中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (5): 1218-1228 DOI: 10.7536/PC210622 Previous Articles   Next Articles

• Review •

Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021

Jinhui Zhang1,2, Jinhua Zhang1,2(), Jiwei Liang1,2, Kaili Gu1,2, Wenjing Yao1,2, Jinxiang Li1,2   

  1. 1. School of Environmental and Biological Engineering, Nanjing University of Science and Technology,Nanjing 210094, China
    2. Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing 210094, China
  • Received: Revised: Online: Published:
  • Contact: Jinhua Zhang
  • Supported by:
    National Natural Science Foundation of China(51708416); Fundamental Research Founds for the Central Universities(30919011267); State Key Laboratory of Pollution Control and Resource Reuse Foundation(PCRRF19005); Open Founds for Large-Scale Instruments and Equipment of Nanjing University of Science and Technology.
Richhtml ( 26 ) PDF ( 314 ) Cited
Export

EndNote

Ris

BibTeX

The application of the zerovalent iron (ZVI) for water treatment of metal(loid) (oxyan)ions has been a research hotspot in recent years. In practical applications, how to simultaneously improve the reactivity and electron efficiency of contaminants sequestration by ZVI are highly critical for the progress in ZVI-based technology. This review summarizes the improvements of ZVI technologies proposed in the past 10 years (2011—2021), including the sulfidation, weak magnetic field (WMF), dosing of Fe2+ and oxidants, along with other novel technologies. In addition, the performances (e.g., reactivity, removal capacity and electronic efficiency) and mechanisms of these technologies for contaminants removal are summarized and compared. The enhanced performance of ZVI technology should be complementarily analyzed not only from the broad-spectrum studies of different systems but also from the specific study of a single system. Finally, in order to promote the further improvement and development of ZVI technology, the future research direction of ZVI technology is outlooked. This review is expected to provide a new research direction and a complete theoretical basis for improving the performances of ZVI technology in real environmental application.

Contents

1 Introduction

2 Methods for enhancing reactivity of ZVI

2.1 Sulfidation

2.2 Addition of divalent metal cation

2.3 Weak magnetic field

2.4 Premagnetization

2.5 Addition of oxidants

2.6 Novel enhanced methods

2.7 Summary

3 Methods for enhancing electron efficiency of ZVI

3.1 Sulfidation

3.2 Addition of divalent metal cation

3.3 Addition of oxidants

3.4 Weak magnetic field

3.5 Summary

4 Mechanisms of the enhanced technologies

5 Conclusion and outlook

Fig. 1 Eh-pH diagram for Fe0/H2O system at 298.15 K and 101.3 KPa. [Fe]tot = 10-4 mol·L-1
Fig. 2 Summary of rate constants for sequestration of metal(loids) (oxyan)ions with and without (a) sulfidation[15,42,43,45⇓⇓ ~48], (b) WMF[11,45,48⇓⇓ ~51], (c) premagnetization[14,52] by ZVI
Fig. 3 Summary of rate constants for sequestration of metal(loids) (oxyan)ions with and without addition of Fe2+[34, 48], addition of H2O2[48] and coupled effects of WMF and Fe2+[45] by ZVI
Fig. 4 Summary of removal capacity for sequestration of metal(loids) (oxyan)ions with and without sulfidation, addition of divalent metal cations, addition of H2O2 and WMF by ZVI[34,44,47,48,51,71]
Fig. 5 Summary of electron efficiency for sequestration of metal(loids) (oxyan)ions with and without (a) addition of divalent metal cations[34,44,47,48,71], (b) sulfidation[46⇓~48], WMF[48,51] and addition of H2O2[48] by ZVI
Fig. 6 Schematic illustration of the promotion mechanism for the performance of metal(loids) (oxyan)ions sequestration in ZVI/Fe2+, ZVI/H2O2, S-ZVI, and ZVI/WMF system
[1]
Gillham R W, O’Hannesin S F. Ground Water, 1994, 32(6): 958.

doi: 10.1111/j.1745-6584.1994.tb00935.x
[2]
Matheson L J, Tratnyek P G. Environ. Sci. Technol., 1994, 28(12): 2045.

doi: 10.1021/es00061a012 pmid: 22191743
[3]
Wang S C, Song Y D, Sun Y K. Progress in Chemistry, 2019, 31(2/3): 422.
(王舒畅, 宋亚丹, 孙远奎. 化学进展, 2019, 31(2/3): 422.)

doi: 10.7536/PC180726
[4]
Yang S Y, Zheng D, Chang S Y, Shi C. Prog. Chem., 2016, 28(5): 754.
(杨世迎, 郑迪, 常书雅, 石超. 化学进展, 2016, 28(5): 754.)

doi: 10.7536/PC151047
[5]
Qiu X H, Fang Z Q. Progress in Chemistry, 2010, 22(2/3): 291.
(邱心泓, 方战强. 化学进展, 2010, 22(2/3): 291.)
[6]
Agrawal A, Tratnyek P G. Environ. Sci. Technol., 1996, 30(1): 153.

doi: 10.1021/es950211h
[7]
Zhang J H, Cheng Z Y, Yang X G, Luo J Q, Li H Z, Chen H M, Zhang Q, Li J X. Chem. Eng. J., 2020, 393: 124779.

doi: 10.1016/j.cej.2020.124779
[8]
Wang S C, Song Y D, Sun Y K. Environ. Technol. Innov., 2018, 11: 339.

doi: 10.1016/j.eti.2018.06.014
[9]
Morales J, Hutcheson R, Cheng I F. J. Hazard. Mater., 2002, 90(1): 97.

pmid: 11777595
[10]
Guo X J, Yang Z, Dong H Y, Guan X H, Ren Q D, Lv X, Jin X. Water Res., 2016, 88: 671.

doi: 10.1016/j.watres.2015.10.045
[11]
Liang L P, Guan X H, Shi Z, Li J L, Wu Y N, Tratnyek P G. Environ. Sci. Technol., 2014, 48(11): 6326.

doi: 10.1021/es500958b
[12]
Feng P, Guan X H, Sun Y K, Choi W, Qin H J, Wang J M, Qiao J L, Li L N. J. Environ. Sci., 2015, 31: 175.

doi: 10.1016/j.jes.2014.10.017
[13]
Liang L P, Sun W, Guan X H, Huang Y Y, Choi W, Bao H L, Li L N, Jiang Z. Water Res., 2014, 49: 371.

doi: 10.1016/j.watres.2013.10.026
[14]
Li J X, Qin H J, Guan X H. Environ. Sci. Technol., 2015, 49(24): 14401.

doi: 10.1021/acs.est.5b04215
[15]
Huang S S, Xu C H, Shao Q Q, Wang Y H, Zhang B L, Gao B Y, Zhou W Z, Tratnyek P G. Chem. Eng. J., 2018, 338: 539.

doi: 10.1016/j.cej.2018.01.033
[16]
Yang K L, Zhou J S, Lv D, Sun Y, Lou Z M, Xu X H. Progress in Chemistry, 2017, 29(11): 1407.
(杨昆仑, 周家盛, 吕丹, 孙悦, 楼子墨, 徐新华. 化学进展, 2017, 29(11): 1407.)

doi: 10.7536/PC170634
[17]
Tang J, Tang L, Feng H P, Dong H R, Zhang Y, Liu S S, Zeng G M. Acta Chimica Sin., 2017, 75(6): 575.
(汤晶, 汤琳, 冯浩朋, 董浩然, 章毅, 刘思诗, 曾光明. 化学学报, 2017, 75(6): 575.)

doi: 10.6023/A17020045
[18]
Noubactep C. Environ. Technol., 2008, 29(8): 909.

doi: 10.1080/09593330802131602 pmid: 18724646
[19]
Li J X, Dou X M, Qin H J, Sun Y K, Yin D Q, Guan X H. Water Res., 2019, 148: 70.

doi: 10.1016/j.watres.2018.10.025
[20]
Guan X H, Sun Y K, Qin H J, Li J X, Lo I M C, He D, Dong H R. Water Res., 2015, 75: 224.

doi: 10.1016/j.watres.2015.02.034
[21]
Gu K L, Li H Z, Zhang J H, Li J X. Progress in Chemistry, 2021, 33 (10): 1812.
(顾凯丽, 李浩贞, 张晋华, 李锦祥. 化学进展, 2021, 33 (10): 1812.)
[22]
Li J X, Qin H J, Zhang X Y, Guan X H. Acta Chimica Sinica, 2017, 75(6): 544.

doi: 10.6023/A17010007
(李锦祥, 秦荷杰, 张雪莹, 关小红. 化学学报, 2017, 75(6): 544.)

doi: 10.6023/A17010007
[23]
Liu Y Q, Phenrat T, Lowry G V. Environ. Sci. Technol., 2007, 41(22): 7881.

doi: 10.1021/es0711967
[24]
Liu H, Wang Q, Wang C, Li X Z. Chem. Eng. J., 2013, 215-216: 90.
[25]
Liu Y Q, Majetich S A, Tilton R D, Sholl D S, Lowry G V. Environ. Sci. Technol., 2005, 39(5): 1338.

doi: 10.1021/es049195r
[26]
Xin J, Tang F L, Yan J, La C H, Zheng X L, Liu W. Sci. Total. Environ., 2018, 626: 638.

doi: 10.1016/j.scitotenv.2018.01.115
[27]
Kadar E, Tarran G A, Jha A N, Al-Subiai S N. Environ. Sci. Technol., 2011, 45(8): 3245.

doi: 10.1021/es1029848
[28]
Henn K W, Waddill D W. Remediat. J., 2006, 16(2): 57.
[29]
Huang Y H, Zhang T C. Water Res., 2005, 39(9): 1751.

pmid: 15899273
[30]
Wang Y L, Lin D H. Progress in Chemistry, 2017, 29(9): 1072.
(王艳龙, 林道辉. 化学进展, 2017, 29(9): 1072.)

doi: 10.7536/PC170526
[31]
Tang S, Wang X M, Mao Y Q, Zhao Y, Yang H W, Xie Y F. Water Res., 2015, 73: 342.

doi: 10.1016/j.watres.2015.01.027
[32]
Sun Y K, Li J X, Huang T L, Guan X H. Water Res., 2016, 100: 277.

doi: 10.1016/j.watres.2016.05.031
[33]
Flury B, Frommer J, Eggenberger U, Mäder U, Nachtegaal M, Kretzschmar R. Environ. Sci. Technol., 2009, 43(17): 6786.

doi: 10.1021/es803526g
[34]
Qin H J, Li J X, Yang H Y, Pan B C, Zhang W M, Guan X H. Environ. Sci. Technol., 2017, 51(9): 5090.

doi: 10.1021/acs.est.6b04832
[35]
Fan S F, Xin J, Huang J Y, Rong W L, Zheng X L. Progress in Chemistry, 2018, 30(7): 1035.
(范淑芬, 辛佳, 黄静怡, 荣伟莉, 郑西来. 化学进展, 2018, 30(7): 1035.)

doi: 10.7536/PC171106
[36]
Tang F L, Xin J, Zheng T Y, Zheng X L, Yang X P, Kolditz O. Chem. Eng. J., 2017, 324: 324.

doi: 10.1016/j.cej.2017.04.144
[37]
Yang S Y, Ren T F, Zhang Y X, Zheng D, Xin J. Progress in Chemistry, 2017, 29(4): 388.
(杨世迎, 任腾飞, 张艺萱, 郑迪, 辛佳. 化学进展, 2017, 29(4): 388.)

doi: 10.7536/PC170133
[38]
Lipczynska-Kochany E, Harms S, Milburn R, Sprah G, Nadarajah N. Chemosphere, 1994, 29(7): 1477.

pmid: 22454977
[39]
Kim E J, Kim J H, Azad A M, Chang Y S. ACS Appl. Mater. Interfaces, 2011, 3(5): 1457.

doi: 10.1021/am200016v
[40]
Fan D M, Lan Y, Tratnyek P G, Johnson R L, Filip J, O’Carroll D M, Nunez Garcia A, Agrawal A. Environ. Sci. Technol., 2017, 51(22): 13070.

doi: 10.1021/acs.est.7b04177
[41]
Gu Y W, Gong L, Qi J L, Cai S C, Tu W X, He F. Water Res., 2019, 159: 233.

doi: 10.1016/j.watres.2019.04.061
[42]
Wang Y H, Shao Q Q, Huang S S, Zhang B L, Xu C H. J. Clean Prod., 2018, 191: 436.

doi: 10.1016/j.jclepro.2018.04.217
[43]
Li J X, Zhang X Y, Liu M C, Pan B C, Zhang W M, Shi Z, Guan X H. Environ. Sci. Technol., 2018, 52(5): 2988.

doi: 10.1021/acs.est.7b06502
[44]
Qiao J L, Song Y D, Sun Y K, Guan X H. Chem. Eng. J., 2018, 353: 246.

doi: 10.1016/j.cej.2018.07.113
[45]
Xu C H, Zhang B L, Zhu L J, Lin S, Sun X P, Jiang Z, Tratnyek P G. Environ. Sci. Technol., 2016, 50(3): 1483.

doi: 10.1021/acs.est.5b05360
[46]
Li H Z, Zhang J H, Gu K L, Li J X. J. Hazard. Mater., 2021, 409: 124498.

doi: 10.1016/j.jhazmat.2020.124498
[47]
Fan P, Sun Y K, Zhou B X, Guan X H. Environ. Sci. Technol., 2019, 53(24): 14577.

doi: 10.1021/acs.est.9b04956
[48]
Fan P, Li L N, Sun Y K, Qiao J L, Xu C H, Guan X H. Water Res., 2019, 159: 375.

doi: 10.1016/j.watres.2019.05.037
[49]
Xu H Y, Sun Y K, Li J X, Li F M, Guan X H. Environ. Sci. Technol., 2016, 50(15): 8214.

doi: 10.1021/acs.est.6b01763
[50]
Li J L, Bao H L, Xiong X M, Sun Y K, Guan X H. Sep. Purif. Technol., 2015, 151: 276.

doi: 10.1016/j.seppur.2015.07.056
[51]
Li J X, Sun Y K, Zhang X Y, Guan X H. J. Hazard. Mater., 2020, 400: 123330.

doi: 10.1016/j.jhazmat.2020.123330
[52]
Li J X, Shi Z, Ma B, Zhang P P, Jiang X, Xiao Z J, Guan X H. Environ. Sci. Technol., 2015, 49(17): 10581.

doi: 10.1021/acs.est.5b02699
[53]
Gu Y W, Wang B B, He F, Bradley M J, Tratnyek P G. Environ. Sci. Technol., 2017, 51(21): 12653.

doi: 10.1021/acs.est.7b03604
[54]
Wu Y, Wang Y, Qiu R L, Yang X. Prog. Chem., 2018, 30(4): 420.

doi: 10.7536/PC170745
(吴洋, 王玉, 仇荣亮, 杨欣. 化学进展, 2018, 30(4): 420.)

doi: 10.7536/PC170745
[55]
Huang Y H, Tang C L, Zeng H. Chem. Eng. J., 2012, 200-202: 257.
[56]
Yoon I H, Kim K W, Bang S, Kim M G. Appl. Catal. B: Environ., 2011, 104(1/2): 185.

doi: 10.1016/j.apcatb.2011.02.014
[57]
Tang C L, Huang Y H, Zeng H, Zhang Z Q. Water Res., 2014, 67: 166.

doi: 10.1016/j.watres.2014.09.016
[58]
Tang C L, Huang Y H, Zeng H, Zhang Z Q. Chem. Eng. J., 2014, 244: 97.

doi: 10.1016/j.cej.2014.01.059
[59]
Doong R A, Lai Y L. Chemosphere, 2006, 64(3): 371.

doi: 10.1016/j.chemosphere.2005.12.038
[60]
Liu T X, Li X M, Waite T D. Environ. Sci. Technol., 2013, 47(23): 13712.

doi: 10.1021/es403709v
[61]
Liu T X, Li X M, Waite T D. Environ. Sci. Technol., 2013, 47(13): 7350.

doi: 10.1021/es400362w
[62]
Liu T X, Li X M, Waite T D. Environ. Sci. Technol., 2014, 48(24): 14564.

doi: 10.1021/es503777a
[63]
Sun Y K, Guan X H, Wang J M, Meng X G, Xu C H, Zhou G M. Environ. Sci. Technol., 2014, 48(12): 6850.

doi: 10.1021/es5003956
[64]
Jiang X, Qiao J L, Lo I M C, Wang L, Guan X H, Lu Z P, Zhou G M, Xu C H. J. Hazard. Mater., 2015, 283: 880.

doi: 10.1016/j.jhazmat.2014.10.044 pmid: 25464332
[65]
Aziz F, Pandey P, Chandra M, Khare A, Rana D S, Mavani K R. J. Magn. Magn. Mater., 2014, 356: 98.

doi: 10.1016/j.jmmm.2013.12.037
[66]
Li X, Zhou M H, Pan Y W, Xu L T. Chem. Eng. J., 2017, 307: 1092.

doi: 10.1016/j.cej.2016.08.140
[67]
Guo X J, Yang Z, Liu H, Lv X, Tu Q S, Ren Q D, Xia X H, Jing C Y. Sep. Purif. Technol., 2015, 146: 227.

doi: 10.1016/j.seppur.2015.03.059
[68]
Hu Y, Peng X, Ai Z H, Jia F L, Zhang L Z. Environ. Sci. Technol., 2019, 53(14): 8333.

doi: 10.1021/acs.est.9b01999
[69]
Li M Q, Mu Y, Shang H, Mao C L, Cao S Y, Ai Z H, Zhang L Z. Appl. Catal. B: Environ., 2020, 263: 118364.

doi: 10.1016/j.apcatb.2019.118364
[70]
Li M Q, Shang H, Li H, Hong Y F, Ling C C, Wei K, Zhou B, Mao C L, Ai Z H, Zhang L Z. Angew. Chem. Int. Ed., 2021, 60(31): 17115.

doi: 10.1002/anie.202104586
[71]
Ling J F, Qiao J L, Song Y D, Sun Y K. Chem. Eng. J., 2019, 378: 122124.

doi: 10.1016/j.cej.2019.122124
[72]
Rajajayavel S R C, Ghoshal S. Water Res., 2015, 78: 144.

doi: 10.1016/j.watres.2015.04.009 pmid: 25935369
[73]
Fan D M, O’Brien Johnson G, Tratnyek P G, Johnson R L. Environ. Sci. Technol., 2016, 50(17): 9558.

doi: 10.1021/acs.est.6b02170
[74]
Kim D H, Kim J, Choi W. J. Hazard. Mater., 2011, 192(2): 928.

doi: 10.1016/j.jhazmat.2011.05.075
[75]
Hug S J, Leupin O. Environ. Sci. Technol., 2003, 37(12): 2734.

doi: 10.1021/es026208x
[76]
Hug S J, Canonica L, Wegelin M, Gechter D, von Gunten U. Environ. Sci. Technol., 2001, 35(10): 2114.

pmid: 11393995
[77]
Ullah S, Guo X J, Luo X Y, Zhang X Y, Leng S W, Ma N, Faiz P. Front. Environ. Sci. Eng., 2020, 14(5): 1.

doi: 10.1007/s11783-019-1180-x
[78]
Li Y M, Guo X J, Dong H Y, Luo X Y, Guan X H, Zhang X Y, Xia X H. Chem. Eng. J., 2018, 345: 432.

doi: 10.1016/j.cej.2018.03.187
[79]
Yang Z, Shan C, Zhang W M, Jiang Z, Guan X H, Pan B C. Water Res., 2016, 106: 461.

doi: S0043-1354(16)30782-5 pmid: 27764696
[80]
Li J X, Qin H J, Zhang W X, Shi Z, Zhao D Y, Guan X H. Sep. Purif. Technol., 2017, 176: 40.

doi: 10.1016/j.seppur.2016.11.075
[81]
Sun Y K, Hu Y H, Huang T L, Li J X, Qin H J, Guan X H. Environ. Sci. Technol., 2017, 51(7): 3742.

doi: 10.1021/acs.est.6b06117
[1] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[2] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.
[3] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[4] Shuaibing Yu, Zhaolu Wang, Xuliang Pang, Lei Wang, Lianzhi Li, Yingwu Lin. Peptide-Based Metal Ion Sensors [J]. Progress in Chemistry, 2021, 33(3): 380-393.
[5] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[6] Jinke Wu, Jianjun Wang, Lixing Dai, Donghao Sun, Jiajia Chen. Metal Coordination Polyurethanes [J]. Progress in Chemistry, 2021, 33(12): 2188-2202.
[7] Kaili Gu, Haozhen Li, Jinhua Zhang, Jinxiang Li. Performances and Interactions of Contaminants Removal from Water by Sulfidated Zerovalent Iron [J]. Progress in Chemistry, 2021, 33(10): 1812-1822.
[8] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[9] Shuchang Wang, Yadan Son, Yuankui Sun. Performance and Mechanism of Contaminants Removal by Carbon Materials-Modified Zerovalent Iron [J]. Progress in Chemistry, 2019, 31(2/3): 422-432.
[10] Yanan Zheng, Dan Wang. Structures, Properties, and Applications of Metalloregulatory Proteins [J]. Progress in Chemistry, 2019, 31(10): 1372-1383.
[11] Shufen Fan, Jia Xin, Jingyi Huang, Weili Rong, Xilai Zheng. Effectiveness of Electron Transfer and Electron Competition Mechanism in Zero-Valent Iron-Based Reductive Groundwater Remediation Systems [J]. Progress in Chemistry, 2018, 30(7): 1035-1046.
[12] Shanye Yang, Xiangxue Wang, Zhongshan Chen, Qian Li, Benben Wei, Xiangke Wang. Synthesis of Fe3O4-Based Nanomaterials and Their Application in the Removal of Radionuclides and Heavy Metal Ions [J]. Progress in Chemistry, 2018, 30(2/3): 225-242.
[13] Jianwen Shao, Fuchao Yang, Zhiguang Guo. The Application of Biomimetic Superoleophobic Materials under Harsh Operating Conditions [J]. Progress in Chemistry, 2018, 30(12): 2003-2011.
[14] Changlu Zhou, Zhong Xin*. Fabrication, Properties and Applications of Functional Surface Based on Polybenzoxazine [J]. Progress in Chemistry, 2018, 30(1): 112-123.
[15] Lin Han, Baoliang Chen*. Generation Mechanism and Fate Behaviors of Environmental Persistent Free Radicals [J]. Progress in Chemistry, 2017, 29(9): 1008-1020.