中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (5): 1061-1075 DOI: 10.7536/PC210608 Previous Articles   Next Articles

• Review •

Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water

Changle Yue1, Wenjing Bao1, Jilei Liang3, Yunqi Liu1, Daofeng Sun1,2, Yukun Lu1()   

  1. 1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China),Qingdao 266580, China
    2. College of Materials Science and Engineering, China University of Petroleum (East China),Qingdao 266580, China
    3. College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University,Taizhou 225300, China
  • Received: Revised: Online: Published:
  • Contact: Yukun Lu
  • Supported by:
    National Natural Science Foundation of China(21878336); National Natural Science Foundation of China(22078227); Shandong Provincial Natural Science Foundation, China(ZR2018MB035); Applied Basic Research Projects of Qingdao(19-6-2-27-cg); State Key Laboratory of Heavy Oil Processing(20CX02213A); State Key Laboratory of Heavy Oil Processing(SKLOP201902005)
Richhtml ( 33 ) PDF ( 571 ) Cited
Export

EndNote

Ris

BibTeX

Facing the challenge of severe environmental pollution caused by petroleum and the development of new energy, the desulfurization of petroleum fuels and sustainable clean alternative energy are regarded as important solutions. As a clean and sustainable energy carrier, hydrogen (H2) is considered one of the most promising alternatives to carbon fuels. Therefore, hydrodesulfurization (HDS) and electrolysis of hydrogen evolution reaction (HER) are effective ways to solve the current energy and environmental problems caused by petroleum, and the development of high-efficiency and low-cost non-precious metal-based catalytic materials is a key step to achieve industrialization. Sulfided transition metals have high valence, unique crystal structure and thermal stability. Among them, MoS2 and WS2 are a type of band gap two-dimensional semiconductors with high planar carrier mobility and are used as non-noble metal sulfided catalysts representative material. It is worth noting that MoS2 and WS2 can realize HDS and HER processes at the same time. They not only serve as high-performance HDS catalysts to reduce the sulfur content of petroleum, but also shine in sustainable and clean green hydrogen production. Polyoxometalates (POMs), as a kind of inorganic nanoclusters with a clear structure composed of a variety of transition metals and oxygen atoms, are suitable precursors for preparing transition metal sulfided electrode materials. The sulfided catalyst can exhibit electrocatalytic performance close to that of noble metal-based catalysts, realizing green and efficient energy production and processing. Therefore, in recent years, sulfided catalysts prepared by POMs have become a research hotspot in green chemistry. This paper reviews the research progress of POMs-based sulfided catalysts in the HDS and HER fields, focusing on the working principles and interrelationships of the two types of processes. The catalytic mechanism, structural advantages and existing problems of POMs-based sulfided catalysts are summarized and discussed. Finally, some prospective of POMs-based sulfided catalysts for their application in those fields are proposed.

Contents

1 Introduction

2 HDS and HER

2.1 HDS

2.2 HER

3 HDS application of MS2 with POMs precursors

3.1 HDS catalysts based on Keggin-type POMs

3.2 HDS catalysts based on Anderson-type POMs

3.3 HDS catalysts based on Waugh-type POMs

3.4 HDS catalysts based on Strandberg-type POMs

3.5 HDS catalysts based on new type POMs

4 HER applications of MS2 with POMs precursors

4.1 HER catalysts based on MoS2

4.2 HER catalysts based on WS2

5 Conclusion and outlook

Fig. 1 Schematic diagram (a) and STM picture (b, c) of the Co/Ni-doped MoS2 atomic sphere[11]. Copyright 2019, MDPI
Fig. 2 The morphology of MoS2 clusters and the morphology of Co-doped MoS2 clusters[27]. Copyright 2018, RightsLink
Scheme 1 Schematic diagram of the hydrodesulfurization of benzothiophene
Fig. 3 Volcano plot of Gibbs free energy of adsorbed atomic hydrogen for MoS2 nanoparticle and the pure metals[24]. Copyright 2007, RightsLink
Fig. 4 Primary and secondary structure of Keggin POMs[67]. Copyright 2013, RightsLink
Fig. 5 TEM images of (A) Ni3POW/Al2O3 pH = 7-S, (B) Ni3POW/Al2O3 pH = 9-S, (C) Ni4POW/Al2O3 pH = 7-S, (D) Ni4POW/Al2O3 pH = 9-S[72]. Copyright 2019, RightsLink
Fig. 6 (a) [XMo6O24H6]3-(Co2+,5H2O) heteropolyanion (X = Al or Co) label scheme. H2O1-5 form the Co1 coordination octahedron. H2Oa-g are the solvate water molecules represented with Mo-OH2 broken lines bonds shorter than 4 Å. Labels 1~24 stand for O or OH. (b) The eight equivalent heteropolyanion according to the Pcab symmetry, surrounded by the H2Oa-g hydration molecules (gray circles)[76]. Copyright 2004, RightsLink
Fig. 7 Structure of Waugh-type POMs NiMo9 and schematic diagram of Ni2+-N H 4 + exchange[79]. Copyright 2014, RightsLink
Fig. 8 Schematic diagram of the synthetic strategy for preparing HDS catalysts with P2Mo5 as precursor[81]. Copyright 2018, RightsLink
Fig. 9 Schematic diagram of synthesis and morphology of bimetallic sulfide M-Mo-S/CC (M = Co, Ni, Fe)[120]. Copyright 2018, RightsLink
Fig. 10 Schematic diagram of (a, b, c) POMs precursors and (d) preparation of the XO@1T-MoS2 nanosheets[122]. Copyright 2019, RightsLink
Fig. 11 Schematic preparation process of MoS2/N-RGO-T nanocomposite[124]. Copyright 2016, RightsLink
Fig. 12 Schematic preparation process of CoMoS/CC nanocomposite[127]. Copyright 2021, RightsLink
Fig. 13 Overall water splitting by use of O-CoMoS heteronanosheet arrays as the anode and cathode in alkaline solution[128]. Copyright 2018, RightsLink
Fig. 14 Left: ball model of a Mo/WS2 particle exposing both S-edge and Mo/W-edge. Right: differential free energies of hydrogen adsorption[36]. Copyright 2009, RightsLink
[1]
Huang L B, Zhao L, Zhang Y, Chen Y Y, Zhang Q H, Luo H, Zhang X, Tang T, Gu L, Hu J S. Adv. Energy Mater., 2018, 8(21): 1800734.

doi: 10.1002/aenm.201800734
[2]
Huang T T, Peng Q Y, Gai H J, Fan Y. Energy Fuels, 2021, 35(3): 2402.

doi: 10.1021/acs.energyfuels.0c03364
[3]
Taylor M J, Durndell L J, Isaacs M A, Parlett C M A, Wilson K, Lee A F, Kyriakou G. Appl. Catal. B: Environ., 2016, 180: 580.

doi: 10.1016/j.apcatb.2015.07.006
[4]
Nogueira A, Znaiguia R, Uzio D, Afanasiev P, Berhault G. Appl. Catal. A: Gen., 2012, 429/430: 92.

doi: 10.1016/j.apcata.2012.04.013
[5]
Pecoraro T A, Chianelli R R. J. Catal., 1981, 67(5): 430.

doi: 10.1016/0021-9517(81)90303-1
[6]
Zeng K, Zhang D K. Prog. Energy Combust. Sci., 2010, 36(3): 307.

doi: 10.1016/j.pecs.2009.11.002
[7]
Rausch B, Symes M D, Chisholm G, Cronin L. Science, 2014, 345(6202): 1326.

doi: 10.1126/science.1257443
[8]
Wang J H, Yan M Y, Zhao K N, Liao X B, Wang P Y, Pan X L, Yang W, Mai L Q. Adv. Mater., 2017, 29(7): 1604464.

doi: 10.1002/adma.201604464
[9]
Hinnemann B, Moses P G, Bonde J, Jørgensen K P, Nielsen J H, Horch S, Chorkendorff I, Nørskov J K. J. Am. Chem. Soc., 2005, 127(15): 5308.

pmid: 15826154
[10]
Deng X H, Xu G Y, Zhang Y J, Wang L, Zhang J J, Li J F, Fu X Z, Luo J L. Angew. Chem. Int. Ed., 2021, 60(37): 20535.

doi: 10.1002/anie.202108955
[11]
Díaz de LeÓn J, Ramesh Kumar C, Antúnez-García J, Fuentes-Moyado S. Catalysts, 2019, 9(1): 87.

doi: 10.3390/catal9010087
[12]
Sobczynski A, Yildiz A, Bard A J, Campion A, Fox M A, Mallouk T, Webber S E, White J M. J. Phys. Chem., 1988, 92(8): 2311.

doi: 10.1021/j100319a042
[13]
Voiry D, Yamaguchi H, Li J W, Silva R, Alves D C B, Fujita T, Chen M W, Asefa T, Shenoy V B, Eda G, Chhowalla M. Nat. Mater., 2013, 12(9): 850.

doi: 10.1038/nmat3700
[14]
Yang J, Voiry D, Ahn S J, Kang D, Kim A Y, Chhowalla M, Shin H S. Angew. Chem. Int. Ed., 2013, 52(51): 13751.

doi: 10.1002/anie.201307475
[15]
Lukowski M A, Daniel A S, English C R, Meng F, Forticaux A, Hamers R J, Jin S. Energy Environ. Sci., 2014, 7(8): 2608.

doi: 10.1039/C4EE01329H
[16]
Duan J J, Chen S, Chambers B A, Andersson G G, Qiao S Z. Adv. Mater., 2015, 27(28): 4234.

doi: 10.1002/adma.201501692
[17]
Ambrosi A, Sofer Z, Pumera M. Chem. Commun., 2015, 51(40): 8450.

doi: 10.1039/C5CC00803D
[18]
Zhang J, Wang Q, Wang L H, Li X A, Huang W. Nanoscale, 2015, 7(23): 10391.

doi: 10.1039/c5nr01896j pmid: 25994213
[19]
Cheng L, Huang W J, Gong Q F, Liu C H, Liu Z, Li Y G, Dai H J. Angew. Chem. Int. Ed., 2014, 53(30): 7860.

doi: 10.1002/anie.201402315
[20]
Xu K, Wang F M, Wang Z X, Zhan X Y, Wang Q S, Cheng Z Z, Safdar M, He J. ACS Nano, 2014, 8(8): 8468.

doi: 10.1021/nn503027k
[21]
Zhang X, Lai Z C, Tan C L, Zhang H. Angew. Chem. Int. Ed., 2016, 55(31): 8816.

doi: 10.1002/anie.201509933
[22]
Zhang G, Liu H J, Qu J H, Li J H. Energy Environ. Sci., 2016, 9(4): 1190.

doi: 10.1039/C5EE03761A
[23]
Helveg S, Lauritsen J V, Lægsgaard E, Stensgaard I, Nørskov J K, Clausen B S, Topsøe H, Besenbacher F. Phys. Rev. Lett., 2000, 84(5): 951.

pmid: 11017413
[24]
Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I. Science, 2007, 317(5834): 100.

pmid: 17615351
[25]
Kibsgaard J, Lauritsen J V, Lægsgaard E, Clausen B S, Topsøe H, Besenbacher F. J. Am. Chem. Soc., 2006, 128(42): 13950.

pmid: 17044723
[26]
Brorson M, Carlsson A, Topsøe H. Catal. Today, 2007, 123(1/4): 31.

doi: 10.1016/j.cattod.2007.01.073
[27]
Grønborg S S, Salazar N, Bruix A, Rodríguez-Fernández J, Thomsen S D, Hammer B, Lauritsen J V. Nat. Commun., 2018, 9(1): 2211.

doi: 10.1038/s41467-018-04615-9 pmid: 29880841
[28]
Lauritsen J V, Helveg S, Lægsgaard E, Stensgaard I, Clausen B S, Topsøe H, Besenbacher F. J. Catal., 2001, 197(1): 1.

doi: 10.1006/jcat.2000.3088
[29]
Byskov L S, Nørskov J K, Clausen B S, Topsøe H. J. Catal., 1999, 187(1): 109.

doi: 10.1006/jcat.1999.2598
[30]
Toh R J, Sofer Z, Luxa J, Sedmidubský D, Pumera M. Chem. Commun., 2017, 53(21): 3054.

doi: 10.1039/C6CC09952A
[31]
Enyashin A N, Yadgarov L, Houben L, Popov I, Weidenbach M, Tenne R, Bar-Sadan M, Seifert G. J. Phys. Chem. C, 2011, 115(50): 24586.

doi: 10.1021/jp2076325
[32]
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H. Nat. Chem., 2013, 5(4): 263.

doi: 10.1038/nchem.1589 pmid: 23511414
[33]
Lin Y C, Dumcenco D O, Huang Y S, Suenaga K. Nat. Nanotechnol., 2014, 9(5): 391.

doi: 10.1038/nnano.2014.64
[34]
Wypych F, Solenthaler C, Prins R, Weber T. J. Solid State Chem., 1999, 144(2): 430.

doi: 10.1006/jssc.1999.8193
[35]
Heising J, Kanatzidis M G. J. Am. Chem. Soc., 1999, 121(4): 638.

doi: 10.1021/ja983043c
[36]
Bonde J, Moses P G, Jaramillo T F, Nørskov J K, Chorkendorff I. Faraday Discuss., 2009, 140: 219.

doi: 10.1039/B803857K
[37]
Horn M R, Singh A, Alomari S, Goberna-FerrÓn S, Benages-Vilau R, Chodankar N, Motta N, Ostrikov K K, MacLeod J, Sonar P, Gomez-Romero P, Dubal D. Energy Environ. Sci., 2021, 14(4): 1652.

doi: 10.1039/D0EE03407J
[38]
Breysse M, Furimsky E, Kasztelan S, Lacroix M, Perot G. Catal. Rev., 2002, 44(4): 651.

doi: 10.1081/CR-120015483
[39]
Chianelli R R, Berhault G, Raybaud P, Kasztelan S, Hafner J, Toulhoat H. Appl. Catal. A: Gen., 2002, 227(1-2): 83.

doi: 10.1016/S0926-860X(01)00924-3
[40]
Han X B, Tang X Y, Lin Y, Gracia-Espino E, Liu S G, Liang H W, Hu G Z, Zhao X J, Liao H G, Tan Y Z, Wagberg T, Xie S Y, Zheng L S. J. Am. Chem. Soc., 2019, 141(1): 232.

doi: 10.1021/jacs.8b09076
[41]
Carlsson A, Brorson M, Topsøe H. J. Catal., 2004, 227(2): 530.

doi: 10.1016/j.jcat.2004.08.031
[42]
Cui T Y, Rajendran A, Fan H X, Feng J, Li W Y. Ind. Eng. Chem. Res., 2021, 60(8): 3295.

doi: 10.1021/acs.iecr.0c06234
[43]
Startsev A N. Catal. Rev., 1995, 37(3): 353.
[44]
Puello polo E, Romero Baños M, Fals J F. Prospectiva, 2017, 16(1): 34.

doi: 10.15665/rp.v16i1.1298
[45]
Srivastava V C. RSC Adv., 2012, 2(4): 759.

doi: 10.1039/C1RA00309G
[46]
Li D D. Chinese Journal of Catalysis, 2013, 34(1): 48.

doi: 10.1016/S1872-2067(11)60508-1
(李大东. 催化学报, 2013, 34(1): 48.)
[47]
Zhu Q L, Zhao X T, Zhao Z X, Ma H J, Deng Y Q. Molecular Catalysis, 2006, 20(4): 372.
(朱全力, 赵旭涛, 赵振兴, 马洪江, 邓友全. 分子催化, 2006, 20(4): 372.)
[48]
Bello S S, Wang C, Zhang M J, Gao H, Han Z N, Shi L, Su F B, Xu G W. Energy Fuels, 2021, 35(14): 10998.

doi: 10.1021/acs.energyfuels.1c01015
[49]
Song C S. Catal. Today, 2003, 86(1/4): 211.

doi: 10.1016/S0920-5861(03)00412-7
[50]
Ding L H, Zheng Y, Zhang Z S, Ring Z, Chen J W. J. Catal., 2006, 241(2): 435.

doi: 10.1016/j.jcat.2006.05.004
[51]
Conway B E, Tilak B V. Electrochimica Acta, 2002, 47(22/23): 3571.

doi: 10.1016/S0013-4686(02)00329-8
[52]
Lyon Y A, Roberts A A, McMillin D R. J. Chem. Educ., 2015, 92(12): 2130.

doi: 10.1021/acs.jchemed.5b00189
[53]
Morales-Guio C G, Stern L A, Hu X L. Chem. Soc. Rev., 2014, 43(18): 6555.

doi: 10.1039/c3cs60468c pmid: 24626338
[54]
Yan Y, Xia B Y, Xu Z C, Wang X. ACS Catal., 2014, 4(6): 1693.

doi: 10.1021/cs500070x
[55]
Theerthagiri J, Senthil R A, Senthilkumar B, Reddy Polu A, Madhavan J, Ashokkumar M. J. Solid State Chem., 2017, 252: 43.

doi: 10.1016/j.jssc.2017.04.041
[56]
Benck J D, Hellstern T R, Kibsgaard J, Chakthranont P, Jaramillo T F. ACS Catal., 2014, 4(11): 3957.

doi: 10.1021/cs500923c
[57]
Greeley J, Jaramillo T F, Bonde J, Chorkendorff I, Nørskov J K. Nat. Mater., 2006, 5(11): 909.

pmid: 17041585
[58]
Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U. J. Electrochem. Soc., 2005, 152(3): J23.

doi: 10.1149/1.1856988
[59]
Greeley J, Nørskov J K, Kibler L A, El-Aziz A M, Kolb D M. ChemPhysChem, 2006, 7(5): 1032.

pmid: 16557633
[60]
Lai W K, Chen Z, Zhu J P, Yang L F, Zheng J B, Yi X D, Fang W P. Nanoscale, 2016, 8(6): 3823.

doi: 10.1039/C5NR08841K
[61]
Huirache-Acuña R, Nava R, Peza-Ledesma C, Lara-Romero J, Alonso-Núez G, Pawelec B, Rivera-Muñoz E. Materials, 2013, 6(9): 4139.

doi: 10.3390/ma6094139 pmid: 28788323
[62]
Díaz de LeÓn J N. Appl. Catal. B: Environ., 2016, 181: 524.

doi: 10.1016/j.apcatb.2015.08.028
[63]
Zhou W W, Zhang Y N, Tao X J, Zhou Y S, Wei Q, Ding S J. Fuel, 2018, 228: 152.

doi: 10.1016/j.fuel.2018.04.084
[64]
Alonso-Núñez G, Bocarando J, Huirache-Acuña R, Álvarez-Contreras L, Huang Z D, Bensch W, Berhault G, Cruz J, Zepeda T A, Fuentes S. Appl. Catal. A: Gen., 2012, 419-420: 95.

doi: 10.1016/j.apcata.2012.01.015
[65]
van Veen J A R, Hendriks P A J M, Romers E J G M, Andrea R R. J. Phys. Chem., 1990, 94(13): 5275.
[66]
Romero-Galarza A, GutiÉrrez-Alejandre A, Ramírez J. J. Catal., 2011, 280(2): 230.

doi: 10.1016/j.jcat.2011.03.021
[67]
Zhang H, Yan R Y, Yang L, Diao Y Y, Wang L, Zhang S J. Ind. Eng. Chem. Res., 2013, 52(12): 4484.

doi: 10.1021/ie3032718
[68]
Griboval A, Blanchard P, Payen E, Fournier M, Dubois J L. Catal. Today, 1998, 45(1/4): 277.

doi: 10.1016/S0920-5861(98)00230-2
[69]
Alsalme A, Alzaqri N, Alsaleh A, Siddiqui M R H, Alotaibi A, Kozhevnikova E F, Kozhevnikov I V. Appl. Catal. B: Environ., 2016, 182: 102.

doi: 10.1016/j.apcatb.2015.09.018
[70]
Minaev P P, Nikulshin P A, Kulikova M S, Pimerzin A A, Kogan V M. Appl. Catal. A: Gen., 2015, 505: 456.

doi: 10.1016/j.apcata.2015.05.012
[71]
Kokliukhin A, Nikulshina M, Mozhaev A, Lancelot C, Lamonier C, Nuns N, Blanchard P, Bugaev A, Nikulshin P. Catal. Today, 2021, 377: 26.

doi: 10.1016/j.cattod.2020.07.018
[72]
LÓpez-Benítez A, Guevara-Lara A, Berhault G. ACS Catal., 2019, 9(8): 6711.

doi: 10.1021/acscatal.9b01460
[73]
Kokliukhin A, Nikulshina M, Mozhaev A, Lancelot C, Blanchard P, Briois V, Marinova M, Lamonier C, Nikulshin P. J. Catal., 2021, 403: 141.

doi: 10.1016/j.jcat.2021.02.019
[74]
Ma Y Q, Liu X P, Li J P, Wang R, Yu M Q. Chem. Pap., 2017, 71(3): 647.

doi: 10.1007/s11696-016-0064-9
[75]
Nikulshin P, Mozhaev A, Lancelot C, Blanchard P, Payen E, Lamonier C. Comptes Rendus Chimie, 2016, 19(10): 1276.

doi: 10.1016/j.crci.2015.10.006
[76]
Martin C, Lamonier C, Fournier M, MentrÉ O, HarlÉ V, Guillaume D, Payen E. Inorg. Chem., 2004, 43(15): 4636.

doi: 10.1021/ic0354365
[77]
Puello-Polo E, Diaz Y, Brito J L. Catal. Commun., 2017, 99: 89.

doi: 10.1016/j.catcom.2017.05.017
[78]
Nikulshin P A, Salnikov V A, Mozhaev A V, Minaev P P, Kogan V M, Pimerzin A A. J. Catal., 2014, 309: 386.

doi: 10.1016/j.jcat.2013.10.020
[79]
Liang J L, Liu Y Q, Zhao J C, Li X H, Lu Y K, Wu M M, Liu C G. Catal. Lett., 2014, 144(10): 1735.

doi: 10.1007/s10562-014-1326-1
[80]
Blanchard P, Lamonier C, Griboval A, Payen E. Appl. Catal. A: Gen., 2007, 322: 33.

doi: 10.1016/j.apcata.2007.01.018
[81]
Liang J L, Wu M M, Wei P H, Zhao J C, Huang H, Li C F, Lu Y K, Liu Y Q, Liu C G. J. Catal., 2018, 358: 155.

doi: 10.1016/j.jcat.2017.11.026
[82]
Liang J L, Wu M M, Wang J J, Wei P H, Sun B F, Lu Y K, Sun D F, Liu Y Q, Liu C G. Catal. Sci. Technol., 2018, 8(24): 6330.

doi: 10.1039/C8CY02007H
[83]
Prins R, de Beer V H J, Somorjai G A. Catal. Rev., 1989, 31(1/2): 1.

doi: 10.1080/01614948909351347
[84]
Spalvins T. J. Vac. Sci. Technol. A, 1987, 5(2): 212.

doi: 10.1116/1.574106
[85]
Kibsgaard J, Chen Z B, Reinecke B N, Jaramillo T F. Nat. Mater., 2012, 11(11): 963.

doi: 10.1038/nmat3439 pmid: 23042413
[86]
Deng J, Li H B, Xiao J P, Tu Y C, Deng D H, Yang H X, Tian H F, Li J Q, Ren P J, Bao X H. Energy Environ. Sci., 2015, 8(5): 1594.

doi: 10.1039/C5EE00751H
[87]
Šarić M, Moses P G, Rossmeisl J. ChemCatChem, 2016, 8(21): 3334.

doi: 10.1002/cctc.201601014
[88]
Šarić M, Rossmeisl J, Moses P G. Phys. Chem. Chem. Phys., 2017, 19(3): 2017.

doi: 10.1039/C6CP06881B
[89]
Chen L X, Chen Z W, Wang Y, Yang C C, Jiang Q. ACS Catal., 2018, 8(9): 8107.

doi: 10.1021/acscatal.8b01164
[90]
Liu Z X, Yuan X M, Yang P. J. Magn. Magn. Mater., 2018, 461(1): 1.

doi: 10.1016/j.jmmm.2018.04.041
[91]
Yu Y F, Nam G H, He Q Y, Wu X J, Zhang K, Yang Z Z, Chen J Z, Ma Q L, Zhao M T, Liu Z Q, Ran F R, Wang X Z, Li H, Huang X, Li B, Xiong Q H, Zhang Q, Liu Z, Gu L, Du Y H, Huang W, Zhang H. Nat. Chem, 2018, 10(6): 638.

doi: 10.1038/s41557-018-0035-6
[92]
Xie J F, Zhang H, Li S, Wang R X, Sun X, Zhou M, Zhou J F, Lou X W D, Xie Y. Adv. Mater., 2013, 25(40): 5807.

doi: 10.1002/adma.201302685
[93]
Guo B J, Yu K, Li H L, Song H L, Zhang Y Y, Lei X, Fu H, Tan Y H, Zhu Z Q. ACS Appl. Mater. Interfaces, 2016, 8(8): 5517.

doi: 10.1021/acsami.5b10252
[94]
Hu J, Huang B L, Zhang C X, Wang Z L, An Y M, Zhou D, Lin H, Leung M K H, Yang S H. Energy Environ. Sci., 2017, 10(2): 593.

doi: 10.1039/C6EE03629E
[95]
Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R H, Liu S H, Zhuang X D, Feng X L. Angew. Chem. Int. Ed., 2016, 128(23): 6814.

doi: 10.1002/ange.201602237
[96]
Guo Y N, Tang J, Qian H Y, Wang Z L, Yamauchi Y. Chem. Mater., 2017, 29(13): 5566.

doi: 10.1021/acs.chemmater.7b00867
[97]
Yang Y Q, Zhang K, Lin H L, Li X, Chan H C, Yang L C, Gao Q S. ACS Catal., 2017, 7(4): 2357.

doi: 10.1021/acscatal.6b03192
[98]
Guo Y X, Gan L F, Shang C S, Wang E K, Wang J. Adv. Funct. Mater., 2017, 27(5): 1602699.

doi: 10.1002/adfm.201602699
[99]
Miras H N, Vilà-Nadal L, Cronin L. Chem. Soc. Rev., 2014, 43(16): 5679.

doi: 10.1039/C4CS00097H
[100]
Du D Y, Qin J S, Li S L, Su Z M, Lan Y Q. Chem. Soc. Rev., 2014, 43(13): 4615.

doi: 10.1039/C3CS60404G
[101]
Wang S S, Yang G Y. Chem. Rev., 2015, 115(11): 4893.

doi: 10.1021/cr500390v
[102]
Zhao J W, Li Y Z, Chen L J, Yang G Y. Chem. Commun., 2016, 52(24): 4418.

doi: 10.1039/C5CC10447E
[103]
Jiao L, Seow J Y R, Skinner W S, Wang Z U, Jiang H L. Mater. Today, 2019, 27: 43.

doi: 10.1016/j.mattod.2018.10.038
[104]
Svatek S A, Antolin E, Lin D Y, Frisenda R, Reuter C, Molina-Mendoza A J, Muñoz M, Agraït N, Ko T S, de Lara D P, Castellanos-Gomez A. J. Mater. Chem. C, 2017, 5(4): 854.

doi: 10.1039/C6TC04699A
[105]
Bu C H, Liu Y M, Yu Z H, You S J, Huang N, Liang L L, Zhao X Z. ACS Appl. Mater. Interfaces, 2013, 5(15): 7432.

doi: 10.1021/am4017472
[106]
Jin H Y, Wang J, Su D F, Wei Z Z, Pang Z F, Wang Y. J. Am. Chem. Soc., 2015, 137(7): 2688.

doi: 10.1021/ja5127165
[107]
Perkins F K, Friedman A L, Cobas E, Campbell P M, Jernigan G G, Jonker B T. Nano Lett., 2013, 13(2): 668.

doi: 10.1021/nl3043079 pmid: 23339527
[108]
Li H, Yin Z Y, He Q Y, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q, Zhang H. Small, 2012, 8(1): 63.

doi: 10.1002/smll.201101016
[109]
Li L, Li J X, Liu L L, Wang X R, Guo Y, Zhou Y J. ACS Appl. Energy Mater., 2019, 2(2): 1413.

doi: 10.1021/acsaem.8b01993
[110]
Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S, Dai H J. J. Am. Chem. Soc., 2011, 133(19): 7296.

doi: 10.1021/ja201269b
[111]
Sun T, Wang J, Chi X, Lin Y X, Chen Z X, Ling X, Qiu C T, Xu Y S, Song L, Chen W, Su C L. ACS Catal., 2018, 8(8): 7585.

doi: 10.1021/acscatal.8b00783
[112]
Venkateshwaran S, Senthil Kumar S M. ACS Sustainable Chem. Eng., 2019, 7(2): 2008.

doi: 10.1021/acssuschemeng.8b04335
[113]
Hu Z J, Bao Y J, Li Z W, Gong Y J, Feng R, Xiao Y D, Wu X C, Zhang Z H, Zhu X, Ajayan P M, Fang Z Y. Sci. Bull., 2017, 62(1): 16.

doi: 10.1016/j.scib.2016.11.002
[114]
Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y M, Zhang H, Lai C S, Li L J. Nano Lett., 2012, 12(3): 1538.

doi: 10.1021/nl2043612
[115]
Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L S, Jin S. J. Am. Chem. Soc., 2013, 135(28): 10274.

doi: 10.1021/ja404523s pmid: 23790049
[116]
Zhan Y J, Liu Z, Najmaei S, Ajayan P M, Lou J. Small, 2012, 8(7): 966.

doi: 10.1002/smll.201102654
[117]
Liu Q, Li X L, He Q, Khalil A, Liu D B, Xiang T, Wu X J, Song L. Small, 2015, 11(41): 5556.

doi: 10.1002/smll.201501822
[118]
Shi Y M, Zhou W, Lu A Y, Fang W J, Lee Y H, Hsu A L, Kim S M, Kim K K, Yang H Y, Li L J, Idrobo J C, Kong J. Nano Lett., 2012, 12(6): 2784.

doi: 10.1021/nl204562j
[119]
Huang H L, Chen L Q, Liu C H, Liu X S, Fang S X, Liu W P, Liu Y J. J. Mater. Chem. A, 2016, 4(38): 14577.

doi: 10.1039/C6TA06174E
[120]
Tang Y J, Zhang A M, Zhu H J, Dong L Z, Wang X L, Li S L, Han M, Xu X X, Lan Y Q. Nanoscale, 2018, 10(18): 8404.

doi: 10.1039/C8NR00925B
[121]
Zhang J W, Huang Y C, Li G, Wei Y G. Coord. Chem. Rev., 2019, 378: 395.

doi: 10.1016/j.ccr.2017.10.025
[122]
Huang Y C, Sun Y H, Zheng X L, Aoki T, Pattengale B, Huang J E, He X, Bian W, Younan S, Williams N, Hu J, Ge J X, Pu N, Yan X X, Pan X Q, Zhang L J, Wei Y G, Gu J. Nat. Commun., 2019, 10(1): 982.

doi: 10.1038/s41467-019-08877-9
[123]
Zhou D, Han B H. Adv. Funct. Mater., 2010, 20(16): 2717.

doi: 10.1002/adfm.200902323
[124]
Tang Y J, Wang Y, Wang X L, Li S L, Huang W, Dong L Z, Liu C H, Li Y F, Lan Y Q. Adv. Energ. Mater., 2016, 6(12): 1600116.

doi: 10.1002/aenm.201600116
[125]
Ghosh S, Azad U P, Singh A K, Singh A K, Prakash R. ChemistrySelect, 2017, 2(35): 11590.

doi: 10.1002/slct.201702737
[126]
Guo S W, Gao Z Y, Song J L, Bulin C K, Zhang B W. Chinese Journal of Inorganic Chemistry, 2019, 35(7): 1195.
(郭树旺, 高占勇, 宋金玲, 布林朝克, 张邦文. 无机化学学报, 2019, 35(7): 1195.)
[127]
Lu Y K, Guo X X, Yang L Y, Yang W F, Sun W T, Tuo Y X, Zhou Y, Wang S T, Pan Y, Yan W F, Sun D F, Liu Y Q. Chem. Eng. J., 2020, 394: 124849.

doi: 10.1016/j.cej.2020.124849
[128]
Hou J G, Zhang B, Li Z W, Cao S Y, Sun Y Q, Wu Y Z, Gao Z M, Sun L C. ACS Catal., 2018, 8(5): 4612.

doi: 10.1021/acscatal.8b00668
[129]
Sun H H, Ji X Y, Qiu Y F, Zhang Y Y, Ma Z, Gao G G, Hu P G. J. Alloys Compd., 2019, 777: 514.

doi: 10.1016/j.jallcom.2018.10.364
[130]
Hou Y, Pang H J, Zhang L, Li B N, Xin J J, Li K Q, Ma H Y, Wang X M, Tan L C. J. Power Sources, 2020, 446: 227319.

doi: 10.1016/j.jpowsour.2019.227319
[131]
Liu S H, Xu Y X, Yang H. CN 109926069A. 2019.
(刘山虎, 许银霞, 杨浩. CN 109926069A. 2019.).
[1] Yin Xie, Liyang Zhang, Peijin Ying, Jiacheng Wang, Kuan Sun, Meng Li. Intensified Field-Effect of Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(9): 1571-1585.
[2] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[3] Hao Hu, Yunpeng He, Shuijin Yang. Preparation of Polyoxometalates@Metal-Organic Frameworks Materials and Their Application in Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(6): 1026-1034.
[4] Yang Liu, Xinbo Zhang, Yingcan Zhao. Two-Dimensional MoS2 Nanomaterials and Applications in Water Treatment [J]. Progress in Chemistry, 2020, 32(5): 642-655.
[5] Xianwei Lv, Zhongpan Hu, Hui Zhao, Yuping Liu, Zhongyong Yuan. Self-Supporting Transition Metal Phosphides as Electrocatalysts for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2018, 30(7): 947-957.
[6] Meiyao Tang, Yanyan Wang, He Shen, Guangbo Che. Solution-Based Preparation Techniques for Two-Dimensional Molybdenum Sulfide Nanosheet and Application of Its Composite Materials in Photocatalysis and Electrocatalysis [J]. Progress in Chemistry, 2018, 30(11): 1646-1659.
[7] You Yuncheng, Zeng Tian, Liu Jinsong, Hu Tingsong, Tai Guoan. Chemical Vapor Deposition and Application of Graphene-Like Tungsten Disulfide [J]. Progress in Chemistry, 2015, 27(11): 1578-1590.
[8] Li Lei, Li Yanxing, Yao Yao, Yao Lianghong, Ji Weijie, Au Chak-Tong. Progress and Prospective in Fabrication and Application of Core-Shell Structured Nanomaterials in Catalytic Chemistry [J]. Progress in Chemistry, 2013, 25(10): 1681-1690.
[9] Wang Lu, Zhou Baibin, Liu Jiaren. Anticancer Polyoxometalates [J]. Progress in Chemistry, 2013, 25(07): 1131-1141.
[10] Liu Ning, Wang Xuzhen*, Xu Wenya, Guo Decai, Tang Jizhou, Zhang Baolu. Chemical Synthesis of Molybdenum Disulfide and Its Applications as Hydrodesulphurization Catalysts [J]. Progress in Chemistry, 2013, 25(05): 726-734.
[11] Xu Chong, Fan Yanxuan, Fan Linyuan, Cao Jie*, Hu Changwen*. Application of Mass Spectrometry in Polyoxometalate Chemistry [J]. Progress in Chemistry, 2013, 25(05): 809-820.
[12] Yin Hailiang, Zhou Tongna, Chai Yongming, Liu Yunqi, Liu Chenguang. Application of Zeolites in Hydrodesulfurization Catalysts for Deep Desulfurization [J]. Progress in Chemistry, 2012, 24(07): 1252-1261.
[13] Song Hua, Dai Min, Song Hualin. Ni2P Catalyst for Hydrodesulfurization [J]. Progress in Chemistry, 2012, 24(05): 757-768.
[14] Chen Fawang, Hu Changwen. Progress in Polyoxometalates Catalysis [J]. Progress in Chemistry, 2011, 23(01): 19-41.
[15] Liu Shuping Xu Lin Xu Bingbing. Electrochromism of Polyoxometalates [J]. Progress in Chemistry, 2009, 21(0708): 1456-1464.