao Zhou, Ding Ma. Strong Metal-Support Interactions of Metal/Meatal Oxide Catalysts [J]. Progress in Chemistry, 2023, 35(6): 928-939.
[5] Qinghe Li, Botao Qiao, Tao Zhang. Condensed Matter Chemistry in Single-Atom Catalysis [J]. Progress in Chemistry, 2023, 35(6): 821-838.
[6] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[7] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[8] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[9] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[10] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[11] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[12] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[13] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[14] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[15] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.