中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (7): 1537-1547 DOI: 10.7536/PC220221 Previous Articles   Next Articles

• Review •

Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis

Ru Jiang, Chenxu Liu, Ping Yang, Shuli You()   

  1. State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences,Shanghai 200032, China
  • Received: Revised: Online: Published:
  • Contact: Shuli You
  • Supported by:
    National Natural Science Foundation of China(91856201)
Richhtml ( 46 ) PDF ( 817 ) Cited
Export

EndNote

Ris

BibTeX

Condensed matter chemistry, as a science of studying condensed matter in chemical reactions, has attracted extensive attention recently. In this review, condensed matter chemistry related to asymmetric catalysis and synthesis are briefly summarized, and different condensed matter phenomena in asymmetric catalytic reactions were classified. Besides, relative works were discussed in detail to illustrate the effects of the multi-level structures and composition of condensed matter on the catalytic activity, enantio- and regioselective control. It is hoped that the system of condensed matter science would be well developed by attracting more attention and bringing more thoughts to the essence of reaction from the perspective of condensed matter chemistry.

Contents

1 Introduction

2 Chirality and asymmetric catalysis

2.1 Importance of chirality

2.2 Asymmetric catalysis

3 Condensed matter chemistry in asymmetric catalysis and synthesis

3.1 Condensation of catalysts: nonlinear effect

3.2 Condensation of catalysts and solvents

3.3 Condensation of catalysts and additives

3.4 Condensation of catalysts and substrates: phase-transfer catalysis

3.5 Condensation of enantiomers: SDE

4 Conclusion and outlook

Fig. 1 Nonlinear effects in asymmetric catalysis and synthesis[5]
Scheme 1 Highly enantioselective addition of dialkylzincs to aldehydes[7]
Scheme 2 Reaction mechanism[8]
Scheme 3 Asymmetric amplification and related mechanism[8⇓~10]
Scheme 4 (l)-Proline-catalyzed asymmetric reactions[11,12]
Fig. 2 Nonlinearity of proline catalysis under heterogeneous conditions[13]
Scheme 5 Time-dependent enantiodivergent synthesis via sequential kinetic resolution[16,17]
Scheme 6 Iridium-catalyzed Z-retentive asymmetric allylic substitution reactions[17]
Scheme 7 Synthesis and characterization of π-allyl iridium(Ⅲ) complexes[18]
Table 1 Enantioselective Friedel-Crafts reaction between indoles and alkylidene malonates catalyzed by copper(Ⅱ) complexes[25,26]
Fig. 3 Stereochemical models[26]
Scheme 8 Orthogonal enantioselectivity approaches using homogeneous and heterogeneous catalyst systems: Friedel-Crafts alkylation of indole[28]
Fig. 4 Proposed stereochemical models for (a) homogeneous, and (b) heterogeneous systems[28]
Fig. 5 Chiral cation phase-transfer catalyst[32]
Fig. 6 Mechanism of chiral cation phase-transfer catalysis reaction[32]
Scheme 9 The first example of phase-transfer catalysis[33]
Fig. 7 Mechanism of cyanation reaction via chiral phase-transfer catalysis[33]
Scheme 10 The first example of asymmetric phase-transfer catalysis reaction[34]
Scheme 11 Asymmetric electrophilic fluorination via chiral anion phase-transfer catalysis[35]
Fig. 8 Mechanism of chiral anion phase-transfer catalysis reaction[35]
Fig. 9 The principle of enantiomeric self-disproportionation[37]
Table 2 Self-disproportionation of enantiomers of β-amino acid esters on achiral silica gel chromatography[36]
Fig. 10 Self-disproportionation of enantiomers on achiral silica gel chromatography[36,39]
Fig. 11 Packing structure of racemic 1, 2-dihydroisoquinolines derivative[39]
Fig. 12 Self-disproportionation of enantiomers during distillation[42]
Fig. 13 Self-disproportionation of enantiomers during sublimation[43,44]
[1]
Xu R R. Natl. Sci. Rev., 2018, 5(1): 1.

doi: 10.1093/nsr/nwx155
[2]
Xu R R, Wang K, Chen G, Yan W. Natl. Sci. Rev., 2019, 6(2): 191.

doi: 10.1093/nsr/nwy128
[3]
Xu R R, Yu J H, Yan W F. Progress in Chemistry, 2020, 32(8): 1017.
(徐如人, 于吉红, 闫文付. 化学进展, 2020, 32(8): 1017.)

doi: 10.7536/PC200428
[4]
Lin G Q, Li Y M, Chen Y Q, Sun X W, Chen X Z. Chiral synthesis: asymmetric reaction and its application, 5th Ed Beijing: Science Press,2013.
(林国强, 李月明, 陈耀全, 孙兴文, 陈新滋. 手性合成——不对称反应及其应用(第五版). 北京: 科学出版社, 2013.).
[5]
Girard C, Kagan H B. Angew. Chem. Int. Ed., 1998, 37(21): 2922.

doi: 10.1002/(SICI)1521-3773(19981116)37:21【-逻*辑*与-】lt;2922::AID-ANIE2922【-逻*辑*与-】gt;3.0.CO;2-1
[6]
Satyanarayana T, Abraham S, Kagan H B. Angew. Chem. Int. Ed., 2009, 48(3): 456.

doi: 10.1002/anie.200705241 pmid: 19115268
[7]
Kitamura M, Suga S, Kawai K, Noyori R. J. Am. Chem. Soc., 1986, 108(19): 6071.

doi: 10.1021/ja00279a083 pmid: 22175391
[8]
Kitamura M, Okada S, Suga S, Noyori R. J. Am. Chem. Soc., 1989, 111(11): 4028.

doi: 10.1021/ja00193a040
[9]
Kitamura M, Suga S, Oka H, Noyori R. J. Am. Chem. Soc., 1998, 120(38): 9800.

doi: 10.1021/ja981740z
[10]
Noyori R, Kitamura M. Angew. Chem. Int. Ed., 1991, 30(1): 49.
[11]
Mathew S P, Iwamura H, Blackmond D G. Angew. Chem. Int. Ed., 2004, 43(25): 3317.

doi: 10.1002/anie.200453997
[12]
Hoang L, Bahmanyar S, Houk K N, List B. J. Am. Chem. Soc., 2003, 125(1): 16.

pmid: 12515489
[13]
Klussmann M, Iwamura H, Mathew S P, Wells Jr D H, Pandya U, Armstrong A, Blackmond D G. Nature, 2006, 441: 621.

doi: 10.1038/nature04780
[14]
Shibata T, Yamamoto J, Matsumoto N, Yonekubo S, Osanai S, Soai K. J. Am. Chem. Soc., 1998, 120(46): 12157.

doi: 10.1021/ja980815w
[15]
Kondepudi D K, Asakura K, Acc. Chem. Res., 2001, 34(12): 946.

doi: 10.1021/ar010089t
[16]
Tu H F, Yang P, Lin Z H, Zheng C, You S L. Nat. Chem., 2020, 12: 838.

doi: 10.1038/s41557-020-0489-1
[17]
Jiang R, Ding L, Zheng C, You S L. Science, 2021, 371(6527): 380.

doi: 10.1126/science.abd6095 pmid: 33479149
[18]
Rossler S L, Krautwald S, Carreira E M. J. Am. Chem. Soc., 2017, 139(10): 3603.

doi: 10.1021/jacs.6b12421
[19]
Rossler S L, Petrone D A, Carreira E M. Acc. Chem. Res., 2019, 52(9): 2657.

doi: 10.1021/acs.accounts.9b00209
[20]
Cheng Q, Tu H F, Zheng C, Qu J P, Helmchen G, You S L. Chem. Rev., 2019, 119(3): 1855.

doi: 10.1021/acs.chemrev.8b00506
[21]
Zhang X, Han L, You S L. Chem. Sci., 2014, 5: 1059.

doi: 10.1039/c3sc53019a
[22]
Tu H F, Zheng C, Xu R Q, Liu X J, You S L. Angew. Chem. Int. Ed., 2017, 56(12): 3237.

doi: 10.1002/anie.201609654
[23]
Shen D, Chen Q, Yan P, Zeng X, Zhong G. Angew. Chem. Int. Ed., 2017, 56(12): 3242.

doi: 10.1002/anie.201609693 pmid: 28194912
[24]
George Wypych, Ed. Fan Y H, Wang G Y, Deng C S, Trans. Handbook of Solvents. Beijing: China Petrochemical Press, 2002.
(George Wypych主编. 范耀华. 王光埙. 邓春森. 溶剂手册. 北京: 中国石化出版社, 2002.).
[25]
Zhou J, Ye M C, Huang Z Z, Tang Y. J. Org. Chem., 2004, 69(4): 1309.

doi: 10.1021/jo035552p
[26]
Zhou J, Tang Y. Chem. Commun., 2004: 432.
[27]
Evans D A, Rovis T, Kozlowski M C, Downey W C, Tedrow J S. J. Am. Chem. Soc., 2000, 122(38): 9134.

doi: 10.1021/ja002246+
[28]
Kim H Y, Kim S, Oh K. Angew. Chem. Int. Ed., 2010, 49(26): 4476.

doi: 10.1002/anie.201001484
[29]
McMorn P, Hutchings G J. Chem. Soc. Rev., 2004, 33: 108.

pmid: 14767506
[30]
Sasson Y, Neumann R, Handbook of Phase Transfer Catalysis, Springer Netherlands: Dordrecht, 1997.
[31]
Hashimoto T, Maruoka K. Chem. Rev., 2007, 107(12): 5656.

pmid: 18072806
[32]
Ooi T, Maruoka K. Angew. Chem. Int. Ed., 2007, 46(23): 4222.

doi: 10.1002/anie.200601737
[33]
Starks C M. J. Am. Chem. Soc., 2002, 93(1): 195.

doi: 10.1021/ja00730a033
[34]
Dolling U H, Davis P, Grabowski E J J. J. Am. Chem. Soc., 1984, 106(2): 446.

doi: 10.1021/ja00314a045
[35]
Rauniyar V, Lackner A D, Hamilton G L, Toste F D. Science, 2011, 334(6063): 1681.

doi: 10.1126/science.1213918 pmid: 22194571
[36]
Soloshonok V A. Angew. Chem. Int. Ed., 2006, 45(5): 766.

doi: 10.1002/anie.200503373
[37]
Soloshonok V A, Roussel C, Kitagawa O, Sorochinsky A E. Chem. Soc. Rev., 2012, 41: 4180.

doi: 10.1039/c2cs35006h pmid: 22517405
[38]
Han J, Kitagawa O, Wzorek A, Klika K D, Soloshonok V A. Chem. Sci., 2018, 9: 1718.

doi: 10.1039/C7SC05138G
[39]
Zhang J W, Xu Z, Gu Q, Shi X X, Leng X B, You S L. Tetrahedron, 2012, 68(26): 5263.

doi: 10.1016/j.tet.2012.02.058
[40]
Cundy K C, Crooks P A. J. Chromatogr., 1983, 281: 17.

doi: 10.1016/S0021-9673(01)87863-8
[41]
Nakamura T, Tateishi K, Tsukagoshi S, Hashimoto S, Watanabe S, Soloshonok V A, Aceña J L, Kitagawa O. Tetrahedron, 2012, 68(21): 4013.

doi: 10.1016/j.tet.2012.03.054
[42]
Koppenhoefer B, Trettin U. FreseniusZ. Anal. Chem., 1989, 333: 750.
[43]
Soloshonok V A, Ueki H, Yasumoto M, Mekala S, Hirschi J S, Singleton D A. J. Am. Chem. Soc., 2007, 129(40): 12112.

pmid: 17850147
[44]
Abás S, ArrÓniz C, Molins E, Escolano C. Tetrahedron, 2018, 74(8): 867.

doi: 10.1016/j.tet.2018.01.006
[1] Wenfu Yan, Ruren Xu. Chemical Reactions in Aqueous Solutions with Condensed Liquid State* [J]. Progress in Chemistry, 2022, 34(7): 1454-1491.
[2] Ruren Xu, Jihong Yu, Wenfu Yan. Goals and Major Scientific Issues in Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1017-1048.
[3] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[4] Qiao Jiang, Xuehui Xu, Baoquan Ding. Regulation of Condensed States of Biological Macromolecules by Rationally Designed Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1128-1139.
[5] Lixu Lei, Yiming Zhou. Solvent-Free or Less-Solvent Solid State Reactions [J]. Progress in Chemistry, 2020, 32(8): 1158-1171.
[6] Chao Xie, Bo Zhou, Ling Zhou, Yujie Wu, Shuangyin Wang. Defect with Catalysis [J]. Progress in Chemistry, 2020, 32(8): 1172-1183.
[7] Zheng Chen, Yingshuang Shang, Haibo Zhang, Zhenhua Jiang. Structure and Chemistry of Polymer Condensed State [J]. Progress in Chemistry, 2020, 32(8): 1115-1127.
[8] Li Luyao, Xu Xinyao, Zhu Bo, Xu Xinyao. Application of Pyrazolone Compounds in Catalytic Asymmetric Reactions [J]. Progress in Chemistry, 2020, 32(11): 1710-1728.
[9] Jie Yu, Liu-Zhu Gong. Discovery and Typical Advances of Chiral Amino Amide Catalysts [J]. Progress in Chemistry, 2020, 32(11): 1729-1744.
[10] Xiangyan Yi, Fei Huang, Jonathan B. Baell, He Huang, Yang Yu. The Formation of C(sp3)-C(sp3) by Visible-Light Photocatalysis [J]. Progress in Chemistry, 2019, 31(4): 505-515.
[11] Yuping Tang, Yanmei He, Yu Feng, Qinghua Fan. Asymmetric Supramolecular Catalysis Based on Macrocyclic Host Molecules [J]. Progress in Chemistry, 2018, 30(5): 476-490.
[12] Yu Zhang, Xiaohua Liu, Lili Lin, Xiaoming Feng*. Recent Advance in Catalytic Asymmetric Friedel-Crafts Reactions [J]. Progress in Chemistry, 2018, 30(5): 491-504.
[13] Zhiyong Han, Liuzhu Gong*. Asymmetric Organo/Palladium Combined Catalysis [J]. Progress in Chemistry, 2018, 30(5): 505-512.
[14] Jun Luo, YanSong Zheng. Chiral Calixarenes and Their Supramolecular Chirality [J]. Progress in Chemistry, 2018, 30(5): 601-615.
[15] Jinshuai Zhang, Fengli Yu, Bing Yuan, Congxia Xie, Shitao Yu. Solvent Effects on Reaction-Controlled Phase-Transfer Catalysis [J]. Progress in Chemistry, 2018, 30(2/3): 304-313.