中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (5): 476-490 DOI: 10.7536/PC180137 Previous Articles   Next Articles

• Review •

Asymmetric Supramolecular Catalysis Based on Macrocyclic Host Molecules

Yuping Tang1,2, Yanmei He1*, Yu Feng1, Qinghua Fan1,2*   

  1. 1. CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences(CAS), Beijing 100190, China;
    2. School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21772204, 21373231, 21521002) and the Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-SLH023).
PDF ( 1093 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, supramolecular catalysis has become one of the most challenging research frontiers and hot spots in organic synthesis based on the continuous combination and fusion of supramolecular chemistry and catalysis, and has achieved gratifying development. As the main objectives in supramolecular chemistry, macrocyclic host molecules have gained much attention in supramolecular catalysis due to their reversible recognition and self-assembly with different guest molecules and thus can realize pre-organization of reactants within the catalytic cavities. In the last 20 years, progress has been achieved in supramolecular catalysis based on macrocyclic host molecules. This review will focus on the recent progress in asymmetric supramolecular catalysis based on the representative macrocyclic host molecules, such as crown ethers, cyclodextrins, calixarenes, and their counterparts. The design and synthesis of chiral catalysts, the use of these catalysts in enantioselective reactions, especially, the supramolecular modulation of catalytic activity and selectivity via host-guest association will be introduced. Meanwhile, the limitation and drawbacks of current study and the perspectives for its future development will also be discussed.
Contents
1 Introduction
2 Asymmetric catalysis based on crown ethers and their counterparts
2.1 Chiral crown ether-based metal catalysts
2.2 Chiral metallacrown ether catalysts
2.3 Chiral pseudorotaxane and rotaxane catalysts
2.4 Podands in asymmetric catalysis
3 Asymmetric catalysis based on cyclodextrins
3.1 Cyclodextrin as macroreactor
3.2 Cyclodextrin-based metal catalysts
3.3 Cyclodextrin organocatalysts
4 Asymmetric catalysis based on chiral calixarenes
4.1 Chiral calixarene-based metal catalysts
4.2 Chiral calixarene-based organocatalysts
4.3 Inherently chiral calixarene catalysts
5 Conclusion and outlook

CLC Number: 

[1] Van Leeuwen P W N M. Supramolecular catalysis. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA. 2008.
[2] Raynal M, Ballester P, Vidal-Ferrana A, van Leeuwen P W N M. Chem. Soc. Rev., 2014, 43(5):1660.
[3] Vaquero M, Rovira L, Vidal-Ferran A. Chem. Commun., 2016, 52(74):11038.
[4] Miller A J M. Dalton Trans., 2017, 46(36):11987.
[5] Leigh D A, Marcos V, Wilson M R. ACS Catal., 2014, 4(12):4490.
[6] Sawamura M, Nagata H, Sakamoto H, Ito Y. J. Am. Chem. Soc., 1992, 114(7):2586.
[7] Sawamura M, Nakayama Y, Tang W M, Ito Y. J. Org. Chem., 1996, 61(26):9090.
[8] Landis C R, Sawyer R A, Somsook E. Organometallics, 2000, 19(6):994.
[9] Fernández-Pérez H, Mon I, Frontera A, Vidal-Ferran A. Tetrahedron, 2015, 71(26/27):4490.
[10] Zhang X C, Hu Y H, Chen C F, Fang Q, Yang L Y, Lu Y B, Xie L J, Wu J, Li S, Fang W. Chem. Sci., 2016, 7(7):4594.
[11] Blanco V, Leigh D A, Marcos V. Chem. Soc. Rev., 2015, 44(15):5341.
[12] Ouyang G H, He Y M, Li Y, Xiang J F, Fan Q H. Angew. Chem. Int. Ed., 2015, 54(14):4334.
[13] Nagayama S, Kobayashi S. J. Am. Chem. Soc., 2000, 122(46):11531.
[14] Suzuki H, Sato I, Yamashita Y, Kobayashi S. J. Am. Chem. Soc., 2015, 137(13):4336.
[15] Suzuki H, Igarashi R, Yamashita Y, Kobayashi S. Angew. Chem. Int. Ed., 2017, 56(16):4520.
[16] Hamada T, Manabe K, Ishikawa S, Nagayama S, Shiro M, Kobayashi S. J. Am. Chem. Soc., 2003, 125(10):2989.
[17] Owens S B, Gray G M. Organometallics, 2008, 27(17):4282.
[18] Li Y, Ma B, He Y, Zhang F, Fan Q H. Chem. Asian. J., 2010, 5(12):2454.
[19] Song F T, Ouyang G H, Li Y, He Y M, Fan Q H. Eur. J. Org. Chem., 2014, 2014(30):6713.
[20] Mon I, Jose D A, Vidal-Ferran A. Chem. Eur. J., 2013, 19(8):2720.
[21] Vidal-Ferran A, Mon I, Bauza A, Frontera A, Rovira L. Chem. Eur. J., 2015, 21(32):11417.
[22] Rovira L, Fernández-Pérez H, Vidal-Ferran A. Organometallics, 2016, 35(4):528.
[23] Tachibana Y, Kihara N, Takata T. J. Am. Chem. Soc., 2004, 126(11):3438.
[24] Xu K, Nakazono K, Takata T. Chem. Lett., 2016, 45(11):1274.
[25] Cakmak Y, Erbas-Cakmak S, Leigh D A. J. Am. Chem. Soc., 2016, 138(6):1749.
[26] Wieland J, Breit B. Nat. Chem., 2010, 2(10):832.
[27] Wu L, He Y M, Fan Q H. Adv. Synth. Catal., 2011, 353(16):2915.
[28] Hattori G, Hori T, Miyake Y, Nishibayashi Y. J. Am. Chem. Soc., 2007, 129(43):12930.
[29] Li Y, Feng Y, He Y M, Chen F, Pan J, Fan Q H. Tetrahedron Lett., 2008, 49(18):2878.
[30] Blanco V, Carlone A, Hanni K D, Leigh D A, Lewandowski B. Angew. Chem. Int. Ed., 2012, 51(21):5166.
[31] Blanco V, Leigh D A, Lewandowska U, Lewandowski B, Marcos V. J. Am. Chem. Soc., 2014, 136(44):15775.
[32] Blanco V, Leigh D A, Marcos V, Morales-Serna J A, Nussbaumer A L. J. Am. Chem. Soc., 2014, 136(13):4905.
[33] Hoekman S, Kitching M O, Leigh D A, Papmeyer M, Roke D. J. Am. Chem. Soc., 2015, 137(24):7656.
[34] 周海峰(Zhou H F), 范青华(Fan Q H), 何艳梅(He Y M), 古练权(Gu L Q), 陈新滋(Chan S C). 化学进展(Progress in Chemistry), 2007, 19(10):1517.
[35] Xu D Q, Luo S P, Wang Y F, Xia A B, Yue H D, Wang L P, Xu Z Y. Chem. Commun., 2007, (42):4393.
[36] Wang T, Chen Y, Ouyang G, He Y M, Li Z, Fan Q H. Chem-Asian. J., 2016, 11(19):2773.
[37] Ouyang G H, He Y M, Fan Q H. Chem. Eur. J., 2014, 20(50):16454.
[38] Macaev F, Boldescu V. Symmetry, 2015, 7(4):1699.
[39] 洪诗斌(Hong S B), 刘梦艳(Liu M Y), 张薇(Zhang W), 邓维(Deng W). 有机化学(Chinese Journal of Organic Chemistry), 2015, 35(2):325.
[40] Nakamura A, Inoue Y. J. Am. Chem. Soc., 2003, 125(4):966.
[41] Nakamura A, Inoue Y. J. Am. Chem. Soc., 2005, 127(15):5338.
[42] Xu H X, Cheng S F, Yang X J, Chen B, Chen Y, Zhang L P, Wu L Z, Fang W, Tung C H, Weiss R G. J. Org. Chem., 2012, 77(4):1685.
[43] Wong Y T, Yang C, Ying K C, Jia G. Organometallics, 2002, 21(9):1782.
[44] Jouffroy M, Sémeril D, Armspach D, Matt D. Eur. J. Org. Chem., 2013, 2013(27):6069.
[45] Jouffroy M, Gramage-Doria R, Armspach D, Semeril D, Oberhauser W, Matt D, Toupet L. Angew. Chem. Int. Ed., 2014, 53(15):3937.
[46] Schlatter A, Kundu M K, Woggon W D. Angew. Chem. Int. Ed., 2004, 43(48):6731.
[47] Schlatter A, Woggon W D. Adv. Synth. Catal., 2008, 350(7/8):995.
[48] Shen H M, Ji H B. Tetrahedron, 2013, 69(39):8360.
[49] Hu S S, Li J Y, Xiang J F, Pan J, Luo S Z, Cheng J P. J. Am. Chem. Soc., 2010, 132(20):7216.
[50] 朱庆英(Zhu Q Y), 沈海民(Shen H M), 纪红兵(Ji H B). 有机化学(Chinese Journal of Organic Chemistry), 2016, 36(8):1907.
[51] Mojr V, Herzig V, Budesinsky M, Cibulka R, Kraus T. Chem. Commun., 2010, 46(40):7599.
[52] Mojr V, Budesinsky M, Cibulka R, Kraus T. Org. Biomol. Chem., 2011, 9(21):7318.
[53] Hartman T, Herzig V, Buděšínský M, Jindrich J, Cibulka R, Kraus T. Tetrahedron:Asymmetry, 2012, 23(22/23):1571.
[54] 黄志镗(Huang Z T), 郑企雨(Zheng Q Y). 有机化学(Chinese Journal of Organic Chemistry), 2001, 21(11):904.
[55] Böhmer V. Angew. Chem. Int. Ed., 1995, 34(7):713.
[56] 罗钧(Luo J), 郑企雨(Zheng Q Y), 陈传峰(Chen C F), 黄志镗(Huang Z T). 化学进展(Progress in Chemistry), 2006, 18(7/8):897.
[57] Homden D M, Redshaw C. Chem. Rev., 2008, 108(12):5086.
[58] Li Z Y, Chen J W, Liu Y, Xia W, Wang L. Curr. Org. Chem., 2011, 15(23):39.
[59] Simões J B, da Silva D L, de Fátima A, Fernandes S A. Curr. Org. Chem., 2012, 16(23):949.
[60] Paciello R, Siggel L, Röper M. Angew. Chem. Int. Ed., 1999, 38(13/14):1920.
[61] Dieleman C, Steyer S, Jeunesse C, Matt D. J. Chem. Soc. Dalton Trans., 2001, 2001(17):2508.
[62] Marson A, Freixa Z, Kamer P C J, van Leeuwen P W N M. Eur. J. Inorg. Chem., 2007, 2007(29):4587.
[63] Karpus A, Yesypenko O, Boiko V, Poli R, Daran J C, Voitenko Z, Kalchenko V, Manoury E. Eur. J. Org. Chem., 2016, 2016(20):3386.
[64] Khiri N, Bertrand E, Ondel-Eymin M J, Rousselin Y, Bayardon J, Harvey P D, Jugé S. Organometallics, 2010, 29(16):3622.
[65] Khiri-Meribout N, Bertrand E, Bayardon J, Eymin M J, Rousselin Y, Cattey H, Fortin D, Harvey P D, Jugé S. Organometallics, 2013, 32(9):2827.
[66] Nandi P, Solovyov A, Okrut A, Katz A. ACS Catal., 2014, 4(8):2492.
[67] Amato M E, Ballistreri F P, Pappalardo A, Tomaselli G A, Toscano R M, Williams D J. Eur. J. Org. Chem., 2005, 2005(16):3562.
[68] Bonaccorso C, Brancatelli G, Ballistreri F P, Geremia S, Pappalardo A, Tomaselli G A, Toscano R M, Sciotto D. Dalton Trans., 2014, 43(5):2183.
[69] Pan Y, Wang L, Li Z Y, Chen J W. Synlett., 2009, 2009(14):2356.
[70] Li Z Y, Lu C X, Huang G, Ma J J, Sun H, Wang L, Pan Y. Lett. Org. Chem., 2010, 7(6):461.
[71] Li Z, Xing H, Huang G, Sun X, Jiang J, Wang L. Sci. China Chem., 2011, 54(11):1726.
[72] Li Z Y, Chen Y, Zheng C Q, Yin Y, Wang L, Sun X Q. Tetrahedron, 2017, 73(1):78.
[73] Eymur S, Akceylan E, Sahin O, Uyanik A, Yilmaz M. Tetrahedron, 2014, 70(30):4471.
[74] Uyanik A, Bayrakci M, Eymur S, Yilmaz M. Tetrahedron, 2014, 70(49):9307.
[75] Aktas M, Uyanik A, Eymur S, Yilmaz M. Supramol. Chem., 2015, 28(5/6):351.
[76] Demircan E, Eymur S, Demir A S. Tetrahedron:Asymmetry, 2014, 25(5):443.
[77] Durmaz M, Sirit A. Supramol. Chem., 2013, 25(5):292.
[78] Durmaz M, Sirit A. Tetrahedron:Asymmetry, 2013, 24(23):1443.
[79] Durmaz M, Tataroglu A, Yilmaz H, Sirit A. Tetrahedron:Asymmetry, 2016, 27(2/3):148.
[80] Genc H N, Sirit A. Tetrahedron:Asymmetry, 2016, 27(4/5):201.
[81] Cao Y D, Luo J, Zheng Q Y, Chen C F, Wang M X, Huang Z T. J. Org. Chem., 2004, 69(1):206.
[82] Luo J, Zheng Q Y, Chen C F, Huang Z T. Chem. Eur. J., 2005, 11(20):5917.
[83] Miao R, Zheng Q Y, Chen C F, Huang Z T. J. Org. Chem., 2005, 70(19):7662.
[84] Li S Y, Zheng Q Y, Chen C F, Huang Z T. Tetrahedron:Asymmetry, 2005, 16(3):641.
[85] Luo J, Zheng Q Y, Chen C F, Huang Z T. Tetrahedron, 2005, 61(35):8517.
[86] Xu Z X, Zhang C, Zheng Q Y, Chen C F, Huang Z T. Org. Lett., 2007, 9(22):4447.
[87] Xu Z X, Zhang C, Zheng Q Y, Chen C F, Huang Z T. Org. Lett., 2007, 9(25):5331.
[88] Xu Z X, Li G K, Chen C F, Huang Z T. Tetrahedron, 2008, 64(37):8668.
[89] Miao R, Xu Z, Huang Z, Chen C. Sci. China. B-Chem., 2009, 52(4):505.
[90] Shirakawa S, Moriyama A, Shimizu S. Org. Lett., 2007, 9(16):3117.
[91] Pan S, Wang D X, Zhao L, Wang M X. Org. Lett., 2012, 14(24):6254.
[92] Li J T, Wang L X, Wang D X, Zhao L, Wang M X. J. Org. Chem., 2014, 79(5):2178.
[93] Zhang G W, Li P F, Meng Z, Wang H X, Han Y, Chen C F. Angew. Chem. Int. Ed., 2016, 55(17):5304.
[94] Mitra R, Zhu H, Grimme S, Niemeyer J. Angew. Chem. Int. Ed., 2017, 56(38):11456.
[95] Yoshizawa M, Tamura M, Fujita M. Science, 2006, 312(5771):251.
[96] Wang Q Q, Gonell S, Leenders S H A M, Durr M, Ivanovic-Burmazovic I, Reek J N H. Nat. Chem., 2016, 8(3):225.
[97] Brauer T M, Zhang Q, Tiefenbacher K. J. Am. Chem. Soc., 2017, 139(48):17500.
[1] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[2] Li Luyao, Xu Xinyao, Zhu Bo, Xu Xinyao. Application of Pyrazolone Compounds in Catalytic Asymmetric Reactions [J]. Progress in Chemistry, 2020, 32(11): 1710-1728.
[3] Jie Yu, Liu-Zhu Gong. Discovery and Typical Advances of Chiral Amino Amide Catalysts [J]. Progress in Chemistry, 2020, 32(11): 1729-1744.
[4] Xiangyan Yi, Fei Huang, Jonathan B. Baell, He Huang, Yang Yu. The Formation of C(sp3)-C(sp3) by Visible-Light Photocatalysis [J]. Progress in Chemistry, 2019, 31(4): 505-515.
[5] Yu Zhang, Xiaohua Liu, Lili Lin, Xiaoming Feng*. Recent Advance in Catalytic Asymmetric Friedel-Crafts Reactions [J]. Progress in Chemistry, 2018, 30(5): 491-504.
[6] Zhiyong Han, Liuzhu Gong*. Asymmetric Organo/Palladium Combined Catalysis [J]. Progress in Chemistry, 2018, 30(5): 505-512.
[7] Jun Luo, YanSong Zheng. Chiral Calixarenes and Their Supramolecular Chirality [J]. Progress in Chemistry, 2018, 30(5): 601-615.
[8] Dong Yunhong, Cao Liping. Functionalization of Cucurbit uril [J]. Progress in Chemistry, 2016, 28(7): 1039-1053.
[9] Xia Mengchan, Yang Yingwei. Organic Functional Materials Based on Pillarenes [J]. Progress in Chemistry, 2015, 27(6): 655-665.
[10] Xu Guohe, Li Jie, Deng Jinni, Yin Lv, Zheng Zhaohui, Ding Xiaobin. Molecular Shuttles Based on Host-Guest Recognition Driven by External-Stimuli [J]. Progress in Chemistry, 2015, 27(12): 1732-1742.
[11] Qian Xiaohong, Jin Can, Zhang Xiaoning, Jiang Yan, Lin Chen, Wang Leyong. Squaramide Derivatives and Their Applications in Ion Recognition [J]. Progress in Chemistry, 2014, 26(10): 1701-1711.
[12] Zhang Yongli, Zhang Rui, Chang Honghong, Wei Wenlong, Li Xing. Asymmetric Carbonyl-ene Reactions Promoted by Chiral Catalysts [J]. Progress in Chemistry, 2014, 26(09): 1492-1505.
[13] Ma Mingfang, Xing Pengyao, Li Shangyang, Chu Xiaoxiao, Wang Bo, Hao Aiyou. Advances of Host-Guest Supramolecular Vesicles and Their Properties in Drug Delivery [J]. Progress in Chemistry, 2014, 26(08): 1317-1328.
[14] Jin Qingxian, Li Jing, Li Xiaogang, Zhang Li, Fang Shaoming, Liu Minghua. Function and Application of Supramolecular Gels:Chiral Molecular Recognition and Asymmetric Catalysis [J]. Progress in Chemistry, 2014, 26(06): 919-930.
[15] Lin Qi, Liu Xin, Chen Pei, Wei Taibao, Zhang Youming. Colorimetric and Fluorescent Cyanide Anion Sensors [J]. Progress in Chemistry, 2013, 25(12): 2131-2146.