中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (5): 737-743 DOI: 10.7536/PC151109 Previous Articles   Next Articles

• Review and comments •

Research in Graphene-Based Anticorrosion Coatings

Gu Lin1*, Ding Jiheng1,2, Yu Haibin1*   

  1. 1. Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
    2. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21404112) and the Ningbo Natural Science Foundation (No.2015A610016).
PDF ( 2269 ) Cited
Export

EndNote

Ris

BibTeX

Defect-free monolayer graphene with excellent shielding performance is impermeable to O2 and H2O molecules, which can protect metal against corrosion and hence is considered to be the thinnest known coating for corrosion protection. Based on the great potential of graphene in the field of metal corrosion protection, this paper systematically summarizes the graphene anticorrosion films, graphene/organic anticorrosion coatings and graphene-conductive polymer/organic anticorrosion coatings. The existing problems of graphene anticorrosion films and well-dispersed graphene in polymer coatings are also discussed. Finally, the future development of graphene based anticorrosion coatings is prospected.

Contents
1 Introduction
2 Graphene anticorrosion films
3 Graphene/organic anticorrosion coatings
4 Graphene-conductive polymer/organic anticorrosion coatings
5 Summary and outlook

CLC Number: 

[1] 李应平(Li Y P), 王献红(Wang X H), 李季(Li J), 王佛松(Wang F S). 中国材料进展(Materilas China), 2011, 30(8): 17.
[2] Zhao Y, Xie Y, Hui Y Y, Tang L, Jie W, Jiang Y, Xu L, Lau S P, Chai Y. J. Mater. Chem. C, 2013, 1 (32): 4956.
[3] Ellie T Y L, Rubaiyi M Z, Tan L L, Chong K F. Int. J. Chem. Eng. Appl., 2012, 3 (6): 453.
[4] Rao C N R, Biswas K, Subrahmanyam K S, Govindaraj A. J. Mater. Chem., 2009, 19(17): 2457.
[5] Su Y, Kravets V G, Wong S L, Waters J, Geim A K, Nair R R. Nat. Commun, 2014, 5: 4843.
[6] Raman R K S, Tiwari A. JOM, 2014, 66(4): 637.
[7] Gu L, Liu S, Zhao H, Yu H. ACS Appl. Mater. Interfaces, 2015, 7(32): 17641.
[8] 张力(Zhang L), 吴俊涛(Wu J T), 江雷(Jiang L). 化学进展(Progress in Chemistry), 2014, 26(4): 560.
[9] Tong Y, Bohm S, Song M. Austin. J. Nanomed. Nanotechnol., 2013, 1(1): 1003.
[10] Gadipelli S, Guo Z X. Prog. Mate. Sci., 2015, 69: 1.
[11] Li X, Cai W, Colombo L, Ruoff R S. Nano Lett., 2009, 9(12): 4268.
[12] Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, Brink J, Kelly P J. Phys. Rev. Lett., 2008, 101(2): 026803.
[13] Prasai D, Tuberquia J C, Harl R R, Jennings G K, Bolotin K I. ACS Nano, 2012, 6(2): 1102.
[14] Dong Y, Liu Q, Zhou Q. Corros. Sci., 2014, 89: 214.
[15] Zhang W, Lee S, McNear K L, Chung T F, Lee S, Lee K, Crist S A, Ratliff T L, Zhong Z, Chen Y P, Yang C. Sci. Rep., 2014, 4: 4097.
[16] Pu N, Shi G, Liu Y, Sun X, Chang J, Sun C, Ger M, Chen C, Wang P, Peng Y, Wu C, Lawes S. J. Power Sources, 2015, 282 (0): 248.
[17] Sahu S C, Samantara A K, Seth M, Parwaiz S, Singh B P, Rath P C, Jena B K. Electrochem. Commun., 2013, 32: 22.
[18] Huh J, Kim S, Chu J, Kim S, Kim J H, Kwon S. Nanoscale, 2014, 6 (8): 4379.
[19] Kirkland N T, Schiller T, Medhekar N, Birbilis N. Corros. Sci., 2012, 56: 1.
[20] Hsieh Y, Hofmann M, Chang K, Jhu J, Li Y, Chen K, Yang C, Chang W, Chen L. ACS Nano, 2014, 8(1): 443.
[21] Schriver M, Regan W, Gannett W J, Zaniewski A M, Crommie M F, Zettl A. ACS Nano, 2013, 7 (7): 5763.
[22] Layek R K, Nandi A K. Polymer, 2013, 54(19): 5087.
[23] Li Y, Yang Z, Qiu H, Dai Y, Zheng Q, Li J, Yang J. J. Mater. Chem. A, 2014, 2(34): 14139.
[24] Chang K C, Ji W F, Li C W, Chang C H, Peng Y Y, Yeh J M, Liu W R. Express Polym. Lett., 2014, 8(12): 908.
[25] Chang K, Ji W, Lai M, Hsiao Y, Hsu C, Chuang T, Wei Y, Yeh J, Liu W. Polym. Chem., 2014, 5(3): 1049.
[26] Chang K, Hsu M, Lu H, Lai M, Liu P, Hsu C, Ji W, Chuang T, Wei Y, Yeh J, Liu W. Carbon, 2014, 66: 144.
[27] Yu Y, Lin Y, Lin C, Chan C, Huang Y. Polym. Chem., 2014, 5(2): 535.
[28] Qi K, Sun Y, Duan H, Guo X. Corros. Sci., 2015, 98: 500.
[29] Zhang Z, Zhang W, Li D, Sun Y, Wang Z, Hou C, Chen L, Cao Y, Liu Y. Int. J. Mol. Sci., 2015, 16(1): 2239.
[30] Sun W, Wang L, Wu T, Wang M, Yang Z, Pan Y, Liu G. Chem. Mater., 2015, 27(7): 2367.
[31] Chang C H, Huang T C, Peng C W, Yeh T C, Lu H I, Hung W I, Weng C J, Yang T I, Yeh J M. Carbon, 2012, 50(14): 5044.
[32] Sun W, Wang L, Wu T, Pan Y, Liu G. Carbon, 2014, 79: 605.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[3] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[4] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[5] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[6] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[7] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[8] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[9] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[10] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[11] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[12] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[13] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.
[14] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[15] Changle Yue, Wenjing Bao, Jilei Liang, Yunqi Liu, Daofeng Sun, Yukun Lu. Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water [J]. Progress in Chemistry, 2022, 34(5): 1061-1075.