中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (12): 1764-1782 DOI: 10.7536/PC230422 Previous Articles   Next Articles

• Review •

Preparation and Applications of Chiral Carbon Dots Prepared via Hydrothermal Carbonization Method

Jinyue Fan, Xiangxin Kong, Wei Li, Shouxin Liu*()   

  1. Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University,Harbin 150040,China
  • Received: Revised: Online: Published:
  • Contact: *e-mail:liushouxin@126.com
  • Supported by:
    National Natural Science Foundation of China(32371808); National Natural Science Foundation of China(31890773); National Natural Science Foundation of China(31971601)
Richhtml ( 21 ) PDF ( 201 ) Cited
Export

EndNote

Ris

BibTeX

As an emerging carbon nanomaterial, chiral carbon dots (CCDs) have the unique photoelectric properties of carbon dots and chiral characteristics, which have good development prospects. The preparation of CCDs by hydrothermal carbonization includes a one-step method based on the chiral transfer strategy and a two-step method based on the chiral inheritance strategy, which exhibited the advantages of easy control of chiral structure, adjustable optical properties, environmental friendliness and excellent water solubility. It has good application effects in the fields of biomedicine, sensing, asymmetric catalysis, optoelectronic materials and composites, and is the most widely used preparation method at present. In this paper, the effects of experimental conditions (source types, hydrothermal conditions) on the chiral characteristics, physical chemical structure, optical properties and electrical properties of CCDs prepared by hydrothermal carbonization are reviewed. The applications of chiral carbon dots are summarized and their future developments are prospected.

Contents

1 Introduction

2 Preparation of chiral carbon dots by hydrothermal carbonization

2.1 One-step method based on chiral transfer strategy

2.2 Two-step method based on chiral inheritance strategy

3 Effect of preparation factors on the properties of chiral carbon dots

3.1 Effect of carbon source

3.2 Effect of chiral ligands

3.3 Effect of other source

3.4 Effect of hydrothermal carbonization temperature

3.5 Effect of hydrothermal carbonization time

4 Structural characteristics of chiral carbon dots prepared by hydrothermal carbonization

4.1 Chiral characteristics

4.2 Physical structure

4.3 Chemical structure

4.4 Optical property

4.5 Electrical property

5 Applications of chiral carbon dots prepared by hydrothermal carbonization

5.1 Biomedical

5.2 Sensing

5.3 Asymmetric catalysis

5.4 Photoelectric material

5.5 Composites

6 Conclusion and outlook

Fig. 1 (A) Preparation of CCDs via one-step method of citric acid and L-/D-cysteine[46]; (B) Synthesis of CCDs using L-/D-Cysteine as chiral source and carbon source[29];(C)Synthesis of CCDs using L-/D-Tryptophon as chiral source and carbon source[31];(D) Schematic of the preparation procedure for full-color CPL CCDs-CsPbX3[59]
Table 1 One-step method based on chiral transfer strategy
Method Chiral source Carbon source Other source T(℃) t(h) EM(nm) ref
One-step method L-/D-glutamine Citric acid 140 16 450 45
L-/D-cysteine Citric acid 180 1 46
L-/D-cysteine NaOH 120 16 460 29
L-aspartic acid Citric acid NaOH 200 4 420 30
L-cysteine Citric acid 160 6 453 47
L-cysteine
L-glutathione
L-phenylglycine
L-tryptophan
Citric acid+
ethylenediamine
190 8 450 48
L-/D-tryptophan NaOH 120 16 476 31,67
L-/D-tryptophan o-Phenylenediamine HCl+Ethanol
-H2SO4
160 7 441
546
604
32
L-/D-cysteine Urea 180 1 450 49
L-/D-glutamic acid Citric acid 180 4 454/418 50
D-proline Citric acid 180 2 420 51
L-/D-alanine Citric acid 160 4 400 66
L-cysteine m-Phenylenediamine 200 2 510 52
L-ascorbic acid
L-cysteine+L-ascorbic acid
Ethylenediamine
Ethylenediamine
100
140
2
4
484
420
67
L-cysteine Neutral red Ethanol 140 8 601/604 75
L-/D-tryptophan OTD H2SO4 160 8 69
L-/D-glutamic acid Citric acid NaOH 180 10 407 34
D-(-)-fructose Vine teas NADES 160 3 445 35
L-/D-cysteine Citric acid 180 1.5 442 54
L-glutathione Ethylenediamine 200 6 390 57
L-/D-lysine Jeffamine® ED-900 Ethylene glycol 170 3 400~600 37
L-/D-lysine Jeffamine® ED-900 Ethylene glycol 170 2 400~600 38
L-/D-cysteine NaOH 60 24 510 39
L-/D-cysteine 80 48 55
L-/D-glutamic Citric acid Polyethyleneimine 160 1 450 41
L-/D-cysteine NaOH 120 16 460 42
L-/D-cysteine Citric acid 160 6 445 58
L-/D-serine 140 8 475 59
L-/D-cysteine
L-/D-glutathione
L-/D-threonine
Citric acid 180 1.5 432
425
430
60
L-tyrosine o-phenylenediamine H2SO4 160 7 627 43
Fig. 2 Synthesis of CCD by two-step method[9]
Table 2 Two-step method based on chiral inheritance strategy
Fig. 3 (A) (i) Preparation of carbon dots; (ii) synthesis of CCDs by two-step method; (iii) synthesis of CCDs by one-step method[49]. (B) Particle size distribution of the products[49]
Fig. 4 (A) CCDs synthesized from vine tea and NADES as raw materials[37] (B) CCDs were synthesized by hydrothermal carbonization of citric acid and ethylenediamine with four chiral precursors of (ⅰ) L-cysteine, (ⅱ) L-glutathione, (ⅲ) L-phenylglycine, and (ⅳ) tryptophan[49]
Fig. 5 (A~C) TEM image and size distribution histograms of CCDs prepared by L-/D-cysteine[29,40,42]. (D) The preparation procedure for multicolor-emitting chiral carbon dots[32]. (Reprinted with permission from ref 42; Copyright (2023) American Chemical Society)
Fig. 6 (A) CD and glum spectra of CCDs prepared at different reaction temperatures[67]. (B) CD spectra of CCDs were prepared at different reaction times[51]. (C,D) glum spectra of CCDs prepared at different reaction temperatures and times[60]
Fig. 7 Circular dichroism of (A) L-/D-glutamic acid raw material and glutamic acid based CCDs[50]. (B) Mechanism of L-CDs synthesis from L-Tryptophan[31]
Fig. 8 (A) HRTEM image of CCDs prepared by L-/D-cysteine[29]. (B) FTIR spectra of CCDs samples prepared by different methods[49]
Fig. 9 (A) Laser confocal images of HeLa cells labelled with L-CDs[75]. Morphology of PrP (106~126) (A1) without CCDs, in the presence of (B2) L-CDs and (B3) D-CDs[37]
Fig. 10 (ⅰ) CCDs and (ⅱ) chiral nanovaccines and (ⅲ) application process[34].Reprinted with permission from ref 34; Copyright 2022 American Chemical Society
Fig. 11 Digital photograph of mung bean plants after 5 days of incubation with different concentrations of CCD[54]
Fig. 12 (A) Color change of CCDs aqueous solution and CCDs embedded in nanopaper after adding L-/D-Lys of different concentrations under UV irradiation[9]. (B) Fabricating CCDs-based nanoprobes for assaying Sn2+ and L-Lys in On-Off-On mode[30]. (C) Chiral recognition method based on CCDs towards isoleucine enantiomers[47]
Fig. 13 (A) Synthesis process of L-/D-Glu-CDs and the response of L-/D-Glu-CDs@Cu2+ to GAT in fluorescence spectra and CD spectra[50]. (B) Synthesis of CCDs and identification of lysine enantiomers[35]
Fig. 14 Detection of arginine by CCDs fluorescence probe[57]
Fig. 15 (A)Scheme showing the fabrication of luminescent chiral nematic CDs/CNC films[53]. (B) The photograph of CPL film under white and ultraviolet light[56]
Fig. 16 (A) Photos of the as-prepared L-CDs-CsPbX3 in UV light (upper) and daylight (bottom), respectively[59]. (B) CCDs induce porphyrin formation chiral materials[40]
Fig. 17 (A) CCDs encapsulated in ZIF-8 nanoparticles for turn-on recognition of chiral folic acid and nitrofurazone[58]. (B) Chiral dual-emission composite material fluorescein/CCDs@ZIF-8 for highly sensitive discrimination of phenylenediamine (PD) isomers and their oxidized product (2-MIM: 2-methylimidazole)[82]
[1]
Zhou C Q, Ren Y Y, Han J, Gong X X, Wei Z X, Xie J, Guo R. J. Am. Chem. Soc., 2018, 140(30): 9417.

doi: 10.1021/jacs.7b12178
[2]
Zhou C Q, Ren Y Y, Han J, Xu Q Q, Guo R. ACS Nano, 2019, 13(3): 3534.

doi: 10.1021/acsnano.8b09784
[3]
Lee H E, Ahn H Y, Mun J, Lee Y Y, Kim M, Cho N H, Chang K, Kim W S, Rho J, Nam K T. Nature, 2018, 556(7701): 360.

doi: 10.1038/s41586-018-0034-1
[4]
Duan Y Y, Han L, Zhang J L, Asahina S, Huang Z H, Shi L, Wang B, Cao Y Y, Yao Y, Ma L G, Wang C, Dukor R K, Sun L, Jiang C, Tang Z Y, Nafie L A, Che S N. Angew. Chem. Int. Ed., 2015, 54(50): 15170.

doi: 10.1002/anie.v54.50
[5]
Qian Y W, Duan Y Y, Che S N. Adv. Opt. Mater., 2017, 5(16): 1601013.

doi: 10.1002/adom.v5.16
[6]
Schaaff T G, Whetten R L. J. Phys. Chem. B, 2000, 104(12): 2630.

doi: 10.1021/jp993691y
[7]
Ngamdee K, Puangmali T, Tuntulani T, Ngeontae W. Anal. Chim. Acta, 2015, 898: 93.

doi: 10.1016/j.aca.2015.09.038
[8]
Gao F, Ma S Y, Xiao X C, Hu Y, ZhaoD, He Z K. Talanta, 2017, 163: 102.

doi: 10.1016/j.talanta.2016.10.091
[9]
Copur F, Bekar N, Zor E, Alpaydin S, Bingol H. Sens. Actuat. B Chem., 2019, 279: 305.

doi: 10.1016/j.snb.2018.10.026
[10]
Zhao S J, Lan M H, Zhu X Y, Xue H T, Ng T W, Meng X M, Lee C S, Wang P F, Zhang W J. ACS Appl. Mater. Interfaces, 2015, 7(31): 17054.

doi: 10.1021/acsami.5b03228
[11]
Lim S Y, Shen W, Gao Z Q. Chem. Soc. Rev., 2015, 44(1): 362.

doi: 10.1039/C4CS00269E
[12]
Liu J, Liu Y, Liu N Y, Han Y Z, Zhang X, Huang H, Lifshitz Y, Lee S T, Zhong J, Kang Z H. Science, 2015, 347(6225): 970.

doi: 10.1126/science.aaa3145
[13]
TangD, Liu J, Wu X Y, Liu R H, Han X, Han Y Z, Huang H, Liu Y, Kang Z H. ACS Appl. Mater. Interfaces, 2014, 6(10): 7918.

doi: 10.1021/am501256x
[14]
Liu M M, Chen W. Nanoscale, 2013, 5(24): 12558.

doi: 10.1039/c3nr04054b
[15]
Zhang Y L, Ran Q, Wang Q, Liu Y, Hanisch C, Reineke S, Fan J, Liao L S. Adv. Mater., 2019, 31: SI.
[16]
Li H T, Liu R H, Lian S Y, Liu Y, Huang H, Kang Z H. Nanoscale, 2013, 5(8): 3289.

doi: 10.1039/c3nr00092c
[17]
Zhu Y R, Ji X B, Pan C C, Sun Q Q, Song W X, Fang L B, Chen Q Y, Banks C E. Energy Environ. Sci., 2013, 6(12): 3665.

doi: 10.1039/c3ee41776j
[18]
Vazquez-Nakagawa M, Rodriguez-Perez L, Herranz M A, Martin N. ChemInform, 2016, 47(9): 665.
[19]
Suzuki N, Wang Y C, Elvati P, Qu Z B, Kim K, Jiang S, Baumeister E, Lee J, Yeom B, Bahng J H, Lee J, Violi A, Kotov N A. ACS Nano, 2016, 10(2): 1744.

doi: 10.1021/acsnano.5b06369
[20]
Li R S, Gao P F, Zhang H Z, Zheng L L, Li C M, Wang J, Li Y F, Liu F, Li N, Huang C Z. Chem. Sci., 2017, 8: 6829.

doi: 10.1039/C7SC01316G
[21]
Yuan M K, Guo Y J, Wei J J, Li J Z, Long T F, Liu ZD. RSC Adv., 2017, 7(79): 49931.

doi: 10.1039/C7RA09271G
[22]
Zhang M L, Ma Y R, Wang H B, Wang B, Zhou Y J, Liu Y, Shao M W, Huang H, Lu F, Kang Z H. ACS Appl. Mater. Interfaces, 2021, 13(4): 5877.

doi: 10.1021/acsami.0c21949
[23]
Rao X Y, Yuan M K, Jiang H, Li L, Liu ZD. New J. Chem., 2019, 43(35): 13735.

doi: 10.1039/C9NJ03434J
[24]
Zhang M L, Wang H B, Wang B, Ma Y R, Huang H, Liu Y, Shao M W, Yao B W, Kang Z H. Small, 2019, 15(48): 1901512.

doi: 10.1002/smll.v15.48
[25]
Hu L L, Li H, Liu C A, Song Y X, Zhang M L, Huang H, Liu Y, Kang Z H. Nanoscale, 2018, 10(5): 2333.

doi: 10.1039/C7NR08335A
[26]
Arshad F, Sk M P. New J. Chem., 2019, 43(33): 13240.

doi: 10.1039/c9nj03009c
[27]
Vulugundam G, Misra S K, Ostadhossein F, Schwartz-Duval A S, Daza E A, PanD. Chem. Commun., 2016, 52(47): 7513.

doi: 10.1039/C6CC02525K
[28]
Ostadhossein F, Vulugundam G, Misra S K, Srivastava I, PanD. Bioconjugate Chem., 2018, 29(11): 3913.

doi: 10.1021/acs.bioconjchem.8b00736 pmid: 30352502
[29]
Hu L L, Sun Y, Zhou Y J, Bai L, Zhang Y L, Han M M, Huang H, Liu Y, Kang Z H. Inorg. Chem. Front., 2017, 4(6): 946.

doi: 10.1039/C7QI00118E
[30]
Gao P L, Xie Z G, Zheng M. Sensor. Actuat. B-Chem., 2020, 319.
[31]
Wei Y Y, Chen L, Wang J L, Liu X G, Yang Y Z, Yu S P. RSC Adv., 2019, 9(6): 3208.

doi: 10.1039/C8RA09649J
[32]
Ru Y, Sui L Z, Song H Q, Liu X J, Tang Z Y, Zang S Q, Yang B, Lu S Y. Angew. Chem. Int. Ed., 2021, 60(25): 14091.

doi: 10.1002/anie.v60.25
[33]
Zhao J Q, Li L, Li F, Liu H L, Li Z, Wang Y. Nanoscale, 2020, 12(24): 12748.

doi: 10.1039/D0NR02655G
[34]
Liu H X, Xie Z G, Zheng M. ACS Appl. Mater. Interfaces, 2022, 14(35): 39858.

doi: 10.1021/acsami.2c11596
[35]
Wang M, Li C H, Zhou M L, Xia Z N, Huang Y K. Green Chem., 2022, 24(17): 6696.

doi: 10.1039/D2GC01949C
[36]
Zheng H Z, Ju B, Wang X J, Wang W H, Li M J, Tang Z Y, Zhang S X A, Xu Y. Adv. Opt. Mater., 2018, 6: 1801246.

doi: 10.1002/adom.v6.23
[37]
Arad E, Bhunia S K, Jopp J, Kolusheva S, Rapaport H, Jelinek R. Adv. Ther., 2018, 1(4): 1800006.
[38]
Malishev R, Arad E, Bhunia S K, Shaham-Niv S, Kolusheva S, Gazit E, Jelinek R. Chem. Commun., 2018, 54(56): 7762.

doi: 10.1039/C8CC03235A
[39]
Li F, Li Y Y, Yang X, Han X X, Jiao Y, Wei T T, YangD Y, Xu H P, Nie G J. Angew. Chem. Int. Ed., 2018, 57(9): 2377.

doi: 10.1002/anie.v57.9
[40]
Liu X W, Lu J Y, Chen J Q, Zhang M T, Chen Y Y, Xing F F, Feng L Y. Front. Chem., 2020, 8: 670.

doi: 10.3389/fchem.2020.00670
[41]
ZhaoD, Xu M Y, Dai K, Liu H, Jiao Y, Xiao X C. Mater. Chem. Phys., 2023, 295: 127144.

doi: 10.1016/j.matchemphys.2022.127144
[42]
Yang Y Z, Wang Q, Li G J, Guo W J, Yang Z J, Liu H, Deng X Y. ACS Appl. Mater. Interfaces, 2023, 15(2): 2617.

doi: 10.1021/acsami.2c17975
[43]
Hallaji Z, Bagheri Z, Ranjbar B. ACS Appl. Nano Mater., 2023, 6(5): 3202.

doi: 10.1021/acsanm.2c04466
[44]
Wang L M, Li L C, Wang B Z, Wu J, Liu Y P, Liu E S, Zhang H Q, Zhang B H, Xing G C, Li Q L, Tang Z K, Deng C X, Qu S N. Small, 2023, 19(31): 2206667.

doi: 10.1002/smll.v19.31
[45]
Ma W Y, Wang B L, Yang Y G, Li J Y. Chin. Chem. Lett., 2021, 32(12): 3916.

doi: 10.1016/j.cclet.2021.05.021
[46]
Zhang Y L, Hu L L, Sun Y, Zhu C, Li R S, Liu N Y, Huang H, Liu Y, Huang C Z, Kang Z H. RSC Adv., 2016, 6(65): 59956.

doi: 10.1039/C6RA12420H
[47]
Hou XD, Song J Y, Wu Q, Lv H T. Anal. Chim. Acta, 2021, 1184: 339012.

doi: 10.1016/j.aca.2021.339012
[48]
Das A, Kundelev E V, Vedernikova A A, Cherevkov S A, DanilovD V, Koroleva A V, Zhizhin E V, Tsypkin A N, Litvin A P, Baranov A V, Fedorov A V, Ushakova E V, Rogach A L. Light Sci. Appl., 2022, 11: 92.

doi: 10.1038/s41377-022-00778-9
[49]
Das A, Arefina I A, DanilovD V, Koroleva A V, Zhizhin E V, Parfenov P S, Kuznetsova V A, Ismagilov A O, Litvin A P, Fedorov A V, Ushakova E V, Rogach A L. Nanoscale, 2021, 13(17): 8058.

doi: 10.1039/D1NR01693H
[50]
Chen A L, Li R J, Zhong Y J, Deng Q F, Yin X H, Li H Y, Kong L, Yang R. Sens. Actuat. B Chem., 2022, 359: 131602.

doi: 10.1016/j.snb.2022.131602
[51]
Liu S, He Y, Liu Y, Wang S B, Jian Y J, Li B X, Xu C L. Chem. Commun., 2021, 57(30): 3680.

doi: 10.1039/D1CC00755F
[52]
Wei Y Y, Chen L, Zhao S B, Liu X G, Yang Y Z, Du J L, Li Q, Yu S P. Front. Mater. Sci., 2021, 15(2): 253.

doi: 10.1007/s11706-021-0544-x
[53]
Lizundia E, Nguyen TD, Vilas J L, Hamad W Y, MacLachlan M J. Mater. Chem. Front., 2017, 1(5): 979.

doi: 10.1039/C6QM00225K
[54]
Zhang M L, Hu L L, Wang H B, Song Y X, Liu Y, Li H, Shao M W, Huang H, Kang Z H. Nanoscale, 2018, 10(26): 12734.

doi: 10.1039/C8NR01644E
[55]
Li F, Li S, Guo X C, Dong Y H, Yao C, Liu Y P, Song Y G, Tan X L, Gao L Z, YangD Y. Angew. Chem. Int. Ed., 2020, 59(27): 11087.

doi: 10.1002/anie.v59.27
[56]
Xu M C, Li G Y, Li W, An B, Sun J M, Chen Z J, Yu H P, Li J, Yang G, Liu S X. Angew. Chem. Int. Ed., 2022, 61(18): e202117042.
[57]
Zeng X Q, Zhang L, Yang JD, Guo Y, Huang Y M, Yuan H Y, Xie Y S. New J. Chem., 2017, 41(24): 15216.

doi: 10.1039/C7NJ03320F
[58]
Liu J Y, Geng Y H, Wang T T, Ding B, Qiao Y H, Huo J Z, Ding B,. ACS Appl. Nano Mater., 2023, 6(1): 398.

doi: 10.1021/acsanm.2c04528
[59]
Ru Y, Zhang B W, Yong X, Sui L Z, Yu J K, Song H Q, Lu S Y. Adv. Mater., 2023, 35(5): 2207265.

doi: 10.1002/adma.v35.5
[60]
Maniappan S, Reddy K L, Kumar J. Chem. Sci., 2023, 14(3): 491.

doi: 10.1039/d2sc05794h pmid: 36741532
[61]
Fan X G, Jiang L, Liu Y, Sun W, Qin Y X, Liao L, Qin A M. Opt. Mater., 2023, 137: 113620.

doi: 10.1016/j.optmat.2023.113620
[62]
Wei Y Y, Chen L, Wang J L, Yu S P, Liu X G, Yang Y Z. Progress in Chemistry, 2020, 32 (04): 381.
(卫迎迎, 陈琳, 王军丽, 于世平, 刘旭光, 杨永珍. 化学进展, 2020, 32 (04): 381.).
[63]
Niu X H, Yan S M, Zhao R, Han S, Cao K J, Li H X, Wang K J. Mikrochim. Acta., 2023, 190: 61.

doi: 10.1007/s00604-022-05629-3
[64]
Askari F, Rahdar A, Trant J F. Sens. Bio Sens. Res., 2019, 22: 100251.
[65]
Ru Y, Ai L, Jia T T, Liu X J, Lu S Y, Tang Z Y, Yang B. Nano Today, 2020, 34: 100953.

doi: 10.1016/j.nantod.2020.100953
[66]
Liu S. MasteralDissertation of Shaanxi Normal University, 2020.
(刘爽. 陕西师范大学硕士论文, 2020.).
[67]
Wei Y Y. DoctoralDissertation of Taiyuan University of Technology, 2021.
(卫迎迎. 太原理工大学博士论文, 2021.).
[68]
Zhao J Q. MasteralDissertation of Jilin University, 2021.
(赵佳奇. 吉林大学博士论文, 2021.).
[69]
Wu B Y. MasteralDissertation of Lanzhou University, 2022.
(吴冰燕. 兰州大学硕士论文, 2022.).
[70]
An B, Xu M C, Ma C H, Luo S, Li W, Liu S X. Acta Polymerica Sinica, 2022, 53 (3): 211.
(安邦, 徐明聪, 马春慧, 罗沙, 李伟, 刘守新. 高分子学报, 2022, 53(3) : 211.).
[71]
Dong Y Q, Pang H C, Yang H B, Guo C X, Shao J W, Chi Y W, Li C M, Yu T. Angew. Chem. Int. Ed., 2013, 52(30): 7800.

doi: 10.1002/anie.v52.30
[72]
Liu Y S, Li W, Wu P, Liu S X. Progress in Chemistry, 2018, 30 (4): 349.
(刘禹杉, 李伟, 吴鹏, 刘守新. 化学进展, 2018, 30 (4): 349.).

doi: 10.7536/PC170808
[73]
Zhou L L, ZhengD X, Wu p, Zhu Y Q, Zhu L L. Acs. Appl. Mater. Interfaces., 2020, 3: 946.
[74]
Zhao L, Zhou H X, Zhou Q H, Peng C, Cheng T Y, Liu G H. Sens. Actuat. B Chem., 2020, 320: 128383.

doi: 10.1016/j.snb.2020.128383
[75]
Wei Y Y, Chen L, Zhang X, Du J L, Li Q, Luo J, Liu X G, Yang Y Z, Yu S P, Gao YD. Biomater. Sci., 2022, 10(15): 4345.

doi: 10.1039/D2BM00429A
[76]
Döring A, Ushakova E, Rogach A L. Light Sci. Appl., 2022, 11: 75.

doi: 10.1038/s41377-022-00764-1
[77]
McConney M E, Rumi M, Godman N P, Tohgha U N, Bunning T J. Adv. Opt. Mater., 2019, 7(16): 1900429.

doi: 10.1002/adom.v7.16
[78]
Gollapelli B, Suguru Pathinti R, Vallamkondu J. ACS Appl. Nano Mater., 2022, 5(8): 11912.

doi: 10.1021/acsanm.2c02933
[79]
Visheratina A, Hesami L, Wilson A K, Baalbaki N, Noginova N, Noginov M A, Kotov N A. Chirality, 2022, 34(12): 1489.

doi: 10.1002/chir.v34.12
[80]
Pei S P, Zhang J, Gao M P, WuD Q, Yang Y X, Liu R L. J. Colloid Interface Sci., 2015, 439: 129.

doi: 10.1016/j.jcis.2014.10.030
[81]
Yan X T, Zhao H J, Zhang K, Zhang Z W, Chen Y Y, Feng L Y. ChemPlusChem, 2023, 88(1): e202200428.
[82]
Liu J Y, Wang T T, Li Y, Liu Y Y, Ding B. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2023, 294: 122545.
[1] Wenliang Liu, Yuqi Wang, Xiaohan Li, Xuanyu Zhang, Jiqian Wang. Design and Application of Chiral Plasmonic Core-Shell Nanostructures [J]. Progress in Chemistry, 2023, 35(8): 1168-1176.
[2] Wenbo Zhang, Jianing Wang, Linfeng Wei, Hua Jin, Yan Bao, Jianzhong Ma. Preparation and Application of Functional Polymer-Based Electromagnetic Shielding Materials [J]. Progress in Chemistry, 2023, 35(7): 1065-1076.
[3] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[4] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[7] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[8] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[9] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[10] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[11] Hao Tian, Zimu Li, Changzheng Wang, Ping Xu, Shoufang Xu. Construction and Application of Molecularly Imprinted Fluorescence Sensor [J]. Progress in Chemistry, 2022, 34(3): 593-608.
[12] Chuang He, Shuang E, Honghao Yan, Xiaojie Li. Carbon Dots in Lubrication Applications [J]. Progress in Chemistry, 2022, 34(2): 356-369.
[13] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[14] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[15] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.