中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (11): 2340-2350 DOI: 10.7536/PC220315 Previous Articles   Next Articles

• Review •

Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials

Bin Li1,2, Ying Yu1,2, Guoxiang Xing1,2, Jinfeng Xing1, Wanxing Liu3, Tianyong Zhang1,2()   

  1. 1 Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University,Tianjin 300072, China
    2 Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center,Jieyang 522000, China
    3 The Non-Public Enterprise Service Center of Liaocheng,Liaocheng 252000, China
  • Received: Revised: Online: Published:
  • Contact: Tianyong Zhang
  • Supported by:
    National Natural Science Foundation of China(21908161)
Richhtml ( 55 ) PDF ( 780 ) Cited
Export

EndNote

Ris

BibTeX

Chiral inorganic nanomaterials have attracted much attention due to their excellent photophysical properties and wide potential applications. The chiral structure obtained by modifying the surface of inorganic nanomaterials with chiral ligands or assembling inorganic nanomaterials with chiral templates can strongly interact with photons to change the polarization and generate circularly polarized light (CPL). In terms of generation mechanism, CPL mainly includes circularly polarized luminescence and circularly polarized scattering, and in some cases these two mechanisms coexist. This article summarizes the progress of CPL in semiconductor nanomaterials, metal nanoclusters, perovskites, lanthanide complexes and other composite nanomaterials. In addition, the main source of CPL in different chiral inorganic nanomaterials is also discussed. The conclusions drawn in this review are expected to realize regulating the anisotropy factor of CPL active materials at the molecular level and promote their development in various applications such as quantum computing, information encryption, 3D displays, and optical sensing.

Contents

1 Introduction

2 Chiral inorganic nanomaterials with CPL

2.1 CPL from chiral inorganic semiconductor nanoparticles

2.2 CPL from chiral metal nanoclusters

2.3 CPL from chiral perovskites

2.4 CPL from chiral Lanthanide complexes

2.5 CPL from chiral nanocomposites

3 Conclusion and outlook

Fig.1 Mechanism of ligand-induced shape variations of CdSe/CdS nanostructures[35]
Fig.2 (a) TEM image and (b) CPL spectra of L/D-Au10(C13H17O5)10 nanoclusters[39]. (c) SEM image and (d) CPL spectra of Au3[(R/S)-Tol-BINAP]3Cl nanocubes in DCM containing 70% n-hexane. The inset is a side view of the nanocube[43]. (e) SEM image of right- (top) and left- (bottom) helical Ag9 nanofibers. (f) CPL spectra and gCPL distribution of chiral Ag9 nanofibers films[44]
Fig.3 CPL spectra of the chiral (a) (FMBA)2PbI4 film, (b) (ClMBA)2PbI4 film, (c) (BrMBA)2PbI4 film and (d) (IMBA)2PbI4 films[58]. R- (black line) and S- (red line). (e) Crystal structure of (S)- and (R)-3-(fluoropyrrolidinium)-MnBr3 at room temperature[59]. (f) CPL spectra of (S)- and (R)-3-(fluoropyrrolidinium)-MnBr3 at room temperature[59]
Table 1 The PLQY, magnetic transition dipole moments and |gCPL| of the chiral perovskite films[58]
Fig.4 (a) Crystal structures and (b) Temperature-dependent of circular polarized degree of chiral two-dimensional perovskites (R-MBA)2PbI4 and (S-MBA)2PbI4[51]; Magnetic field-dependent circular polarized degree of (c) rac-perovskite, (d) R-perovskite and (e) S-perovskite[60]
Fig.5 (a) Schematic diagrams and (b) CPL spectra of Eu(Ⅲ) complexes synthesized with different ligands[65]. (c) TEM image and (d) CPL spectra (λex=365 nm) of Eu3+-doped chiral TbPO4·H2O rod-like nanocrystals[66]
Fig.6 Preparation of metal-enhanced CPL-active films[69]
Fig.7 (a) Schematic diagram of the formation of gel/FeS2 helical nanofibers[73]. (b) TEM image and (c) CPL spectra of D-gel/FeS2 with P-helix and L-gel/FeS2 with M-helix nanofibers[73]. (d) SEM image and (e) CPL spectra of composite co-assembled by DGAm/CsPbX3 nanoparticles[75]
Fig.8 (a) Schematic diagram of the synthesis process of Eu2O3 and Tb2O3 nanoparticles on chiral SiO2 nanofibers[76]. (b) SEM image of nanocomposite formed by R-OPAn nanoparticles and Ag nanowires[78]. (c) CPL spectra of single R/S-OPAn nanoparticles and nanocomposite formed by R/S-OPAn nanoparticles and Ag nanowires[78]
[1]
Wang Y, Xu J, Wang Y W, Chen H Y. Chem. Soc. Rev., 2013, 42: 2930.

doi: 10.1039/C2CS35332F
[2]
Sholl D S, Gellman A J. AIChE J., 2009, 55: 2484.

doi: 10.1002/aic.12036
[3]
Tanaka H, Inoue Y, Mori T. ChemPhotoChem, 2018, 2: 386.

doi: 10.1002/cptc.201800015
[4]
Kim Y H, Zhai Y X, Lu H P, Pan X, Xiao C X, Gaulding E A, Harvey S P, Berry J J, Vardeny Z V, Luther J M, Beard M C. Science, 2021, 371: 1129.

doi: 10.1126/science.abf5291
[5]
Xu M C, Ma C H, Zhou J, Liu Y S, Wu X Y, Luo S, Li W, Yu H P, Wang Y G, Chen Z J, Li J, Liu S X. J. Mater. Chem. C, 2019, 7: 13794.

doi: 10.1039/C9TC04144C
[6]
Schaaff T G, Knight G, Shafigullin M N, Borkman R F, Whetten R L. J. Phys. Chem. B, 1998, 102: 10643.

doi: 10.1021/jp9830528
[7]
Cheng J J, Ge F, Zhang C, Kuai Y, Hou P Y, Xiang Y F, Zhang D G, Qiu L Z, Zhang Q J, Zou G. J. Mater. Chem. C, 2020, 8: 9271.

doi: 10.1039/D0TC01704C
[8]
Chen P G, Lo T W, Fan Y L, Wang S B, Huang H T, Lei D Y. Adv. Opt. Mater., 2020, 8: 1901233.

doi: 10.1002/adom.201901233
[9]
Li Y W, Wang X B, Miao J, Li J G, Zhu X, Chen R, Tang Z K, Pan R K, He T C, Cheng J J. Adv. Mater., 2020, 32: 1905585.

doi: 10.1002/adma.201905585
[10]
Zhang M M, Li K, Zang S Q. Adv. Opt. Mater., 2020, 8: 1902152.

doi: 10.1002/adom.201902152
[11]
Ma S, Ahn J, Moon J. Adv. Mater., 2021, 33: 2005760.

doi: 10.1002/adma.202005760
[12]
Li D, Liu X T, Wu W T, Peng Y, Zhao S G, Li L N, Hong M C, Luo J H. Angew. Chem. Int. Ed., 2021, 60: 8415.

doi: 10.1002/anie.202013947
[13]
Moshe A B, Govorov A O, Markovich G. Angew. Chem., Int. Ed., 2013, 52: 1275.

doi: 10.1002/anie.201207489
[14]
Baimuratov A S, Rukhlenko I D, Gun’ko Y K, Baranov A V, Fedorov A V. Nano Lett., 2015, 15: 1710.

doi: 10.1021/nl504369x pmid: 25651415
[15]
Nakashima T, Kobayashi Y, Kawai T. J. Am. Chem. Soc., 2009, 131: 10342.

doi: 10.1021/ja902800f pmid: 19588974
[16]
Elliott S D, Moloney M P, Gun’ko Y K. Nano Lett., 2008, 8: 2452.

doi: 10.1021/nl801453g pmid: 18611059
[17]
Zhou R, Wei K Y, Zhao J S, Jiang Y B. Chem. Commun., 2011, 47: 6362.

doi: 10.1039/c1cc11537e
[18]
Zhou Y L, Marson R L, Anders G, Zhu J, Ma G X, Ercius P, Sun K, Yeom B, Glotzer S C, Kotov N A. ACS Nano, 2016, 10: 3248.

doi: 10.1021/acsnano.5b05983
[19]
Zhu Z N, Guo J, Liu W J, Li Z T, Han B, Zhang W, Tang Z Y. Angew. Chem. Int. Ed., 2013, 125: 13816.

doi: 10.1002/ange.201305389
[20]
Hentschel M, Schaferling M, Duan X Y, Giessen H, Liu N. Sci. Adv., 2017, 3: e1602735.

doi: 10.1126/sciadv.1602735
[22]
Kim D Y. J. Korean Phys. Soc., 2006, 49: 505.
[23]
Kim Y, Yeom B, Arteaga O, Yoo S J, Lee S G, Kim J G, Kotov N A. Nat. Mater., 2016, 15: 461.

doi: 10.1038/nmat4525
[24]
Heffern M C, Matosziuk L M, Meade T J. Chem. Rev., 2014, 114: 4496.

doi: 10.1021/cr400477t pmid: 24328202
[25]
Carr R, Evans N H, Parker D. Chem. Soc. Rev., 2012, 41: 7673.

doi: 10.1039/c2cs35242g
[26]
Sanchez-Carnerero E M, Agarrabeitia A R, Moreno F, Maroto B L, Muller G, Ortiz M J, Moya S. Chem. Eur. J., 2015, 21: 13488.

doi: 10.1002/chem.201501178
[27]
Kumar J, Nakashima T, Kawai T. J. Phys. Chem. Lett., 2015, 6: 3445.

doi: 10.1021/acs.jpclett.5b01452
[28]
Yang X F, Zhou M H, Wang Y F, Duan P F. Adv. Mater., 2020, 32: 2000820.

doi: 10.1002/adma.202000820
[29]
Guerrero-Martinez A, Auguie B, Alonso-Gomez J L, Dzolic Z, Gomez-Grana S, Zinic M, Cid M M, Liz-Marzan L M. Angew. Chem. Int. Ed., 2011, 50: 5499.

doi: 10.1002/anie.201007536 pmid: 21506211
[30]
Schneider J, Zhang W L, Srivastava A K, Chigrinov V G, Kwok H S, Rogach A L. Nano Lett., 2017, 17: 3133.

doi: 10.1021/acs.nanolett.7b00563 pmid: 28394620
[31]
Tohgha U, Varga K, Balaz M. Chem. Commun., 2013, 49: 1844.

doi: 10.1039/c3cc37987f
[32]
Li G M, Fei X N, Liu H F, Gao J, Nie J Y, Wang Y B, Tian Z D, He C C, Wang J L, Ji C, Oron D, Yang G L. ACS Nano, 2020, 14: 4196.

doi: 10.1021/acsnano.9b09101
[33]
Naito M, Iwahori K, Miura A, Yamane M, Yamashita I. Angew. Chem. Int. Ed., 2010, 49: 7006.

doi: 10.1002/anie.201002552
[34]
Tohgha U, Deol K K, Porter A G, Bartko S G, Choi J K, Leonard B M, Varga K, Kubelka J, Muller G, Balaz M. ACS Nano, 2013, 7: 11094.

doi: 10.1021/nn404832f pmid: 24200288
[35]
Hao J J, Li Y W, Miao J, Liu R L, Li J G, Liu H C, Wang Q S, Liu H, Delville M H, He T C, Wang K, Zhu X, Cheng J J. ACS Nano, 2020, 14: 10346.

doi: 10.1021/acsnano.0c03909
[36]
Hao J J, Zhao F H, Wang Q S, Lin J Y, Chen P X, Li J Z, Zhang D X, Chen M J, Liu P Z, Delville M H, He T C, Cheng J J, Li Y W. Adv. Optical Mater., 2021, 9: 2101142.

doi: 10.1002/adom.202101142
[37]
Cheng J J, Hao J J, Liu H C, Li J G, Li J Z, Zhu X, Lin X D, Wang K, He T C. ACS Nano, 2018, 12: 5341.

doi: 10.1021/acsnano.8b00112
[38]
Kang X, Zhu M Z. Chem. Soc. Rev., 2019, 48: 2422.

doi: 10.1039/c8cs00800k pmid: 30838373
[39]
Jia T T, Li B J, Yang G, Hua Y, Liu J Q, Ma W, Zang S Q, Chen X Y, Zhao X L. Nano Today, 2021, 39: 101222.

doi: 10.1016/j.nantod.2021.101222
[40]
Kumar J, Kawai T, Nakashima T. Chem. Commun., 2017, 53: 1269.

doi: 10.1039/C6CC09476G
[41]
Han Z, Dong X Y, Luo P, Li S, Wang Z Y, Zang S Q, Mak T C W. Sci. Adv., 2020, 6: eaay0107.

doi: 10.1126/sciadv.aay0107
[42]
Liu J B, Duchesne P N, Yu M X, Jiang X Y, Ning X H, Vinluan R D, Zhang P, Zheng J. Angew. Chem. Int. Ed., 2016, 55: 8894.

doi: 10.1002/anie.201602795
[43]
Shi L, Zhu L Y, Guo J, Zhang L J, Shi Y N, Zhang Y, Hou K, Zheng Y L, Zhu Y F, Lv J W, Liu S Q, Tang Z Y. Angew. Chem. Int. Ed., 2017, 56: 15397.

doi: 10.1002/anie.201709827
[44]
Wu H, He X, Yang B, Li C C, Zhao L. Angew. Chem. Int. Ed., 2021, 60: 1535.

doi: 10.1002/anie.202008765
[45]
Wang J J, Zhou H T, Yang J N, Feng L Z, Yao J S, Song K H, Zhou M M, Jin S, Zhang G Z, Yao H B. J. Am. Chem. Soc., 2021, 143: 10860.

doi: 10.1021/jacs.1c05476
[46]
Swarnkar A, Chulliyil R, Ravi V K, Irfanullah M, Chowdhury A, Nag A. Angew. Chem. Int. Ed., 2015, 54: 15424.

doi: 10.1002/anie.201508276
[47]
Tong Y, Fu M, Bladt E, Huang H, Richter A F, Wang K, Muller-Buschbaum P, Bals S, Tamarat P, Lounis B, Feldmann J, Polavarapu L. Angew. Chem. Int. Ed., 2018, 57: 16094.

doi: 10.1002/anie.201810110 pmid: 30311989
[48]
Song J Z, Fang T, Li J H, Xu L M, Zhang F J, Han B N, Shan Q S, Zeng H B. Adv. Mater., 2018, 30: 1805409.

doi: 10.1002/adma.201805409
[49]
Kim Y H, Zhai Y X, Gaulding E A, Habisreutinger S N, Moot T, Rosales B A, Lu H P, Hazarika A, Brunecky R, Wheeler L M, Berry J J, Beard M C, Luther J M. ACS Nano, 2020, 14: 8816.

doi: 10.1021/acsnano.0c03418
[50]
Chen W J, Zhang S, Zhou M H, Zhao T H, Liu X F, Liu M H, Duan P F. J. Phys. Chem. Lett., 2019, 10: 3290.

doi: 10.1021/acs.jpclett.9b01224
[51]
Ma J Q, Fang C, Chen C, Jin L, Wang J Q, Wang S, Tang J, Li D H. ACS Nano, 2019, 13: 3659.

doi: 10.1021/acsnano.9b00302
[52]
Wang J, Fang C, Ma J Q, Wang S, Jin L, Li W C, Li D H. ACS Nano, 2019, 13: 9473.

doi: 10.1021/acsnano.9b04437 pmid: 31373789
[53]
Xu J L, Li X Y, Xiong J B, Yuan C Q, Semin S, Rasing T, Bu X H. Adv. Mater., 2020, 32: 1806736.

doi: 10.1002/adma.201806736
[54]
Wang Y, Li X M, Zhao X, Xiao L, Zeng H B, Sun H D. Nano Lett., 2016, 16: 448.

doi: 10.1021/acs.nanolett.5b04110 pmid: 26652773
[55]
Zhao C Y, Tian W M, Liu J X, Sun Q, Luo J J, Yuan H, Gai B D, Tang J, Guo J W, Jin S Y. J. Phys. Chem. Lett., 2019, 10: 2357.

doi: 10.1021/acs.jpclett.9b00734
[56]
Jin X, Zhou M H, Han J L, Li B, Zhang T Y, Jiang S, Duan P F. Nano Res., 2021, 15: 1047.

doi: 10.1007/s12274-021-3594-6
[57]
Dang Y Y, Liu X L, Sun Y J, Song J W, Hu W P, Tao X T. J. Phys. Chem. Lett., 2020, 11: 1689.

doi: 10.1021/acs.jpclett.9b03718
[58]
Lin J T, Chen D G, Yang L S, Lin T C, Liu Y H, Chao Y C, Chou P T, Chiu C W. Angew. Chem. Int. Ed., 2021, 60: 21434.

doi: 10.1002/anie.202107239
[59]
Gao J X, Zhang W Y, Wu Z G, Zheng Y X, Fu D W. J. Am. Chem. Soc., 2020, 142: 4756.

doi: 10.1021/jacs.9b13291
[60]
Long G K, Jiang C Y, Sabatini R, Yang Z Y, Wei M Y, Quan L N, Liang Q M, Rasmita A, Askerka M, Walters G, Gong X W, Xing J, Wen X L, Quintero-Bermudez R, Yuan H F, Xing G C, Wang X R, Song D T, Voznyy O, Zhang M T, Hoogland S, Gao W B, Xiong Q H, Sargent E H. Nat. Photonics, 2018, 12: 528.

doi: 10.1038/s41566-018-0220-6
[61]
Benzli J C G, Piguet C. Chem. Soc. Rev., 2005, 34: 1048.

doi: 10.1039/b406082m
[62]
Moore E G, Samuel A P S, Raymond K N. Acc. Chem. Res., 2009, 42: 542.

doi: 10.1021/ar800211j
[63]
Harada T, Tsumatori H, Nishiyama K, Yuasa J, Hasegawa Y, Kawai T. Inorg. Chem., 2012, 51: 6476.

doi: 10.1021/ic202467f
[64]
Samuel A P S, Lunkley J L, Muller G, Raymond K N. Eur. J. Inorg. Chem., 2010, 3343.
[65]
Yeung C T, Yim K H, Wong H Y, Pal R, Lo W S, Yan S C, Wong M Y M, Yufit D, Smiles D E, McCormick L J, Teat S J, Shuh D S, Wong W T, Law G L. Nat. Commun., 2017, 8: 1128.

doi: 10.1038/s41467-017-01025-1
[66]
Hananel U, Ben-Moshe A, Diamant H, Markovich G. Proc. Natl. Acad. Sci., 2019, 116: 11159.

doi: 10.1073/pnas.1821923116
[67]
Zhao B, Yu H L, Pan K, Tan Z A, Deng J P. ACS Nano, 2020, 14: 3208.

doi: 10.1021/acsnano.9b08618
[68]
Furumi S. Chem. Rec., 2010, 10: 394.
[69]
Zhao S X, Yu Y Y, Zhang B Y, Feng P, Dang C C, Li M, Zhao L C, Gao L M. Adv. Opt. Mater., 2021, 9: 2100907.

doi: 10.1002/adom.202100907
[70]
Wang C T, Chen K Q, Xu P, Yeung F, Kwok H S, Li G J. Adv. Funct. Mater., 2019, 29: 1903155.

doi: 10.1002/adfm.201903155
[71]
Li W, Xu M C, Ma C H, Liu Y S, Zhou J, Chen Z J, Wang Y G, Yu H P, Li J, Liu S X. ACS Appl. Mater. Interfaces, 2019, 11: 23512.

doi: 10.1021/acsami.9b05941
[72]
Huo S W, Duan P F, Jiao T F, Peng Q M, Liu M H. Angew. Chem. Int. Ed., 2017, 56: 12174.

doi: 10.1002/anie.201706308
[73]
Hao C L, Gao Y F, Wu D, Li S, Xu L G, Wu X L, Guo J, Sun M Z, Li X, Xu C L, Kuang H. Adv. Mater., 2019, 31: 1903200.

doi: 10.1002/adma.201903200
[74]
Zhao B, Gao X B, Pan K, Deng J P. ACS Nano, 2021, 15: 7463.

doi: 10.1021/acsnano.1c00864
[75]
Shi Y H, Duan P F, Huo S W, Li Y G, Liu M H. Adv. Mater., 2018, 30: 1705011.

doi: 10.1002/adma.201705011
[76]
Sugimoto M, Liu X L, Tsunega S, Nakajima E, Abe S, Nakashima T, Kawai T, Jin R H. Chem. Eur. J., 2018, 24: 6519.

doi: 10.1002/chem.201705862
[77]
Jin X, Sang Y T, Shi Y H, Li Y G, Zhu X F, Duan P F, Liu M H. ACS Nano, 2019, 13: 2804.

doi: 10.1021/acsnano.8b08273
[78]
Fu K, Jin X, Zhou M H, Ma K, Duan P F, Yu Z Q. Nanoscale, 2020, 12: 19760.

doi: 10.1039/D0NR04510A
[79]
Fa S X, Tomita T, Wada K, Yasuhara K, Ohtani S, Kato K, Gon M, Tanaka K, Kakuta T, Yamagishib T, Ogoshi T. Chem. Sci., 2022. 10.1039/d2sc00952h.

doi: 10.1039/d2sc00952h
[80]
Homberg A, Brun E, Zinna F, Pascal S, Gorecki M, Monnier L, Besnard C, Pescitelli G, Bari L D, Lacour J. Chem. Sci., 2018, 9: 7043.

doi: 10.1039/C8SC02935K
[81]
Zheng H Z, Li W R, Li W, Wang X J, Tang Z Y, Zhang S X A, Xu Y. Adv. Mater., 2018, 30: 1705948.

doi: 10.1002/adma.201705948
[82]
Xu M C, Wu X Y, Yang Y, Ma C H, Li W, Yu H P, Chen Z J, Li J, Zhang K, Liu S X. ACS Nano, 2020, 14: 11130.

doi: 10.1021/acsnano.0c02060
[83]
Yu H L, Zhao B, Guo J B, Pan K, Deng J P. J. Mater. Chem. C, 2020, 8: 1459.

doi: 10.1039/C9TC06105C
[1] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[2] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[3] Chuanjun Yuan, Meng Wang, Ming Li, Jinpeng Bao, Pengrui Sun, Rongxuan Gao. Application of Luminescent Materials Based on Carbon Dots in Development of Latent Fingerprints [J]. Progress in Chemistry, 2022, 34(9): 2108-2120.
[4] Shuhui Li, Qianqian Li, Zhen Li. From Single Molecule to Molecular Aggregation Science [J]. Progress in Chemistry, 2022, 34(7): 1554-1575.
[5] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[6] Yu Lin, Xuecai Tan, Yeyu Wu, Fucun Wei, Jiawen Wu, Panpan Ou. Two-Dimensional Nanomaterial g-C3N4 in Application of Electrochemiluminescence [J]. Progress in Chemistry, 2022, 34(4): 898-908.
[7] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[8] Xingchen Wu, Wenhui Liang, Chenxin Cai. Photoluminescence Mechanisms of Carbon Quantum Dots [J]. Progress in Chemistry, 2021, 33(7): 1059-1073.
[9] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[10] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[11] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[12] Qiang Li, Kun Lin, Xianran Xing. Local Structure Determination Based on Total Scattering and Condensed Matter [J]. Progress in Chemistry, 2020, 32(8): 1219-1230.
[13] Minghao Zhou, Shuang Jiang, Tianyong Zhang, Yonghong Shi, Xue Jin, Pengfei Duan. Construction and Optoelectrical Properties of Chiral Perovskite Nanomaterials [J]. Progress in Chemistry, 2020, 32(4): 361-370.
[14] Chenghao Zhu, Junliang Zhang. Palladium Catalyzed Heck-Type Reaction of Organic Halides and Alkyl-Alkynes [J]. Progress in Chemistry, 2020, 32(11): 1745-1752.
[15] Yunbo Jiang, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Thermally Activated Delayed Fluorescence Polymers and Applications in Organic Light Emitting Devices [J]. Progress in Chemistry, 2019, 31(8): 1116-1128.