中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (06): 919-930 DOI: 10.7536/PC131240 Previous Articles   Next Articles

• Review •

Function and Application of Supramolecular Gels:Chiral Molecular Recognition and Asymmetric Catalysis

Jin Qingxian1, Li Jing1, Li Xiaogang1, Zhang Li2, Fang Shaoming*1, Liu Minghua*2   

  1. 1. Henan Provincial Key Laboratory of Surface and Interface Science, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China;
    2. CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the Doctoral Science Research Foundation of Zhengzhou University of Light Industry (No.2013BSJJ020)

PDF ( 2754 ) Cited
Export

EndNote

Ris

BibTeX

Supramolecular gel is an important class of soft materials, in which the solvents are immobilized by the entangled three-dimensional network formed by gelator molecules via the various non-covalent interactions. Supramolecular gel can be quickly formed, self-assembled into uniform and adjustable nanostructure over a wide scale range. Thus the research of supramolecular gel is one of the important research directions among supramolecular chemistry, nanotechnology and materials science. The functional gels are applied widely in many fields, such as material templates, photoelectric switch, drug release, molecular recognition, supramolecular catalysis, etc. With solid-liquid phase transition, controlled self-assembly and other characteristics, the supramolecular gel has become an important vehicle of the reserch of supramolecular chirality and molecular chirality. In recent years, the supramolecular gel has been applied to supramolecular asymmetric catalysis and chiral molecular recognition. And a series of important breakthroughs have been achieved. The new functional application of supramolecular gels have been established, and supramolecular gels have become an important means and method for preparation of chiral nano-materials.The chiral supramolecular gels, as a kind of soft materials will have potential application in the field of asymmetric catalysis and chiral recognition. The supramolecular gels may provide a high density of recognition or catalytic sites and chiral microenvironment suitable for recognition and asymmetric reaction, thus, the study of asymmetric catalysis and enantioselective recognition in the supramolecular gels becomes a hot issue and has attracted more and more attention in recent years.In this paper,the application of supramolecular gels on asymmetric catalysis and chiral recognition are reviewed mainly.

Contents
1 Introduction
2 Application of supramolecular gels in chiral molecular recognition
2.1 Chiral molecular recognition based on gel phenomenon
2.2 Chiral molecular recognition based on fluorescence spectra
2.3 Chiral molecular recognition based on supramolecular chiral characterization
3 Application of supramolecular gels in asymmetric catalysis
3.1 Self-assembly strategies for asymmetric organocatalysis
3.2 Asymmetric catalysis in supramolecular gels
4 Conclusion and outlook

CLC Number: 

[1] Abdallah D J, Weiss R G. Adv. Mater., 2000, 12(17): 1237.
[2] Lehn J M. Angew. Chem. Int. Ed., 1990, 29(11): 1304.
[3] Llusar M, Sanchez C. Chem. Mater., 2008, 20(3): 782.
[4] van Bommel K J C, Friggeri A, Shinkai S. Angew. Chem. Int. Ed., 2003, 42(9): 980.
[5] Jung J H, Kobayashi H, Masuda M, Shimizu T, Shinkai S. J. Am. Chem. Soc., 2001, 123(36): 8785.
[6] Kuroiwa K, Shibata T, Takada A, Nemoto N, Kimizuka N. J. Am. Chem.Soc., 2004, 126(7): 2016.
[7] Moon K S, Kim H J, Lee E, Lee M. Angew. Chem. Int. Ed., 2007, 46(36): 6807.
[8] Huang Z, Lee H, Lee E, Kang S K, Nam J M, Lee M. Nat. Commun., 2011, 2: 459.
[9] Jin Q X, Zhang L, Cao H, Wang T Y, Zhu X F, Jiang J, Liu M H. Langmuir, 2011, 27(22): 13847.
[10] Jin Q X, Zhang L, Zhu X F, Duan P F, Liu M H. Chem. Eur. J., 2012, 18(16): 4916.
[11] Nie X P, Wang G J. J. Org. Chem., 2006, 71(13): 4734.
[12] Tian H, Wang S. Chem. Commun., 2007, 8: 781.
[13] Bhatmcharya S, Krishnan-Ghosh Y. Chem. Commun., 2001, 2: 185.
[14] Debnath S, Shome A, Dutta S, Das P K. Chem. Eur. J., 2008, 14(23): 6870.
[15] Hu Y L, Fan Y F, Huang Z L, Song C Y, Li G K. Chem. Commun., 2012, 48(33): 3966.
[16] Stupp S I, LeBonheur V, Walker K, Li L S, Huggins K E, Keser M, Amstutz A. Science, 1997, 276(5311): 384.
[17] Lee K Y, Mooney D J. Chem. Rev., 2001, 101(7): 1869.
[18] Yang Z, Liang G, Guo Z, Xu B. Angew. Chem. Int. Ed., 2007, 46(43): 8216.
[19] Yang Z M, Ho P L, Liang G L, Chow K H, Wang Q G, Cao Y, Guo Z H, Xu B. J. Am. Chem. Soc., 2007, 129(2): 266.
[20] Matson J B, Stupp S I. Chem. Commun., 2012, 48(1): 26.
[21] Feriggeri A, Feringa B L, Van Esch J. J. Control. Release, 2004, 97(2): 24l.
[22] Tiller J C. Angew. Chem. Int. Ed., 2003, 42(27): 3072.
[23] Sangeetha N M, Maitra U. Chem. Soc. Rev., 2005, 34 (10): 821.
[24] Estroff L A, Hamilton A D. Chem. Rev., 2004, 104(3): 1201.
[25] Das D, Kar T, Das P K. Soft Matter, 2012, 8(8): 2348.
[26] Banerjee S, Das R K, Maitra U. J. Mater. Chem., 2009, 19(37): 6649.
[27] Tam A Y Y, Yam V W W. Chem. Soc. Rev., 2013, 42(4): 1540.
[28] Nuraje N, Bai H Y, Su K. Prog. Polym. Sci., 2013, 38(2): 302.
[29] 段小丽(Duan X L), 付雁(Fu Y), 张金利(Zhang J L), 李韡(Li W). 化学进展(Progress in Chemistry), 2013, 25(8):1272.
[30] Yuan J, Liu M H. J. Am. Chem. Soc., 2003, 125(17): 5051.
[31] Huang X, Li C, Jiang S G, Wang X S, Zhang B W, Liu M H. J. Am. Chem. Soc., 2004, 126(5): 1322.
[32] Guo P Z, Zhang L, Liu M H. Adv. Mater., 2006, 18(2): 177.
[33] 靳清贤(Jin Q X).中国科学院化学研究所博士论文(Doctoral Dissertation of Institute of Chemistry, Chinese Academy of Sciences), 2012
[34] Steed J W. Chem. Commun., 2011, 47(5): 1379—1383
[35] Han C P, Hou X, Zhang H C, Guo W, Li H B, Jiang L. J. Am. Chem. Soc., 2011, 133(20): 7644.
[36] Zheng B, Wang F, Dong S Y, Huang F H. Chem. Soc. Rev., 2012, 41(5): 1621.
[37] James T D, Kawabata H, Ludwig R, Murata K, Shinkai S. Tetrahedron, 1995, 51(2): 555.
[38] De Loos M, van Esch J, Kellogg R M, Feringa B L. Angew. Chem. Int. Ed., 2001, 40(3): 613.
[39] Escuder B, Miravet J F, Saez J A. Org. Bio. Chem., 2008, 6(23): 4378.
[40] Saez J A, Escuder B, Miravet J F. Chem. Commun., 2010, 46(42): 7996.
[41] Shen J S, Li D H, Cai Q G, Jiang Y B. J. Mater. Chem., 2009, 19(34): 6219.
[42] Edwards W, Smith D K. Chem. Commun., 2012, 48(22): 2767.
[43] Ghosh K, Sarkar A R, Chattopadhyay A P. Eur. J. Org. Chem., 2012, 7: 1311.
[44] Dawn A, Shiraki T, Ichikawa H, Takada A, Takahashi Y, Tsuchiya Y, Le T N L, Shinkai S. J. Am. Chem. Soc., 2012, 134(4): 2161.
[45] Zheng Y S, Ran S Y, Hu Y J, Liu X X. Chem. Commun., 2009, 9: 1121.
[46] Chen X, Huang Z, Chen S Y, Li K, Yu X Q, Pu L. J. Am. Chem. Soc., 2010, 132(21): 7297.
[47] Tu T, Fang W W, Bao X L, Li X B, Dotz K H. Angew. Chem. Int. Ed., 2011, 50(29): 6601.
[48] Tripathi A, Kumar A, Pandey P S. Tetrahedron Lett., 2012, 53(43): 5745.
[49] Maeda K, Mochizuki H, Osato K, Yashima E. Macromolecules, 2011, 44(9): 3217.
[50] Liu D, Du X X, Zhang Y Y, Deng J P, Yang W T. Macromol. Res., 2011, 19(7): 729.
[51] Miao W G, Zhang L, Wang X F, Cao H, Jin Q X, Liu M H. Chem. Eur. J., 2013, 19(9): 3029.
[52] Miao W G, Zhang L, Wang X F, Qin L, Liu M H. Langmuir, 2013, 29(18): 5435.
[53] Jintoku H, Takafuji M, Oda R, Ihara H. Chem. Commun., 2012, 48(40): 4881.
[54] Cao H, Zhu X F, Liu M H. Angew. Chem. Int. Ed., 2013, 52(15): 4122.
[55] Eder U, Sauer G, Weichert R. Angew. Chem. Int. Ed., 1971, 10(7): 496.
[56] Hajos Z G, Parrish D R. J. Org. Chem., 1974, 39 (12): 1612.
[57] List B, Lerner R A, Barbas C F. J. Am. Chem. Soc., 2000, 122(10): 2395.
[58] Ahrendt K A, Borths C J, MacMillan D W C. J. Am. Chem. Soc., 2000, 122(17): 4243.
[59] Yang J W, Chandler C, Stadler M, Kampen D, List B. Nature, 2008, 452(7186): 453.
[60] Clarke M L, Fuentes J A. Angew. Chem. Int. Ed., 2007, 46(6): 930.
[61] Mandal T, Zhao C G. Angew. Chem. Int. Ed., 2008, 47(40): 7714.
[62] Mase N, Nakai Y, Ohara N, Yoda H, Takabe K, Tanaka F, Barbas C F. J. Am. Chem. Soc., 2006, 128(3): 734.
[63] Qin L, Zhang L, Jin Q X, Zhang J L, Han B X, Liu M H. Angew. Chem. Int. Ed., 2013, 52(30): 7761.
[64] Escuder B, Rodriguez-Llansola F, Miravet J F. New J. Chem., 2010, 34(6): 1044.
[65] Rodriguez-Llansola F, Escuder B, Miravet J F. J. Am. Chem. Soc., 2009, 131(32): 11478.
[66] 许杨(Xu Y), 康传清(Kang C Q), 高连勋(Gao L X), 孟庆新(Meng Q X). 应用化学(Chinese Journal of Applied Chemistry), 2013, 30(1): 1.
[67] Tanaka K, Mori A, Inoue S. J. Org. Chem., 1990, 55(1): 181.
[68] Rodriguez-Llansola F, Miravet J F, Escuder B. Chem. Commun., 2009, (47): 7303.
[69] Dawn A, Fujita N, Haraguchi S, Sada K, Tamaru S, Shinkai S. Org. Bio. Chem., 2009, 7(21): 4378.
[70] Dawn A, Fujita N, Haraguchi S, Sada K, Shinkai S. Chem. Commun., 2009, (16): 2100.
[71] Chattopadhyay T, Kogiso M, Asakawa M, Shimizu T, Aoyagi M. Catal. Commun., 2010, 12(1): 9.
[72] de Jong J J D, Lucas L N, Kellogg R M, van Esch J H, Feringa B L. Science, 2004, 304(5668): 278.

[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[4] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[5] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[6] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[7] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[8] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[9] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[10] Li Luyao, Xu Xinyao, Zhu Bo, Xu Xinyao. Application of Pyrazolone Compounds in Catalytic Asymmetric Reactions [J]. Progress in Chemistry, 2020, 32(11): 1710-1728.
[11] Jie Yu, Liu-Zhu Gong. Discovery and Typical Advances of Chiral Amino Amide Catalysts [J]. Progress in Chemistry, 2020, 32(11): 1729-1744.
[12] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[13] Xiangyan Yi, Fei Huang, Jonathan B. Baell, He Huang, Yang Yu. The Formation of C(sp3)-C(sp3) by Visible-Light Photocatalysis [J]. Progress in Chemistry, 2019, 31(4): 505-515.
[14] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[15] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.