中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (4): 505-515 DOI: 10.7536/PC180820 Previous Articles   Next Articles

The Formation of C(sp3)-C(sp3) by Visible-Light Photocatalysis

Xiangyan Yi1, Fei Huang1,**(), Jonathan B. Baell1, He Huang1, Yang Yu2,**()   

  1. 1. School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
    2. School of Environmental and Engineering, Nanjing Tech University, Nanjing 211816, China
  • Received: Online: Published:
  • Contact: Fei Huang, Yang Yu
  • About author:
    ** E-mail: (Fei Huang);
    ** E-mail: (Yang Yu)
  • Supported by:
    The work was supported by the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(XTE1850); The work was supported by the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(XTC1810); Program for Innovative Research Team in Universities of Jiangsu Province(2015).()
Richhtml ( 29 ) PDF ( 797 ) Cited
Export

EndNote

Ris

BibTeX

We summarize the latest results of C(sp 3)-C(sp 3) coupling by visible-light photoredox catalysis in recent years and focus on the catalytic systems, reaction mechanisms and practical applications in synthesizing bioactivity molecules or drug molecules. Indeed, introducing transition metals or chiral catalysts in the visible light-catalyzed reaction system and the constructing of a novel synergistic catalysis system can make the precise formation of the C(sp 3)-C(sp 3) bond under mild conditions become a reality, which will have important implications for the design and development of chiral drugs. Finally, the future development of visible-light photoredox catalysis is prospected.

Scheme. 1 Representative photocatalysts
Table 1 The photophysical properties of photocatalysts[5,6,17]
Fig. 1 The relationship between photocatalysts, substrates and oxidant and reductant
Scheme. 2 Shuttle and quenching of single electron[2]
Scheme. 3 Decarboxylative medicated by visible-light for Michael addition reaction[32]
Scheme. 4 Oxalates as activating groups for alcohols in visible light photoredox catalysis[33]
Scheme. 5 The formation of C(sp3)-C(sp3) bonds using carboxylic acids and alkyl halides[34]
Scheme. 6 Proposed mechanism of decarboxylation coupling to generate C(sp3)-C(sp3) bonds[34]
Scheme. 7 The synthesis of the antiplatelet drug tirofiban
Scheme. 8 Proposed mechanism for the decarboxylative peptide macrocyclization[37]
Scheme. 9 Decarboxylative allylation by photoredox catalysis and application in oligosaccharide[38]
Scheme. 10 A coupling reaction between benzylic ethers and Schiff bases[39]
Scheme. 11 Radical-radical cross-couplings to synthesize γ-aminoketones[40]
Scheme. 12 The effect of DABCO on the regioselectivity in coupling reaction
Scheme. 13 The mechanism of spin-center shift
Scheme. 14 Reaction system and substrate scopes[44]
Scheme. 15 Enantioselective synthesis of stereoselective translocator protein(18 kDa) ligand PK-14067[45]
Scheme. 16 Enantioselective conjugate additions of α-amino radicals via cooperative photoredox and Lewis acid catalysis[46]
Scheme. 17 Putative mechanism for the visible-light-activated catalytic asymmetric process[47]
Scheme. 18 The importance of nitrogen atom in pyridine
Scheme. 19 Allylation modification of complexed molecules in gram scale[53]
Scheme. 20 Visible-light-induced allylation and intermolecular Michael addition reaction of aldehydes, ketones and imines[54]
Scheme. 21 The chiral iridium complex provides asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles[55]
Scheme. 22 Putative mechanism for the visible-light activated catalytic asymmetric process[56]
Scheme. 23 Ruthenium/rhodium synergetic catalysis to synthesize chiral 1,2-aminoalcohols[57]
Scheme. 24 Enantioselective additions to α,β-unsaturated ketones mediated by visible-light photoredox catalysis[58]
Scheme. 25 Radical translocation and stereocontrolled alkene addition mediated by visible-light photoredox catalysis[59]
Scheme. 26 Visible light photoredox catalysed intermolecular radical addition of α-halo amides to olefins[60]
Scheme. 27 Visible-light photoredox catalyzed Giese reaction[61]
Scheme. 28 Proposed photoredox catalytic cycle for the synthesis of 1,2-diamines[65]
Scheme. 29 Direct access to vicinal diamines and amino alcohols via α-amino radicals and ketyl radicals[65]
Scheme. 30 The synthesis of 1,4-diketones by means of a visible light-induced C—S bond activation process[66]
Scheme. 32 Two-step construction of heterocycles[66]
Scheme. 33 Putative mechanism for the direct synthesis of polysubstituted aldehydes[69]
Scheme. 34 Direct synthesis of polysubstituted aldehydes via visible-light catalysis[69]
Scheme. 35 Photochemical domain and thermal domain[70, 71]
Scheme. 36 Visible-light excitation of iminium ions enables the enantioselective catalytic β-alkylation of enals[70, 71]
[1]
Lewis N S . Science, 2007,315:789.
[2]
Romero N A ,Nicewicz D A . Chem. Rev, 2016,116:10075.
[3]
Karkas M D, Porco J A ,Stephenson C R Chem. Rev., 2016,116:9683. https://www.ncbi.nlm.nih.gov/pubmed/27120289

doi: 10.1021/acs.chemrev.5b00760 pmid: 27120289
[4]
Xie J, Jin H ,Ask H . Chem. Soc. Rev, 2017,46:5193.
[5]
Prier C K, Rankic D A MacMillan D W C . Chem. Rev., 2013,113:5322.
[6]
Shaw M H, Twilton J MacMillan D W C . Org. Chem., 2016,81:6898. https://www.ncbi.nlm.nih.gov/pubmed/27477076

doi: 10.1021/acs.joc.6b01449 pmid: 27477076
[7]
Zhao Y, Chen J R ,Xiao W J . Org Lett, 2018,20:224.
[8]
Yu X Y, Zhou Q Q, Wang P Z, Liao C M, Chen J R ,Xiao W J . Org. Lett, 2017,20:421.
[9]
Liu J, Ding W, Zhou Q Q, Liu D, Lu L Q, Xiao W J . Org Lett, 2017,20:461.
[10]
Corcoran E B, Pirnot M T, Lin S, Dreher S D DiRocco D A, Davies I W, Buchwald S L, MacMillan D W C . Science, 2016,353:279.
[11]
Welin E R, Le C ,Arias-Rotondo D M, McCusker J K, MacMillan D W C . Science, 2017,355:380.
[12]
Murphy J J, Melchiorre P . Nature, 2015,524:297.
[13]
Hu X, Zhang G, Bu F, Lei A. ACS Catal ., 2017,7:1432.
[14]
Fukuzumi S, Kotani H, Ohkubo K, Ogo S, Tkachenko N V, Lemmetyinen H . Am. Chem. Soc., 2004,126:1600. https://www.ncbi.nlm.nih.gov/pubmed/14871068

doi: 10.1021/ja038656q pmid: 14871068
[15]
Margrey K A, Levens A ,Nicewicz D A . Angew. Chem. Int Ed., 2017,56:15644.
[16]
Roth H, Romero N, Nicewicz D . Synlett, 2015,27:714.
[17]
Joshipangu A, Lévesque F, Roth H G, Oliver S F, Campeau L C, Nicewicz D, DiRocco D A Org. Chem., 2016,81:7244. https://www.ncbi.nlm.nih.gov/pubmed/27454776

doi: 10.1021/acs.joc.6b01240 pmid: 27454776
[18]
Fischer H . Chem.Rev., 2001,101:3581.
[19]
Studer A . Chem. Soc. Rev., 2004,33:267.
[20]
Xuan J, Zeng T T, Chen J R, Lu L Q ,Xiao W J . Chem. Eur. J, 2015,21:4962.
[21]
Zhou A X, Mao L L, Wang G W ,Yang S D . Chem. Commun, 2014,50:8529.
[22]
He R, Huang Z T, Zheng Q Y ,Wang C . Angew. Chem. Int Ed., 2014,53:4950.
[23]
Hu X, Zhang G, Bu F ,Lei A . Angew. Chem. Int Ed., 2017,57:1286.
[24]
Margrey K A McManus J B, Bonazzi S, Zecri F, Nicewicz D A. , Am. Chem. Soc., 2017,139:11288. https://www.ncbi.nlm.nih.gov/pubmed/28718642

doi: 10.1021/jacs.7b06715 pmid: 28718642
[25]
Terrett J A, Cuthbertson J D, Shurtleff V W, MacMillan D W C . Nature, 2015,524:330.
[26]
Ventre S, Petronijevic F R, MacMillan D W C . Am. Chem. Soc., 2015,137:5654. https://www.ncbi.nlm.nih.gov/pubmed/25881929

doi: 10.1021/jacs.5b02244 pmid: 25881929
[27]
Yue H, Zhu C ,Rueping M . Angew. Chem. Int Ed., 2018,57:1371.
[28]
Zhang G, Liu C, Yi H, Meng Q, Bian C, Chen H, Jian J X, Wu L Z, Lei A . Am. Chem. Soc., 2015,137:9273. https://www.ncbi.nlm.nih.gov/pubmed/26158688

doi: 10.1021/jacs.5b05665 pmid: 26158688
[29]
Du J, Skubi K L, Schultz D M, Yoon T P . Science, 2014,344:392.
[30]
Cismesia M A ,Yoon T P . Chem. Sci, 2015,6:5426.
[31]
Yu X Y, Chen J R, Wang P Z, Yang M N, Liang D ,Xiao W J . Angew. Chem. Int Ed., 2018,57:738.
[32]
Chu L, Ohta C, Zuo Z, MacMillan D W C ., Am. Chem. Soc., 2014,136:10886. https://www.ncbi.nlm.nih.gov/pubmed/25032785

doi: 10.1021/ja505964r pmid: 25032785
[33]
Nawrat C C, Jamison C R, Slutskyy Y, MacMillan D W C, Overman L E . Am. Chem. Soc., 2015,137:11270. https://www.ncbi.nlm.nih.gov/pubmed/26322524

doi: 10.1021/jacs.5b07678 pmid: 26322524
[34]
Johnston C P, Smith R T, Allmendinger S MacMillan D W C . Nature, 2016,536:322.
[35]
Terao J, Watanabe H, Ikumi A, Kuniyasu H, Kambe N . Am. Chem. Soc., 2002,12:4222.
[36]
Saito B, Fu G C . Am. Chem. Soc., 2007,38:9602.
[37]
McCarver S J, Qiao J X, Carpenter J, Borzilleri R M, Poss M A, Eastgate M D, Miller M M, MacMillan D W C . Angew. Chem. Int. Ed., 2017,56:728.
[38]
Hu C C ,Chen Y . Org. Chem. Front, 2015,2:1352.
[39]
Hager D, MacMillan D W C . Am. Chem. Soc., 2014,136:16986. https://www.ncbi.nlm.nih.gov/pubmed/25457231

doi: 10.1021/ja5102695 pmid: 25457231
[40]
Jeffrey J L, Petronijevi F R, MacMillan D W C . Am. Chem. Soc., 2015,137:8404. https://www.ncbi.nlm.nih.gov/pubmed/26075347

doi: 10.1021/jacs.5b05376 pmid: 26075347
[41]
Eklund H, Uhlin U, Färnegårdh M, Logan D T ,Nordlund P . Prog. Biophys. Mol Biol., 2001,77:177.
[42]
Wessig P ,Muehling O . Eur. J. Org Chem., 2007,2007:2219.
[43]
Dryzhakov M, Richmond E, Moran J . Synthesis, 2016,48:935.
[44]
Nacsa E D, MacMillan D W C . Am. Chem. Soc., 2018,140:3322. https://www.ncbi.nlm.nih.gov/pubmed/29400958

doi: 10.1021/jacs.7b12768 pmid: 29400958
[45]
Dubroeucq M C, Bénavidès J, Doble A, Guilloux F, Allam D, Vaucher N, Bertrand P, Guérémy C, Renault C, Uzan A ,Le Fur G . Eur. J. Pharmacol, 1986,128:269.
[46]
Espelt L R McPherson I S, Wiensch E M, Yoon T P. Am. Chem. Soc., 2015,137:2452. https://www.ncbi.nlm.nih.gov/pubmed/25668687

doi: 10.1021/ja512746q pmid: 25668687
[47]
Hepburn H B, Melchiorre P . Chem. Commun 2016,52:3520.
[48]
Bergonzini G ,Melchiorre P . Angew. Chem. Int Ed., 2012,51:971.
[49]
Tian X, Liu Y ,Melchiorre P . Angew. Chem. Int Ed., 2012,51:6439.
[50]
Moran A, Hamilton A, Bo C P, Melchiorre P . Am. Chem. Soc., 2013,135:9091. https://www.ncbi.nlm.nih.gov/pubmed/23746220

doi: 10.1021/ja404784t pmid: 23746220
[51]
Silvi M, Chatterjee I, Liu Y ,Melchiorre P . Angew. Chem. Int Ed., 2013,52:10780.
[52]
Ahrendt K A, Borths C J, MacMillan D W C. Am. Chem. Soc., 2000,122:4243.
[53]
Zhang J, Li Y, Zhang F, Hu C ,Chen Y\n . Angew. Chem. Int Ed., 2016,55:1872.
[54]
Qi L ,Chen Y . Angew. Chem. Int Ed., 2016,55:13312.
[55]
Huo H, Shen X, Wang C, Zhang L, Röse P, Chen L A, Harms K, Marsch M, Hilt G, Meggers E . Nature, 2014,515:100.
[56]
Wang C, Qin J, Shen X, Riedel R, Harms K, Meggers E . Angew. Chem. Int Ed., 2016,55:685.
[57]
Ma J, Harms K, Meggers E . Chem. Commun 2016,52:10183.
[58]
Huo H, Harms K, Meggers E . Am. Chem. Soc., 2016,138:6936. https://www.ncbi.nlm.nih.gov/pubmed/27218134

doi: 10.1021/jacs.6b03399 pmid: 27218134
[59]
Wang C, Harms K ,Meggers E . Angew. Chem. Int Ed., 2016,55:13495.
[60]
Nakajima M, Lefebvre Q, Rueping M . Chem. Commun 2014,50:3619.
[61]
Millet A, Lefebvre Q ,Rueping M . Chem. Eur. J, 2016,22:13464.
[62]
Cardona F, Goti A . Nat. Chem 2009,1:269.
[63]
Liu X, Gao A, Ding L, Xu J, Zhao B . Org. Lett 2014,16:2118.
[64]
Olson D E, Su J Y, Roberts D A, Du Bois J . Am. Chem. Soc., 2014,136:13506. https://www.ncbi.nlm.nih.gov/pubmed/25233140

doi: 10.1021/ja506532h pmid: 25233140
[65]
Fava E, Millet A, Nakajima M, Loescher B S ,Rueping P . Angew. Chem. Int Ed., 2016,55:6776.
[66]
Xuan J, Feng Z J, Chen J R, Lu L Q ,Xiao W J . Chem. Eur. J, 2014,20:3045.
[67]
Zhou W J, Cao G M, Shen G, Zhu X Y, Gui Y Y, Ye H, Sun L, Liao L L, Li J ,Yu D G . Angew. Chem. Int Ed., 2017,56:15683.
[68]
Evans D A, Weber A E . Am. Chem. Soc., 1986,108:6757.
[69]
Wu F, Wang L, Chen J, Nicewicz D A ,Huang Y . Angew. Chem. Int Ed., 2018,57:2174.
[70]
Silvi M, Verrier C, Rey Y P, Buzzetti L, Melchiorre P . Nat. Chem 2017,9:868.
[71]
Bahamonde A, Melchiorre P . Am. Chem. Soc., 2016,138:8019. https://www.ncbi.nlm.nih.gov/pubmed/27267587

doi: 10.1021/jacs.6b04871 pmid: 27267587
[1] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[2] Li Luyao, Xu Xinyao, Zhu Bo, Xu Xinyao. Application of Pyrazolone Compounds in Catalytic Asymmetric Reactions [J]. Progress in Chemistry, 2020, 32(11): 1710-1728.
[3] Jie Yu, Liu-Zhu Gong. Discovery and Typical Advances of Chiral Amino Amide Catalysts [J]. Progress in Chemistry, 2020, 32(11): 1729-1744.
[4] Yuping Tang, Yanmei He, Yu Feng, Qinghua Fan. Asymmetric Supramolecular Catalysis Based on Macrocyclic Host Molecules [J]. Progress in Chemistry, 2018, 30(5): 476-490.
[5] Yu Zhang, Xiaohua Liu, Lili Lin, Xiaoming Feng*. Recent Advance in Catalytic Asymmetric Friedel-Crafts Reactions [J]. Progress in Chemistry, 2018, 30(5): 491-504.
[6] Zhiyong Han, Liuzhu Gong*. Asymmetric Organo/Palladium Combined Catalysis [J]. Progress in Chemistry, 2018, 30(5): 505-512.
[7] Jun Luo, YanSong Zheng. Chiral Calixarenes and Their Supramolecular Chirality [J]. Progress in Chemistry, 2018, 30(5): 601-615.
[8] Zhang Yongli, Zhang Rui, Chang Honghong, Wei Wenlong, Li Xing. Asymmetric Carbonyl-ene Reactions Promoted by Chiral Catalysts [J]. Progress in Chemistry, 2014, 26(09): 1492-1505.
[9] Jin Qingxian, Li Jing, Li Xiaogang, Zhang Li, Fang Shaoming, Liu Minghua. Function and Application of Supramolecular Gels:Chiral Molecular Recognition and Asymmetric Catalysis [J]. Progress in Chemistry, 2014, 26(06): 919-930.
[10] Yu Lide, Cui Hanfeng*, Fan Hao, Ren Shuhui, Lin Yan. Chiral Quaternary Phosphonium Salts in Asymmetric Catalysis [J]. Progress in Chemistry, 2013, 25(05): 744-751.
[11] Li Gaowei, Wang Xiaojuan, Zhao Wenxian, Lu Liujie, Liu Guanjun, Wang Mincan. Trost-Type Chiral Semi-Azacrown Ether Ligands in Asymmetric Catalysis [J]. Progress in Chemistry, 2012, 24(0203): 348-360.
[12] Lin Lili, Liu Xiaohua, Feng XIiaoming. Asymmetric Reactions Catalyzed by Chiral Tridentate Schiff Base-Metal Complexes [J]. Progress in Chemistry, 2010, 22(07): 1353-1361.
[13] Xu Lijin Yi Bing Dang Limin Tang Weijun. Asymmetric catalysis in ionic liquids [J]. Progress in Chemistry, 2010, 22(07): 1254-1273.
[14] Liu Ji, Ma Baode, Yang Nianfa, Fan Jinghua. Soluble Polymer-Supported Homogeneous Catalysts [J]. Progress in Chemistry, 2010, 22(07): 1457-1470.
[15] Wang Haiming,Wang Zheng,Ding Kuiling. Recent Progress in Self-Supported Chiral Catalysts [J]. Progress in Chemistry, 2010, 22(07): 1471-1481.