中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (11): 1710-1728 DOI: 10.7536/PC200601 Previous Articles   Next Articles

Application of Pyrazolone Compounds in Catalytic Asymmetric Reactions

Li Luyao1, Xu Xinyao1, Zhu Bo1,**(), Xu Xinyao1,**()   

  1. 1. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
  • Received: Online: Published:
  • Contact: Zhu Bo, Xu Xinyao
  • Supported by:
    the National Natural Science Foundation of China(81903465); the National Natural Science Foundation of China(U1804283)
Richhtml ( 11 ) PDF ( 947 ) Cited
Export

EndNote

Ris

BibTeX

Pyrazolin-5-one compounds play an important role in bioactive compounds and have attracted extensive attention. Pyrazolin-5-one and its common derivatives have many reaction sites and can participate in a variety of asymmetric reactions, such as asymmetric addition reactions, asymmetric annulation reactions and other asymmetric reactions. In this context, we summarize the recent progress in asymmetric reactions of pyrazolin-5-one and its common derivatives. The main reaction types involving the pyrazolin-5-one compounds are classified, and their main reaction sites are expounded. Finally, the challenges and development of pyrazolone derivatives are summarized, and the future development direction is prospected.

Contents

1 Introduction

2 The synthesis of pyrazolin-5-one derivatives

3 Asymmetric addition reactions

3.1 Asymmetric Michael addition

3.2 Asymmetric Mannich reaction

3.3 Other asymmetric addition reaction

4 Asymmetric annulation reactions

5 Other asymmetric reactions

6 Conclusion and outlook

Scheme 1 Biologically active pyrazolone derivatives
Scheme 2 Reaction sites of pyrazolin-5-one derivatives
Scheme 3 The synthesis of pyrazolin-5-one derivatives[9,10,11]
Scheme 4 Asymmetric Michael addition of nitroalkenes and 1[12]
Scheme 5 Asymmertic Michael addition of different acceptors with 1 [13,14]
Scheme 6 Asymmetric Michael addition of 2-enoylpyridines or arylomethylidenemalonates with 1[15,16]
Scheme 7 Aza-Michael Addition of 1 to α,β-unsaturated ketones[17]
Scheme 8 Asymmetric Michael addition of nitroolefins and 2[18]
Scheme 9 Asymmetric Michael addition involving 2[19,20]
Scheme 10 Asymmmetric Michael addition of 2 to maleimides[21]
Scheme 11 Asymmmetric Michael addition of 2 with p-benzoquinones[22]
Scheme 12 Conjugate addition of 2 to the o-QMs[23]
Scheme 13 Asymmetric Michael addition of 2 to β-trifluoromethyl-α,β-unsaturated ketones[24]
Scheme 14 Asymmetric Michael addition of 2 to α,β-unsaturated p-nitrophenyl[9]
Scheme 15 Asymmetric Michael reaction of azlactones to 3[25]
Scheme 16 Asymmetric Michael reaction of nitroolefins to 4[26]
Scheme 17 Asymmetric Michael reaction of 3 with azomethine ylide[27]
Scheme 18 Asymmmetric Mannich reaction of 1 to isatin-derived N-Boc ketimines[28]
Scheme 19 Asymmetric synthesis of amino-bis-pyrazolone derivatives[29]
Scheme 20 Asymmetric Mannich reaction of 2 with isatin-derived ketimines[30]
Scheme 21 Asymmetric Mannich reactions between 3-fluorooxindoles and 5[31]
Scheme 22 Asymmetric Mannich reactions between 5 and β-ketoacids[32]
Scheme 23 Enantioselective aminoalkylation of 1[33]
Scheme 24 Other nucleophilic additions involving 1[34]
Scheme 25 Asymmetric α-amination of 1 or 2 with azodicarboxylates[35,36,37]
Scheme 26 Highly enantioselective regiodivergent addition of alkoxyallenes to 2[38]
Scheme 27 Asymmetric addition of 2 to allenamides[39]
Scheme 28 Asymmetric addition between TMSCN and 5[11]
Scheme 29 Asymmetric addition between enol ethers and 5[40]
Scheme 30 Enantioselective Aldol reaction of allyl ketones and 3-Acetylcoumarins to 6[41,42]
Scheme 31 Double Michael addition of 1 to aldehydes and possible reaction pathway[43,44]
Scheme 32 Multicomponent enantioselective [3+2] annulation reactions of 1[45]
Scheme 33 Four component [5+1+1+1] annulation reactions of 1[46]
Scheme 34 Asymmetric [4+1] annulation reactions between α,β-unsaturated keto esters, nitrosobenzenes and 1[47]
Scheme 35 One pot sequential multistep reaction involving 1[48,49]
Scheme 36 Asymmetric synergistic catalytic reactions involving 1 or 2[50,51,52]
Scheme 37 NHC-Catalyzed annulation betwwen enals and 1[53]
Scheme 38 Asymmetric annulation between enynones and1[54]
Scheme 39 Asymmetric cascade [5+1] double Michael additions between 1 and dienones[55]
Scheme 40 Phosphine-catalyzed [4+1] asymmetric annulation between 1 and 2-(acetoxymethyl)buta-2,3-dienoates[56]
Scheme 41 Asymmmetric annulation of(E)-5-nitro-6-arylhex-5-en-2-ones and 1[57]
Scheme 42 Asymmmetric [3+3] annulation of β,γ-unsaturated α-ketoesters and 1[58]
Scheme 43 Allenylic cycloaddition of allenyl acetates and 1[59]
Scheme 44 Rhodium-catalyzed asymmetric synthesis of spiropyrazolones by[60]
Scheme 45 Asymmetric [4+1] annulation of ortho-quinomethanes with 2[61]
Scheme 46 One pot sequential multistep annulation involoving 3[62,63]
Scheme 47 Annulation between ethyl acetoacetates,(E)-β-nitrostyrenes and 3[64]
Scheme 48 Annulation between aldehydes, nitrostyrenes and 3[65]
Scheme 49 Annulation between 3, enolizable aldehydes and enalsaldehydes[66]
Scheme 50 Asymmetric [3+2] annulation between 3, α-isothiocyanato imide and esters[67]
Scheme 51 Asymmetric [4+2] annulation between 3 and α,β-unsaturated ketones[68]
Scheme 52 Asymmetric [2+n] annulation involving 3[68,69,70,71,72,73,74,75,76,77]
Scheme 53 Asymmetric [3+2] annulation between 2-(1-methyl-2-oxoindolin-3-yl)malononitriles and 3[78]
Scheme 54 Asymmetric [3+2] annulation between MBH carbonates or 2,3-dienoate and 3[79,80]
Scheme 55 Asymmetric [4+2] annulation between 3 and α-chloroaldehydes[81]
Scheme 56 Asymmetric [4+2] annulation between 3 and arylacetic acid anhydride[82,83]
Scheme 57 Asymmetric [4+2] annulation between allenoates or allene ketones and 3[84]
Scheme 58 Asymmetric [3+3] annulation reaction between 4 and enals[85,86,87]
Scheme 59 Asymmetric [3+3] annulation reaction between 4 and(E)-2-nitroallylic acetates[88]
Scheme 60 Enantioselective [3+3] annulation reaction of MBH carbonates with 4[89]
Scheme 61 [1+2+3] multicomponent annulation reaction between malononitriles, benzaldehydes and 4[90]
Scheme 62 Enantioselective annulation reaction of β,γ-unsaturated-α-ketoesters with 4[91]
Scheme 63 Enantioselective annulation of 4 with alkyne [92]
Scheme 64 Asymmetric Michael-Aldol cyclization of β,γ-unsaturated α-ketoesters and 4[93]
Scheme 65 Asymmetric [3+2] cyclization of 4-isothiocyanato pyrazolones and isatin-derived ketimines[94]
Scheme 66 Asymmetric [4+2] cyclization of α,β,γ,δ-unsaturated pyrazolones and aldehydes[95]
Scheme 67 One pot sequential multistep reaction involving 1[96,97,98,99]
Scheme 68 Asymmetric fluorination/chlorination/hydroxylation of 2[100,101,102]
Scheme 69 Asymmetric allylation of 2[103,104]
Scheme 70 Enantioselective direct α-arylation of 2[105]
Scheme 71 Cross-dehydrogenative coupling between 1 and cyclopentenedione[106]
Scheme 72 Asymmetric sulfenylation of 2[107]
Scheme 73 Asymmetric reaction of 2 with isatin-derived nitroolefins[108]
Scheme 74 Asymmetric Friedel-Crafts reaction between 5 and β-Ketoacids[109]
Scheme 75 Asymmetric Friedel-Crafts reaction between 5 and hydroxyindoles[110]
Scheme 76 Asymmetric alkynylation of 6[111]
Scheme 77 Catalytic asymmetric Huisgen alkyne-azide cycloaddition of bisalkynes[112]
[1]
(a) Sujatha K Shanthi G; Selvam N P, Manoharan S, Perumal P T, Rajendran M. Bioorg. Med. Chem. Lett., 2009, 19: 4501.;(b) Costa D, Marques A P, Reis R L, Lima J L F C, Fernandes E. Free Radical Biol. Med., 2006, 40: 632.
[2]
Bondock S, Rabie R, Etman H A, Fadda A A. Eur. J. Med.Chem., 2008, 43: 2122.
[3]
Brogden R N. Drugs, 1986, 32: 60.
[4]
Pégurier C, Collart P, Danhaive P, Defays S, Gillard M, Gilson F, Kogej T, Pasau P, Van Houtvin N, Van Thuyne M, van Keulen B. Bioorg. Med. Chem. Lett., 2007, 17: 4228.
[5]
Casas J S, Castellano E E, Ellena J, Garcia-Tasende M S, Peres-Paralle M L, Sanchez A, Sanchez-Gonzalez A, Sordo J, Touceda A [J]. Inorg. Biochem., 2008, 102: 33.
[6]
Wu T W, Zeng L H, Wu J, Fung K P. Life Sci., 2002, 71: 2249.
[7]
Chauhan P, Mahajan S, Enders D. Chem. Commun., 2015, 51: 12890.
[8]
Liu S, Bao X, Wang B. Chem. Commun., 2018, 54: 11515.
[9]
Shu C, Liu H, Slawin A M Z, Carpenter-Warren C, Smith A D. Chem. Sci., 2020, 11: 241.
[10]
Cui B D, Li S W, Zuo J, Wu Z J, Zhang X M, Yuan W C. Tetrahedron, 2014, 70: 895.
[11]
Mahajan S, Chauhan P, Kaya U, Deckers K, Rissanen K, Enders D. Chem. Commun., 2017,53: 6633.
[12]
Li J H, Du D M. Org. Biomol. Chem., 2013, 11: 6215.
[13]
Li S W, Wan Q, Kang Q. Org. Lett., 2018, 20: 1312.
[14]
Li F, Pei W, Wang J, Liu J, Wang J, Zhang M L, Chen Z, Liu L. Org. Chem. Front., 2018, 5: 1342.
[15]
Sharma V, Kaur A, Sahoo S C, Chimni S S. Org. Biomol. Chem., 2018, 16: 6470.
[16]
Sharma A, Sharma V, Chimni S S. Org. Biomol. Chem., 2019, 17: 9514.
[17]
Gogoi S, Zhao C G, Ding D. Org. Lett., 2009, 11(11): 2249.
[18]
Liao Y H, Chen W B, Wu Z J, Du X L, Cun L F, Zhang X M, Yuan W C. Adv. Synth. Catal., 2010, 352: 827.
[19]
Wang Z, Yang Z, Chen D, Liu X, Lin L, Feng X. Angew. Chem. Int.Ed., 2011, 50: 4928.
[20]
Wang Z, Chen Z, Bai S, Li W, Liu X, Lin L, Feng X. Angew. Chem. Int.Ed., 2012, 51: 2776.
[21]
Mazzanti A, Calbet T, Font-Bardia M, Moyanoc A, Rios R. Org. Biomol. Chem., 2012, 10: 1645.
[22]
He Y, Bao X, Qu J, Wang B. Tetrahedron: Asymmetry, 2015, 26: 1382.
[23]
Chu M M, Qi S S, Ju W Z, Wang Y F, Chen X Y, Xu D Q, Xu Z Y. Org. Chem. Front., 2019, 6: 1140.
[24]
Xu X, He Y, Zhou J, Li X, Zhu B, Chang J.[J]. Org. Chem., 2020, 85: 574.
[25]
Geng Z C, Chen X, Zhang J X, Li N, Chen J, Huang X F, Zhang S Y, Tao J C, Wang X W. Eur. J. Org.Chem., 2013, 4738.
[26]
Rassu G, Zambrano V, Pinna L, Curti C, Battistini L, Sartori A, Pelosi G, Casiraghi G, Zanardi F. Adv. Synth. Catal., 2014, 356: 2330.
[27]
Gong Y C, Wang Y, Li E Q, Cui H, Duan Z. Adv. Synth. Catal., 2019, 361(6): 1389.
[28]
Vila C, Amr F I, Blay G, MuÇoz M C, Pedro J R. Chem. Asian J., 2016, 11: 1532.
[29]
Chauhan P, Mahajan S, Kaya U, Peuronen A, Rissanen K, Enders D.[J]. Org. Chem., 2017, 82: 7050.
[30]
Amr F I, Vila C, Blay G, MuÇoz M.C, Pedro J R. Adv. Synth. Catal., 2016, 358: 1583.
[31]
Zhang Q D, Zhao B L, Li B Y, Du D M. Org. Biomol. Chem., 2019, 17: 7182.
[32]
Zhou Y, You Y, Wang Z H, Zhang X M, Xu X Y, Yuan W C. Eur. J. Org.Chem., 2019, 3112.
[33]
Carceller-Ferrer L, Vila C, Blay G, Fernández I, Muñozb M C, Pedro J R. Org. Biomol. Chem., 2019, 17: 9859.
[34]
Luo W, Song D, Fang L, Nian S, Hou H, Ling F, Zhong W. Asian J. Org. Chem., 2018, 7: 2417.
[35]
Yang Z, Wang Z, Bai S, Liu X, Lin L, Feng X. Org. Lett., 2011, 13(4): 596.
[36]
Šimek M, Remeš M, Vesel J, Rios R. Asian [J]. Org. Chem., 2013, 2: 64.
[37]
Yuan H, Li Y, Zhao H, Yang Z, Li X, Li W. Chem. Commun., 2019, 55: 12715.
[38]
Zhou H, Wei Z, Zhang J, Yang H, Xia C, Jiang G. Angew. Chem. Int.Ed., 2017, 56: 1077.
[39]
YanK, Bao X, Liu S, Xu J, Qu J, Wang B. Eur. [J]. Org. Chem., 2018, 6469.
[40]
Kang T, Cao W, Hou L, Tang Q, Zou S, Liu X, Feng X. Angew. Chem. Int.Ed., 2019, 58: 2464.
[41]
Ray B, Mukherjee S.[J]. Org. Chem., 2018, 83: 10871.
[42]
Ray B, Roy S J S, Mukherjee S. Asian [J]. Org. Chem., 2019, 8(7): 1045.
[43]
Companyó X, Zea A, Alba A N R, Mazzanti A, Moyano A, Rios R. Chem. Commun., 2010, 46: 6953.
[44]
Alba A N R, Zea A, Valero G, Calbet T, Font-Bardía M, Mazzanti A, Moyano A, Rios R. Eur. [J]. Org. Chem., 2011, 1318.
[45]
Wang L, Li S, Chauhan P, Hack D, Philipps A R, Puttreddy R, Rissanen K, Raabe G, Enders D. Chem. Eur. J., 2016, 22: 5123.
[46]
Xiao W, Zhou Z, Yang Q Q, Du W, Chen Y C. Adv. Synth. Catal., 2018, 360: 3526.
[47]
Tan C Y, Lu H, Zhang J L, Liu J Y, Xu P F.[J]. Org. Chem., 2020, 85: 594.
[48]
Tang C K, Zhou Z Y, Xia A B, Bai L, Liu J, Xu D Q, Xu Z Y. Org. Lett., 2018, 20: 5840.
[49]
Lu H, Zhang H X, Tan C Y, Liu J Y, Wei H, Xu P F.[J]. Org. Chem., 2019, 84: 10292.
[50]
Hack D, Dîrr A B, Deckers K, Chauhan P, Seling N, Rîbenach L, Mertens L, Raabe G, Schoenebeck F, Enders D. Angew. Chem. Int.Ed., 2016, 55: 1797.
[51]
Wu G, Xu H, Liu Z, Liu Y, Yang X, Zhang X, Huang Y. Org. Lett., 2019, 21: 7708.
[52]
Putatunda S, Alegre-Requena J V, Meazza M, Franc M, Rohal'ová D, Vemuri P, Císaová I, Herrera R P, Vesel R R [J]. Chem. Sci., 2019, 10: 4107.
[53]
Yetra S R, Mondal S, Suresh E, Biju A T. Org. Lett., 2015, 17: 1417.
[54]
Bao X, Wei S, Qu J, Wang B. Chem. Commun., 2018, 54: 2028.
[55]
Wu B, Chen J, Li M Q, Zhang J X, Xu X P, Ji S J, Wang X W. Eur. J. Org.Chem., 2012, 1318.
[56]
Han X, Yao W, Wang T, Tan Y R, Yan Z, Kwiatkowski J, Lu Y. Angew. Chem. Int.Ed., 2014, 53: 5643.
[57]
Amireddy M, Chen K. RSC Adv., 2016, 6: 77474.
[58]
Ji D S, Luo Y C, Hu X Q, Xu P F. Org. Lett., 2020, 22, 1028.
[59]
Li L, Luo P, Deng Y, Shao Z. Angew. Chem. Int.Ed., 2019, 58: 4710.
[60]
Zheng J, Wang S B, Zheng C, You S L. Angew. Chem. Int.Ed., 2017, 56: 4540.
[61]
Chu M M, Qi S S, Wang Y F, Wang B, Jiang Z H, Xu D Q, Xu Z Y. Org. Chem. Front., 2019, 6: 1977.
[62]
Zhang X L, Tang C K, Xia A B, Feng K X, Du X H, Xu D Q. Eur. J. Org.Chem., 2017, 3152.
[63]
Xia A B, Zhang X L, Tang C K, Feng K X, Du X H, Xu D Q. Org. Biomol. Chem., 2017, 15: 5709.
[64]
Chauhan P, Mahajan S, Loh C C J, Raabe G, Enders D. Org. Lett., 2014, 16: 2954.
[65]
Han B, Huang W, Ren W, He G, Wang J H, Peng C. Adv. Synth. Catal., 2015, 357: 561.
[66]
Zea A, Alba A N R, Mazzanti A, Moyanoa A, Rios R. Org. Biomol. Chem., 2011, 9: 6519.
[67]
Liu L, Zhong Y, Zhang P, Jiang X, Wang R.[J]. Org. Chem., 2012, 77: 10228.
[68]
Zhang J X, Li N K, Liu Z M, Huang X F, Geng Z C, Wang X W. Adv. Synth. Catal., 2013, 355, 797.
[69]
Chen Q, Liang J, Wang S, Wang D, Wang R. Chem. Commun., 2013, 49: 1657.
[70]
Li J H, Du D M. Chem. Asian J. 2014, 9: 3278.
[71]
Zheng W, Zhang J, Liu S, Yua C, Miao Z. RSC Adv., 2015, 5: 91108.
[72]
Sun J, Jiang C, Zhou Z. Eur. J. Org.Chem., 2016, 1165.
[73]
Li J H, Wen H, Liu L, Du D M. Eur. J. Org.Chem., 2016, 2492.
[74]
Mondal B, Maity R, Pan S C.[J]. Org. Chem., 2018, 83: 8645.
[75]
Meninno S, Mazzanti A, Lattanzi A. Adv. Synth. Catal., 2019, 361: 79.
[76]
Zhao C, Shi K, He G, Gu Q, Ru Z, Yang L, Zhong G. Org. Lett., 2019, 21: 7943.
[77]
Wang C, Wen D, Chen H, Deng Y, Liu X, Liu X, Wang L, Gao F, Guo Y, Sun M, Wang K, Yan W. Org. Biomol. Chem., 2019, 17: 5514.
[78]
Lin Y, Zhao B L, Du D M.[J]. Org. Chem., 2019, 84: 10209.
[79]
Zhang J, Chan W L, Chen L, Ullah N, Lu Y. Org. Chem. Front., 2019, 6: 2210.
[80]
Luo W, Shao B, Li J, Xiao X, Song D, Ling F, Zhong W. Org. Chem. Front., 2020, 7: 1016.
[81]
Zhang H M, Lv H, Ye S. Org. Biomol. Chem., 2013, 11: 6255.
[82]
Wang S, Izquierdo J, Rodríguez-Escrich C, Pericàs M A. ACS Catal., 2017, 7: 2780.
[83]
Shi Q, Zhang W, Wang Y, Qu L, Wei D. Org. Biomol. Chem., 2018, 16: 2301
[84]
Mutyala R, Reddy V R, Donthi R, Kallaganti VS R, Chandra R. Tetrahedron Lett., 2019, 60: 703.
[85]
Yetra S R, Mondal S, Mukherjee S, Gonnade R G, Biju A T. Angew. Chem. Int.Ed., 2016, 55: 268.
[86]
Mondal S, Mukherjee S, Yetra S R, Gonnade R G, Biju A T. Org. Lett., 2017, 19: 4367.
[87]
Leng H J, Li Q Z, Zeng R, Dai Q S, Zhu H P, Liu Y, Huang W, Han B, Li J L. Adv. Synth. Catal., 2018, 360: 229.
[88]
Liu J Y, Zhao J, Zhang J L, Xu P F. Org. Lett., 2017, 19, 1846.
[89]
Yang W, Sun W, Zhang C, Wang Q, Guo Z, Mao B, Liao J, Guo H. ACS Catal., 2017, 7: 3142.
[90]
Ji Y L, Li H P, Ai Y Y, Li G, He X H, Huang W, Huang R Z, Han B. Org. Biomol. Chem., 2019, 17: 9217.
[91]
Xu J, Hu L, Hu H, Ge S, Liu X, Feng X. Org. Lett., 2019, 21: 1632.
[92]
Li H, Gontla R, Flegel J, Merten C, Ziegler S, Antonchick A P, Waldmann H. Angew. Chem. Int.Ed., 2019, 58: 307.
[93]
Sun B B, Chen J B, Zhang J Q, Yang X P, Lv H P, Wang Z, Wang X W. Org. Chem. Front., 2020, 7: 796.
[94]
Bao X, Wei S, Qian X, Qu J, Wang B, Zou L, Ge G. Org. Lett., 2018, 20: 3394.
[95]
Li X, Chen F Y, Kang J W, Zhou J, Peng C, Huang W, Zhou M K, He G, Han B.[J]. Org. Chem., 2019, 84: 9138.
[96]
Li F, Sun L, Teng Y, Yu P,Zhao J C G, Ma J A. Chem. Eur. J., 2012, 18: 14255.
[97]
Wang H, Wang Y, Song H, Zhou Z, Tang C. Eur. J. Org.Chem., 2013, 4844.
[98]
Zhao L, Bao X, Hu Q, Wang B, Lu A H. ChemCatChem, 2018, 10: 1248.
[99]
Bao X, Wang B, Cui L, Zhu G, He Y, Qu J, Song Y. Org. Lett., 2015, 17: 5168.
[100]
Bao X, Wei S, Zou L, Song Y, Qu J, Wang B. Tetrahedron: Asymmetry, 2016, 27: 436.
[101]
Bao X, Wei S, Zou L, He Y, Xue F, Qu J, Wang B. Chem. Commun., 2016, 52: 11426.
[102]
Xue F, Bao X, Zou L, Qu J, Wang B. Adv. Synth. Catal., 2016, 358: 3971.
[103]
Lin H C, Wang P S, Tao Z L, Chen Y G, Han Z Y, Gong L Z.[J]. Am. Chem. Soc., 2016, 138: 14354.
[104]
Fan L F, Wang P S, Gong L Z. Org. Lett., 2019, 21: 6720.
[105]
Zhu Z Q, Shen Y, Liu J X, Tao J Y, Shi F. Org. Lett., 2017, 19: 1542.
[106]
Vetica F, Bailey S, Chauhan P, Turberg M, Ghaur A, Raabe G, Enders D. Adv. Synth. Catal., 2017, 359: 3729.
[107]
Han J, Zhang Y, Wu X Y, Wong H N C. Chem. Commun., 2019, 55: 397.
[108]
Vila C, Dharmaraj N R, Faubel A, Blay G, Cardona M L, Muñoz M C, Pedro J R. Eur. J. Org.Chem., 2019, 3040.
[109]
Kaya U, Chauhan P, Mahajan S, Deckers K, Valkonen A, Rissanen K, Enders D. Angew. Chem. Int.Ed., 2017, 56: 15358.
[110]
Yang Z T, Yang W L, Chen L, Sun H, Deng W P. Adv. Synth. Catal., 2018, 360: 2049.
[111]
Lu J, Luo L S, Sha F, Li, Wu X Y. Chem. Commun., 2019, 55: 11603.
[112]
Chen M Y, Xu Z, Chen L, Song T, Zheng Z J, Cao J, Cui Y M, Xu L W. ChemCatChem, 2018, 10: 280.
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[3] Jun Dong, Jiaxi Xu. An Overview on the Synthesis and Reactions of Sulfines [J]. Progress in Chemistry, 2022, 34(5): 1088-1108.
[4] Yudong Yang, Jingsong You. Chelation-Assisted C—H/C—H Oxidative Cross-Coupling/Cyclization for the Construction of Fused(Hetero)aromatics [J]. Progress in Chemistry, 2020, 32(11): 1824-1834.
[5] Jie Yu, Liu-Zhu Gong. Discovery and Typical Advances of Chiral Amino Amide Catalysts [J]. Progress in Chemistry, 2020, 32(11): 1729-1744.
[6] Xiangyan Yi, Fei Huang, Jonathan B. Baell, He Huang, Yang Yu. The Formation of C(sp3)-C(sp3) by Visible-Light Photocatalysis [J]. Progress in Chemistry, 2019, 31(4): 505-515.
[7] Dengxu Wang, Jinfeng Cao, Dongdong Han, Wensi Li, Shengyu Feng. Novel Organosilicon Synthetic Methodologies [J]. Progress in Chemistry, 2019, 31(1): 110-120.
[8] Yuping Tang, Yanmei He, Yu Feng, Qinghua Fan. Asymmetric Supramolecular Catalysis Based on Macrocyclic Host Molecules [J]. Progress in Chemistry, 2018, 30(5): 476-490.
[9] Yu Zhang, Xiaohua Liu, Lili Lin, Xiaoming Feng*. Recent Advance in Catalytic Asymmetric Friedel-Crafts Reactions [J]. Progress in Chemistry, 2018, 30(5): 491-504.
[10] Zhiyong Han, Liuzhu Gong*. Asymmetric Organo/Palladium Combined Catalysis [J]. Progress in Chemistry, 2018, 30(5): 505-512.
[11] Jun Luo, YanSong Zheng. Chiral Calixarenes and Their Supramolecular Chirality [J]. Progress in Chemistry, 2018, 30(5): 601-615.
[12] Zhang Yongli, Zhang Rui, Chang Honghong, Wei Wenlong, Li Xing. Asymmetric Carbonyl-ene Reactions Promoted by Chiral Catalysts [J]. Progress in Chemistry, 2014, 26(09): 1492-1505.
[13] Jin Qingxian, Li Jing, Li Xiaogang, Zhang Li, Fang Shaoming, Liu Minghua. Function and Application of Supramolecular Gels:Chiral Molecular Recognition and Asymmetric Catalysis [J]. Progress in Chemistry, 2014, 26(06): 919-930.
[14] Yu Lide, Cui Hanfeng*, Fan Hao, Ren Shuhui, Lin Yan. Chiral Quaternary Phosphonium Salts in Asymmetric Catalysis [J]. Progress in Chemistry, 2013, 25(05): 744-751.
[15] Fang Decai. Theoretical Studies on the Mechanisms of [2+2] Cycloaddition Reactions [J]. Progress in Chemistry, 2012, 24(06): 879-885.