中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (05): 744-751 DOI: 10.7536/PC121003 Previous Articles   Next Articles

• Review •

Chiral Quaternary Phosphonium Salts in Asymmetric Catalysis

Yu Lide1, Cui Hanfeng*1, Fan Hao1, Ren Shuhui2, Lin Yan1   

  1. 1. College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China;
    2. College of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
  • Received: Revised: Online: Published:
PDF ( 2419 ) Cited
Export

EndNote

Ris

BibTeX

Chiral phase-tranfer catalysis plays an important role in modern asymmetric synthesis and organic synthesis chemistry. This review focuses on the progress of chiral quaternary phosphonium salts as phase-transfer catalysts reported in recent years, and their application in asymmetric catalytic reactions, including Henry reaction, hydrophosphonylation reaction, alkylation reaction, Michael addition reaction, Mannich reaction, aldol reaction, protonation reaction and amination reaction. Steric and electrical effects of these catalysts are emphasized, future prospects for development of chiral quaternary phosphonium salts are also described in this article. Contents
1 Introduction
2 Early works
3 Chiral P-spiro tetraaminophosphonium salts and diaminodioxaphosphonium salts
3.1 Asymmetric Henry reaction
3.2 Asymmetric hydrophosphonylation reaction
3.3 Asymmetric alkylation reaction
3.4 Asymmetric Michael addition reaction
3.5 Asymmetric Mannich reaction
3.6 Asymmetric aldol reaction
3.7 Asymmetric protonation reaction
4 Chiral tetraalkylphosphonium salts
4.1 Asymmetric amination reaction of β-keto esters and benzofuranones
4.2 Asymmetric Michael addition reaction of 3-aryloxindoles
4.3 Asymmetric Mannich reaction of 3-aryloxindoles
5 Conclusion and outlook

CLC Number: 

[1] Maruoka K, Ooi T. Chem. Rev., 2003, 103: 3013-3028
[2] Ooi T, Maruoka K. Angew. Chem. Int. Ed., 2007, 46: 4222-4266
[3] Bak? T, Bak? P, Szöllõsy Á, Czugler M, Keglevich G, Tõke L. Tetrahedron: Asymmetry, 2002, 13: 203-209
[4] Hashimoto T, Maruoka K. Chem. Rev., 2007, 107: 5656-5682
[5] Ooi T, Kameda M, Maruoka K. J. Am. Chem. Soc., 1999, 121: 6519-6520
[6] Shibuguchi T, Fukuta Y, Akachi Y, Sekine A, Ohshima T, Shibasaki M. Tetrahedron Lett., 2002, 43: 9539-9543
[7] Ooi T, Sakai D, Takeuchi M, Tayama E, Maruoka K. Angew. Chem. Int. Ed., 2003, 42: 5868-5870
[8] Ooi T, Ohara D, Fukumoto K, Maruoka K. Org. Lett., 2005, 7: 3195-3197
[9] Okada A, Shibuguchi T, Ohshima T, Masu H, Yamaguchi K, Shibasaki M. Angew. Chem. Int. Ed., 2005, 44: 4564-4567
[10] Liu W J, Lv B D, Gong L Z. Angew. Chem. Int. Ed., 2009, 48: 6503-6506
[11] Ooi T, Ohara D, Tamura M, Maruoka K. J. Am. Chem. Soc., 2004, 126: 6844-6845
[12] Hofstetter C, Wilkinson P S, Pochapsky T C. J. Org. Chem., 1999, 64: 8794-8800
[13] Wernera T. Adv. Synth. Catal., 2009, 351: 1469-1481
[14] Enders D, Nguyen T V. Org. Biomol. Chem., 2012, 10: 5327-5331
[15] Shioiri T, Ando A, Masui M. Phase Transfer Catalysis: Mechanism and Syntheses, ACS Symposium Series, Vol. 659, (Ed. Halpern M E). American Chemical Society, Washington DC, 1997. 136-147
[16] Manabe K. Tetrahedron Lett., 1998, 39: 5807-5810
[17] Manabe K. Tetrahedron, 1998, 54: 14465-14476
[18] Uraguchi D, Sakaki S, Ooi T. J. Am. Chem. Soc., 2007, 129: 12392-12393
[19] Uraguchi D, Nakamura S, Ooi T. Angew. Chem. Int. Ed., 2010, 49: 7562-7565
[20] Uraguchi D, Ito T, Nakamura S, Sakaki S, Ooi T. Chem. Lett., 2009, 38: 1052-1053
[21] Suyama K, Sakai Y, Matsumoto K, Saito B, Katsuki T. Angew. Chem. Int. Ed., 2010, 49: 797 -799
[22] Nakamura S, Hayashi M, Hiramatsu Y, Shibata N, Funahashi Y, Toru T. J. Am. Chem. Soc., 2009, 131: 18240-18241
[23] Wang F, Liu X H, Cui X, Xiong Y, Zhou X, Feng X M. Chem. Eur. J., 2009, 15: 589-592
[24] Uraguchi D, Ito T, Ooi T. J. Am. Chem. Soc., 2009, 131: 3836-3837
[25] Uraguchi D, Ito T, Nakamura S, Ooi T. Chem. Sci., 2010, 1: 488-490
[26] Uraguchi D, Asai Y, Ooi T. Angew. Chem. Int. Ed., 2009, 48: 733-737
[27] Uraguchi D, Asai Y, Seto Y, Ooi T. Synlett, 2009, (4): 658-660
[28] Dondoni A, Massi A. Angew. Chem. Int. Ed., 2008, 47: 4638-4660
[29] Itoh K, Kanemasa S. J. Am. Chem. Soc., 2002, 124: 13394-13395
[30] Liu K, Cui H F, Nie J, Dong K Y, Li X J, Ma J A. Org. Lett., 2007, 9: 923-925
[31] Enders D, H黷tl M R M, Grondal C, Raabe G. Nature, 2006, 441: 861-863
[32] Uraguchi D, Nakashima D, Ooi T. J. Am. Chem. Soc., 2009, 131: 7242-7243
[33] Uraguchi D, Kinoshita N, Kizu T, Ooi T. Synlett, 2011, (9): 1265-1267
[34] Uraguchi D, Ueki Y, Ooi T. Chem. Sci., 2012, 3: 842-845
[35] Uraguchi D, Ueki Y, Ooi T. Angew. Chem. Int. Ed., 2011, 50: 3681-3683
[36] Uraguchi D, Ueki Y, Ooi T. J. Am. Chem. Soc., 2008, 130: 14088-14089
[37] Ishihara K, Nakamura S, Kaneeda M, Yamamoto H. J. Am. Chem. Soc., 1996, 118: 12854-12855
[38] Uraguchi D, Kinoshita N, Ooi T. J. Am. Chem. Soc., 2010, 132: 12240-12242
[39] Corbett M T, Uraguchi D, Ooi T, Johnson J S. Angew. Chem. Int. Ed., 2012, 51: 4685-4689
[40] Marigo M, Juhl K, Jøgensen K A. Angew. Chem. Int. Ed., 2003, 42: 1367-1369
[41] Liu T Y, Cui H L, Zhang Y, Jiang K, Du W, He Z Q, Chen Y C. Org. Lett., 2007, 9: 3671-3674
[42] List B. J. Am. Chem. Soc., 2002, 124: 5656-5657
[43] He R J, Wang X S, Hashimoto T, Maruoka K. Angew. Chem. Int. Ed., 2008, 47: 9466-9468
[44] He R J, Maruoka K. Synthesis, 2009, (13): 2289-2292
[45] Zhu C L, Zhang F G, Meng W, Nie J, Cahard D, Ma J A. Angew. Chem. Int. Ed., 2011, 50: 5869-5872
[46] He R J, Ding C H, Maruoka K. Angew. Chem. Int. Ed., 2009, 48: 4559-4561

[1] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[2] Li Luyao, Xu Xinyao, Zhu Bo, Xu Xinyao. Application of Pyrazolone Compounds in Catalytic Asymmetric Reactions [J]. Progress in Chemistry, 2020, 32(11): 1710-1728.
[3] Jie Yu, Liu-Zhu Gong. Discovery and Typical Advances of Chiral Amino Amide Catalysts [J]. Progress in Chemistry, 2020, 32(11): 1729-1744.
[4] Xiangyan Yi, Fei Huang, Jonathan B. Baell, He Huang, Yang Yu. The Formation of C(sp3)-C(sp3) by Visible-Light Photocatalysis [J]. Progress in Chemistry, 2019, 31(4): 505-515.
[5] Yuping Tang, Yanmei He, Yu Feng, Qinghua Fan. Asymmetric Supramolecular Catalysis Based on Macrocyclic Host Molecules [J]. Progress in Chemistry, 2018, 30(5): 476-490.
[6] Yu Zhang, Xiaohua Liu, Lili Lin, Xiaoming Feng*. Recent Advance in Catalytic Asymmetric Friedel-Crafts Reactions [J]. Progress in Chemistry, 2018, 30(5): 491-504.
[7] Zhiyong Han, Liuzhu Gong*. Asymmetric Organo/Palladium Combined Catalysis [J]. Progress in Chemistry, 2018, 30(5): 505-512.
[8] Jun Luo, YanSong Zheng. Chiral Calixarenes and Their Supramolecular Chirality [J]. Progress in Chemistry, 2018, 30(5): 601-615.
[9] Zhang Yongli, Zhang Rui, Chang Honghong, Wei Wenlong, Li Xing. Asymmetric Carbonyl-ene Reactions Promoted by Chiral Catalysts [J]. Progress in Chemistry, 2014, 26(09): 1492-1505.
[10] Jin Qingxian, Li Jing, Li Xiaogang, Zhang Li, Fang Shaoming, Liu Minghua. Function and Application of Supramolecular Gels:Chiral Molecular Recognition and Asymmetric Catalysis [J]. Progress in Chemistry, 2014, 26(06): 919-930.
[11] Li Gaowei, Wang Xiaojuan, Zhao Wenxian, Lu Liujie, Liu Guanjun, Wang Mincan. Trost-Type Chiral Semi-Azacrown Ether Ligands in Asymmetric Catalysis [J]. Progress in Chemistry, 2012, 24(0203): 348-360.
[12] Lin Lili, Liu Xiaohua, Feng XIiaoming. Asymmetric Reactions Catalyzed by Chiral Tridentate Schiff Base-Metal Complexes [J]. Progress in Chemistry, 2010, 22(07): 1353-1361.
[13] Xu Lijin Yi Bing Dang Limin Tang Weijun. Asymmetric catalysis in ionic liquids [J]. Progress in Chemistry, 2010, 22(07): 1254-1273.
[14] Liu Ji, Ma Baode, Yang Nianfa, Fan Jinghua. Soluble Polymer-Supported Homogeneous Catalysts [J]. Progress in Chemistry, 2010, 22(07): 1457-1470.
[15] Wang Haiming,Wang Zheng,Ding Kuiling. Recent Progress in Self-Supported Chiral Catalysts [J]. Progress in Chemistry, 2010, 22(07): 1471-1481.