中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (5): 491-504 DOI: 10.7536/PC171121 Previous Articles   Next Articles

• Review •

Recent Advance in Catalytic Asymmetric Friedel-Crafts Reactions

Yu Zhang, Xiaohua Liu, Lili Lin, Xiaoming Feng*   

  1. College of Chemistry, Sichuan University, Chengdu 610064, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21432006).
PDF ( 1964 ) Cited
Export

EndNote

Ris

BibTeX

Catalytic asymmetric Friedel-Crafts reaction is one of the most efficient methods for the construction of optically active aryl-or heteroaryl-containing compounds. Since Friedel and Crafts reported the first example in 1877, this reaction has attracted wide attention. In recent twenty years, asymmetric catalytic Friedel-Crafts reaction has been well studied in the presence of a number of chiral bifunctional organocatalysts (such as derivatives of cinchona alkaloids, chiral prolinol ethers, chiral phosphoric acids, chiral thiourea, etc.) and various metal and chiral ligand (chiral N,N'-dioxide, chiral bis(oxazoline), chiral Schiff base) complexes. In this paper, we summarize the recent progress in asymmetric Friedel-Crafts reactions of phenols, pyrroles, furans and thiophenes. Finally, the deficiencies as well as the perspective of the Friedel-Crafts reaction have been highlighted.
Contents
1 Introduction
2 Catalytic asymmetric Friedel-Crafts reactions of phenols
2.1 Imines as the electrophiles
2.2 1, 2-Diketones as the electrophiles
2.3 Nitroalkenes as the electrophiles
2.4 α, β-Unsaturated carbonyl compounds as the electrophiles
2.5 Others double bonds as the electrophiles
3 Catalytic asymmetric Friedel-Crafts reactions of pyrroles
3.1 Nitroalkenes as the electrophiles
3.2 α, β-Unsaturated carbonyl compounds as the electrophiles
3.3 Others
4 Catalytic asymmetric Friedel-Crafts reactions of furans and thiophenes
5 Conclusion

CLC Number: 

[1] Olah G A, Krishnamurti R, Prakash G K S. In Comprehensive Organic Synthesis, Vol. 3, Eds. Trost B M, Fleming I. Pergamon, Oxford, 1991, 293.
[2] Bandini M, Melloni A, Tommasi S, Umani-Ronchi A. Synlett., 2005, 1199.
[3] Chen J R, Xiao W J, You S L., Catalytic Asymmetric Friedel-Crafts Alkylations, in Addition to Carbonyl Compounds-Imnes, Bandini M, Umani R A, Wiley-VCH, 2009, 101.
[4] 王以(Wang Y), 丁奎岭(Ding K L), 有机化学(Chinese Journal of Organic Chemistry), 2001, 21(10):763.
[5] Yuan Y, Wang X W, Li X, Ding K L. J. Org. Chem., 2004, 69:146.
[6] 盛益飞(Sheng Y F), 张安将(Zhang A J),郑晓建(Zheng X J), 游书力(You S L). 有机化学(Chinese Journal of Organic Chemistry), 2008, 28(4):605.
[7] Poulsen T B, Jørgensen K A. Chem. Rev., 2008, 108:2903.
[8] You S L, Cai Q, Zeng M. Chem. Soc. Rev., 2009, 38:2190.
[9] 冯翠兰(Feng C L), 徐海云(Xu H Y), 耿凤华(Geng F H), 广州化工(Guangzhou Chemical Industry), 2009, 39(11):16.
[10] Terrasson V, de Figueiredo R M, Campagne J M. Eur. J. Org. Chem., 2010, 41(32):2635.
[11] Zeng M, You S L. Synlett., 2010, 1289.
[12] 何展荣(He Z R), 黄毅勇(Huang Y Y), Francis V. 化学学报(Acta Chimica Sinica), 2013, 71:700.
[13] Beletskaya I P, Averin A D. Current Organocatalysis, 2016, 3:60.
[14] Liu G X, Zhang S L, Li H, Zhang T Z, Wang W. Org. Lett., 2011, 13:828.
[15] Chauhan P, Chimni S S. Eur. J. Org. Chem., 2011, 1636.
[16] Chauhan P, Chimni S S. Tetrahedron Letters, 2013, 54:4613.
[17] Li G X, Qu J. Chem. Commun., 2012, 48:5518.
[18] Takizawa S, Hirata S, Murai K, Fujioka H, Sasai H. Org. Biomol. Chem., 2014, 12:5827.
[19] Kato M, Hirao S, Nakano K, Sato M, Yamanaka M, Sohtome Y, Nagasawa K. Chem. Eur. J., 2015, 21:18606.
[20] Bai S, Liao Y T, Lin L L, Luo W W, Liu X H, Feng X M. J. Org. Chem., 2014, 79:10662.
[21] Montesinos-Magraner M, Vila C, CantÓn R, Blay G, Fernández I, Muoñz M C, Pedro J R. Angew. Chem. Int. Ed., 2015, 54:6320.
[22] Kumari P, Barik S, Khan N H, Ganguly B, Kureshy R I, Abdi S H R, Bajaj H C. RSC Adv., 2015, 5:69493.
[23] Montesinos-Magraner M, Vila C, Rendón-Patiño A, Blay G, Fernández I, Muoñz M C, Pedro J R. ACS Catal., 2016, 6:2689.
[24] Zhou D, Huang Z, Yu X T, Wang Y X, Li J, Wang W, Xie H X. Org. Lett., 2015, 17:5554.
[25] Montesinos-Magraner M, CantÓn R, Vila C, Blay G, Fernández I, Muoñz M C, Pedro J R. RSC Adv., 2015, 5:60101.
[26] Kaya U, Chauhan P, Mahajan S, Deckers K, Valkonen A, Rissanen K, Enders D. Angew. Chem. Int. Ed., 2017, 56:15358.
[27] Wang Y C, Jiang L, Li L, Dai J, Xiong D, Shao Z H. Angew. Chem. Int. Ed., 2016, 55:15142.
[28] Kaur J, Kumar A, Chimni S S. Tetrahedron Letters, 2014, 55:2138.
[29] Kumar A, Kaur J, Chauhan P, Chimni S S. Chem. Asian J., 2014, 9:1305.
[30] Kaur J, Kumar A, Chimni S S. RSC Adv., 2014, 4:62367.
[31] Montesinos-Magraner M, Vila C, Blay G, Fernández I M, Muoñz M C, Pedro J R. Adv. Synth. Catal., 2015, 357:3047.
[32] Vila C, Quintero L, Blay G, Muoñz M C, Pedro J R. Org. Lett., 2016, 18:5652.
[33] Sohtome Y, Shin B, Horitsugi N, Takagi R, Noguchi K, Nagasawa K. Angew. Chem. Int. Ed., 2010, 49:7299.
[34] Jarava-Barrera C, Esteban F, Navarro-Ranninger C, Parra A, Alemán J. Chem. Commun., 2013, 49:2001.
[35] Han X Y, Ye C, Chen F F, Chen Q, Wang Y J, Zeng X F. Org. Biomol. Chem., 2017, 15:3401.
[36] Jiang X X, Wu L P, Xing Y H, Wang L, Wang S C, Chen Z Y, Wang R. Chem. Commun., 2012, 48:446.
[37] Bai S, Liu X H, Wang Z, Cao W D, Lin L L, Feng X M. Adv. Synth. Catal., 2012, 354:2096.
[38] Paradisi E, Righi P, Mazzanti A, Ranieri S, Bencivenni G. Chem. Commun., 2012, 48:11178.
[39] Yoshida K, Itatsu Y, Fujino Y, Inoue H, Takao K. Angew. Chem. Int. Ed., 2016, 55:6734.
[40] Chen Y H, Cheng D J, Zhang J, Wang Y, Liu X Y, Tan B. J. Am. Chem. Soc., 2015, 137:15062.
[41] Xu C R, Zheng H F, Hu B W, Liu X H, Lin L L, Feng X M. Chem. Commun., 2017, 53:9741.
[42] Poulsen P H, Feu K S, Paz B M, Jensen F, Jørgensen K A. Angew.Chem. Int.Ed., 2015, 54:8203.
[43] Zhao Y L, Lou Q X, Wang L S, Hu W H, Zhao J L. Angew. Chem. Int. Ed., 2017, 56:338.
[44] Yu L L, Xie X H, Wu S, Wang R M, He W J, Qin D B, Liu Q Z, Jing L H. Tetrahedron Letters., 2013,54:3675.
[45] Zhang H H, Wang C S, Li C, Mei G J, Li Y, Shi F. Angew. Chem. Int. Ed., 2017, 56:116.
[46] Qin L, Wang P, Zhang Y X, Ren Z X, Zhang X, Da C S. Synlett, 2016, 27:571.
[47] Li S, Zhang J W, Li X L, Cheng D J, Tan B. J. Am. Chem. Soc., 2016, 138:16561.
[48] Wang Y F, Zhang C, Wang H J, Jiang Y D, Du X H, Xu D Q. Adv. Synth. Catal., 2017, 359:791.
[49] Paras N A, MacMillan W C. J. Am. Chem. Soc., 2001, 123:4370.
[50] Li G, Rowland G B, Rowland E B, Antilla J C. Org. Lett., 2007, 9:4065.
[51] Berini C, Minassian F, Pelloux-Leon N, Denis J N, Vallee Y, Philouze C. Org. Biomol. Chem., 2008, 6:2574.
[52] Cao C L, Zhou Y Y, Sun X L, Tang Y. Tetrahedron, 2008, 64:10676.
[53] Liu H, Lu S F, Xu J, Du D M. Chem. Asian J., 2008, 3:1111.
[54] Trost B M, Mueller C. J. Am. Chem. Soc., 2008, 130:2438.
[55] Blay G, Fernández I, Monleon A, Pedro J R, Vila C. Org. Lett., 2009, 11:441.
[56] Nakamura S, Sakurai Y, Nakashima H, Shibata N, Toru T. Synlett., 2009, 1639.
[57] Kashikura W, Itoh J, Mori K, Akiyama T. Chem Asian J., 2010, 5:470.
[58] Wang W T, Liu X H, Cao W D, Wang J, Lin L L, Feng X M. Chem. Eur. J., 2010, 16:1664.
[59] Cao Z P, Liu Y L, Liu Z Q, Feng X Q, Zhuang M Y, Du H F. Org. Lett., 2011, 13:2164.
[60] Zhang G Q. Org. Biomol. Chem., 2012, 10:2534.
[61] Özdemir H S, Sahin E, Çakici M, Kiliç H. Tetrahedron, 2015, 71:2882.
[62] Ma Q, Gong L, Meggers E. Org. Chem. Front., 2016, 3:1319.
[63] Singh P K, Singh V K. Org. Lett., 2010, 12:80.
[64] Liu L, Ma H L, Xiao Y M, Du F P, Qin Z H, Li N, Fu B. Chem. Commun., 2012, 48:9281.
[65] Hu Y B, Li Y N, Zhang S, Li C, Li L J, Zha Z G, Wang Z Y. Org. Lett., 2015, 17:4018.
[66] Zhang Y L, Yang N, Liu X H, Guo J, Zhang X Y, Lin L L, Hu C W, Feng X M. Chem. Commun., 2015, 51:8432.
[67] Riente P, Yadav J, Pericàs M A. Org. Lett., 2012, 14:3668.
[68] Pecchioli T, Muthyala M K, Haag R, Christmann M. Beilstein J. Org. Chem., 2015, 11:730.
[69] Huang Y Y, Suzuki S, Liu G K, Tokunaga E, Shiro M, Shibata N. New J. Chem., 2011, 35:2614.
[70] Oyama H, Nakada M. Tetrahedron:Asymmetry, 2015, 26:195.
[71] Wang S G, You S L. Angew. Chem. Int. Ed., 2014, 53:2194.
[72] Zhuo M H, Liu G F, Song S L, An D, Gao J, Zheng L, Zhang S. Adv. Synth. Catal., 2016, 358:808.
[73] Lian Y J, Davies H M L. Org. Lett., 2012, 14:1934.
[74] Brown S P, Goodwin N C, MacMillan D W C. J. Am. Chem. Soc., 2003, 125:1192.
[75] Uraguchi D, Sorimachi K, Terada M. J. Am. Chem. Soc., 2004, 126:11804.
[76] Liu H, Xu J X, Du D M. Org. Lett., 2007, 9:4725.
[77] Adachi S, Tanaka F, Watanabe K, Harada T. Org. Lett., 2009, 11:5206.
[78] Adachi S, Tanaka F, Watanabe K, Watada A, Harada T. Synthesis, 2010, 2652.
[79] Zhuang W, Gathergood N, Hazell R G, Jørgensen K A. J. Org. Chem., 2001, 66:1009.
[80] Saaby S, Bayón P, Aburel P S, Jørgensen K A. J. Org. Chem., 2002, 67:4352.
[81] Shirakawa S, Berger R, Leighton J L. J. Am. Chem. Soc., 2005, 127:2858.
[82] Majer J, Kwiatkowski P, Jurczak J. Org. Lett., 2009, 11:4636.
[83] Aikawa K, Asai Y, Hioki Y, Mikami K. Tetrahedron:Asymmetry, 2014, 25:1104.
[84] Li J L, Yue C Z, Chen P Q, Xiao Y C, Chen Y C. Angew. Chem. Int. Ed., 2014, 53:5449.
[85] Kondoh A, Ota Y, Komuro T, Egawa F, Kanomata K, Terada M. Chem. Sci., 2016, 7:1057.
[86] Yang G J, Du W, Chen Y C. J. Org. Chem., 2016, 81:10056.
[87] Zhang X R, Zhou S L, Yuan Y, Du W, Chen Y C. New York Synlett., 2017, 28:1771.
[1] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[2] Di Zeng, Xuechen Liu, Yuanyi Zhou, Haipeng Wang, Ling Zhang, Wenzhong Wang. Renewable Aromatic Production from Biomass-Derived Furans [J]. Progress in Chemistry, 2022, 34(1): 131-141.
[3] Li Luyao, Xu Xinyao, Zhu Bo, Xu Xinyao. Application of Pyrazolone Compounds in Catalytic Asymmetric Reactions [J]. Progress in Chemistry, 2020, 32(11): 1710-1728.
[4] Jie Yu, Liu-Zhu Gong. Discovery and Typical Advances of Chiral Amino Amide Catalysts [J]. Progress in Chemistry, 2020, 32(11): 1729-1744.
[5] Xiangyan Yi, Fei Huang, Jonathan B. Baell, He Huang, Yang Yu. The Formation of C(sp3)-C(sp3) by Visible-Light Photocatalysis [J]. Progress in Chemistry, 2019, 31(4): 505-515.
[6] Yuping Tang, Yanmei He, Yu Feng, Qinghua Fan. Asymmetric Supramolecular Catalysis Based on Macrocyclic Host Molecules [J]. Progress in Chemistry, 2018, 30(5): 476-490.
[7] Zhiyong Han, Liuzhu Gong*. Asymmetric Organo/Palladium Combined Catalysis [J]. Progress in Chemistry, 2018, 30(5): 505-512.
[8] Jun Luo, YanSong Zheng. Chiral Calixarenes and Their Supramolecular Chirality [J]. Progress in Chemistry, 2018, 30(5): 601-615.
[9] Zhang Yongli, Zhang Rui, Chang Honghong, Wei Wenlong, Li Xing. Asymmetric Carbonyl-ene Reactions Promoted by Chiral Catalysts [J]. Progress in Chemistry, 2014, 26(09): 1492-1505.
[10] Jin Qingxian, Li Jing, Li Xiaogang, Zhang Li, Fang Shaoming, Liu Minghua. Function and Application of Supramolecular Gels:Chiral Molecular Recognition and Asymmetric Catalysis [J]. Progress in Chemistry, 2014, 26(06): 919-930.
[11] Chung S. Yang. Cancer Prevention by Vitamin E and Tea Polyphenols:Lessons Learned from Studies in Animal Models and Humans [J]. Progress in Chemistry, 2013, 25(09): 1492-1500.
[12] Yu Lide, Cui Hanfeng*, Fan Hao, Ren Shuhui, Lin Yan. Chiral Quaternary Phosphonium Salts in Asymmetric Catalysis [J]. Progress in Chemistry, 2013, 25(05): 744-751.
[13] Li Gaowei, Wang Xiaojuan, Zhao Wenxian, Lu Liujie, Liu Guanjun, Wang Mincan. Trost-Type Chiral Semi-Azacrown Ether Ligands in Asymmetric Catalysis [J]. Progress in Chemistry, 2012, 24(0203): 348-360.
[14] Lin Lili, Liu Xiaohua, Feng XIiaoming. Asymmetric Reactions Catalyzed by Chiral Tridentate Schiff Base-Metal Complexes [J]. Progress in Chemistry, 2010, 22(07): 1353-1361.
[15] Xu Lijin Yi Bing Dang Limin Tang Weijun. Asymmetric catalysis in ionic liquids [J]. Progress in Chemistry, 2010, 22(07): 1254-1273.