中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (7): 1065-1076 DOI: 10.7536/PC221121 Previous Articles   Next Articles

• Review •

Preparation and Application of Functional Polymer-Based Electromagnetic Shielding Materials

Wenbo Zhang1(), Jianing Wang1, Linfeng Wei2, Hua Jin3, Yan Bao4, Jianzhong Ma4   

  1. 1 College of Chemistry and Chemical Engineering, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science & Technology,Xi'an 710021, China
    2 Xi'an Rare Metal Materials Institute Co. Ltd,Xi'an 710016, China
    3 School of Design and Creativity, Wenzhou Polytechnic University,Wenzhou 325000, China
    4 College of Bioresources Chemical and Materials Engineering (College of Flexible Electronics), Shaanxi University of Science and Technology,Xi'an 710021, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: zhangwenbo@sust.edu.cn
  • Supported by:
    National Natural Science Foundation of China(21908141); National Natural Science Foundation of China(52073164); Key Research and Development Program of Shaanxi Province(2019GY-171); Zhejiang Provincial Basic Public Welfare Research Plan Project(LGG21E030003)
Richhtml ( 30 ) PDF ( 540 ) Cited
Export

EndNote

Ris

BibTeX

With the rapid development of high-power electronic equipment and electronic communication technology such as the emerging 5G mobile network communication technology, the development of high-performance electromagnetic interference shielding materials has become a desideratum. Polymer-based electromagnetic shielding materials (PEMSM) have been widely applied due to their advantages of lightweight, machinability, and adjustable conductivity. The increasingly complex application environment and operating conditions put forward higher requirements for the functionality of PEMSM. This paper firstly discusses the key concepts and loss mechanism of electromagnetic shielding (reflection, absorption, and multiple reflections), and then summarizes the current structural design of electromagnetic shielding composites including homogeneous structure, segregation structure, porous structure, and layered structure. The process of homogeneous structure is simple, and segregation structure can reduce the conductivity percolation threshold of materials. The porous structure is helpful for electromagnetic waves reflection and absorption, and the layered structure can make electromagnetic wave reflect inside the material many times. The research progress of PEMSM with the functions such as durability, superhydrophobicity, antibacterial property, Joule heating property, etc. is introduced in detail. Finally, the development of PEMSM is prospected.

Contents

1 Introduction

2 Mechanism of EMI Shielding

3 Structural designs of polymer-based electromagnetic shielding materials

3.1 Homogeneous structure

3.2 Segregation structure

3.3 Porous structure

3.4 Layered structure

4 Functional polymer-based electromagnetic shielding materials

4.1 Durability

4.2 Superhydrophobicity

4.3 Antibacterial property

4.4 Joule heating property

4.5 Others

5 Conclusion and outlook

Fig.1 Schematic diagram of EMI shielding mechanism based on transmission line theory
Fig.2 Schematic diagrams of preparation of GnPs@Ni/PPSU composite by solution blending[68]
Fig.3 (a) Preparation of Ti3C2Tx MXene/RGO foam structure electromagnetic shielding composite[79]. (b) Ti3C2Tx/CNT hybrid aerogel fabricated by bidirectional freezing method[82]
Fig.4 Preparation of (a) multilayer CNF@MXene films[83], (b) rGO@Fe3O4/T-ZnO/Ag/WPU composite films by curing method[85] and (c) transparent MXene/AgNW film[86]
Fig.5 (a) SEM image of a bended AgNF film[94]. (b) Interaction between AgNWs and cellulose sheets[95].
Fig.6 Water contact angle and antibacterial activity of (a,b) d-AgNWs@CS-PDMS[105] and (c,d) cotton fibers, CDCFs and Cu/CDCFs[106]
Fig.7 (a) Schematic diagram of PI composite film preparation[110]. (b) Joule heating property of MXene/ANF@FeNi film[111]
Fig.8 Schematic of the AgNW film (a) transmittance and(b) transmittance at 550 nm[115]
[19]
Tong Y, He M, Zhou Y M, Zhong X, Fan L D, Huang T Y, Liao Q, Wang Y J. Appl. Surf. Sci., 2018, 434: 283.

doi: 10.1016/j.apsusc.2017.10.140
[20]
Kumar P, Narayan Maiti U, Sikdar A, Kumar Das T, Kumar A, Sudarsan V. Polym. Rev., 2019, 59(4): 687.

doi: 10.1080/15583724.2019.1625058
[21]
Wu L P, Wu F, Sun Q Y, Shi J Y, Xie A M, Zhu X F, Dong W. J. Mater. Chem. C, 2021, 9(9): 3316.

doi: 10.1039/D0TC05230B
[22]
Singh A K, Shishkin A, Koppel T, Gupta N. Compos. B Eng., 2018, 149: 188.

doi: 10.1016/j.compositesb.2018.05.027
[23]
Sankaran S, Deshmukh K, Ahamed M B, Khadheer Pasha S K. Compos. A Appl. Sci. Manuf., 2018, 114: 49.

doi: 10.1016/j.compositesa.2018.08.006
[24]
Pakdel E, Wang J F, Kashi S M, Sun L, Wang X G. Adv. Colloid Interface Sci., 2020, 277: 102116.

doi: 10.1016/j.cis.2020.102116
[25]
Nazir A, Yu H J, Wang L, Haroon M, Ullah R S, Fahad S, Naveed K U R, Elshaarani T, Khan A, Usman M. J. Mater. Sci., 2018, 53(12): 8699.

doi: 10.1007/s10853-018-2122-x
[26]
Wang Y, Gu F Q, Ni L J, Liang K, Marcus K, Liu S L, Yang F, Chen J J, Feng Z S. Nanoscale, 2017, 9(46): 18318.

doi: 10.1039/c7nr05951e pmid: 29143001
[27]
Zhang D Q, Xiong Y F, Cheng J Y, Chai J X, Liu T T, Ba X W, Ullah S, Zheng G P, Yan M, Cao M S. Sci. Bull., 2020, 65(2): 138.

doi: 10.1016/j.scib.2019.10.011
[28]
Zhang D Q, Chai J X, Cheng J Y, Jia Y X, Yang X Y, Wang H, Zhao Z L, Han C, Shan G C, Zhang W J, Zheng G P, Cao M S. Appl. Surf. Sci., 2018, 462: 872.

doi: 10.1016/j.apsusc.2018.08.152
[29]
Cheng J Y, Zhang H B, Xiong Y F, Gao L F, Wen B, Raza H, Wang H, Zheng G P, Zhang D Q, Zhang H. J. Materiomics, 2021, 7(6): 1233.

doi: 10.1016/j.jmat.2021.02.017
[30]
Al-Saleh M H, Saadeh W H, Sundararaj U. Carbon, 2013, 60: 146.

doi: 10.1016/j.carbon.2013.04.008
[31]
Kwon S, Ma R J, Kim U, Choi H R, Baik S. Carbon, 2014, 68: 118.

doi: 10.1016/j.carbon.2013.10.070
[32]
Gupta T K, Singh B P, Mathur R B, Dhakate S R. Nanoscale, 2014, 6(2): 842.

doi: 10.1039/C3NR04565J
[33]
Hong Y K, Lee C Y, Jeong C K, Lee D E, Kim K, Joo J. Rev. Sci. Instrum., 2003, 74(2): 1098.

doi: 10.1063/1.1532540
[34]
Singh A P, Garg P, Alam F, Singh K, Mathur R B, Tandon R P, Chandra A, Dhawan S K. Carbon, 2012, 50(10): 3868.

doi: 10.1016/j.carbon.2012.04.030
[35]
Lu S W, Shao J Y, Ma K M, Chen D, Wang X Q, Zhang L, Meng Q S, Ma J. Carbon, 2018, 136: 387.

doi: 10.1016/j.carbon.2018.04.086
[36]
Li N, Huang Y, Du F, He X B, Lin X, Gao H J, Ma Y F, Li F F, Chen Y S, Eklund P C. Nano Lett., 2006, 6(6): 1141.

doi: 10.1021/nl0602589
[37]
Wang L, Ma Z L, Zhang Y L, Chen L X, Cao D P, Gu J W. SusMat, 2021, 1(3): 413.

doi: 10.1002/sus2.v1.3
[38]
Jiao Y Z, Cheng S Y, Wu F, Pan X H, Xie A M, Zhu X F, Dong W. Compos. B Eng., 2021, 211: 108643.

doi: 10.1016/j.compositesb.2021.108643
[39]
Clark D E, Folz D C, West J K. Mater. Sci. Eng. A, 2000, 287(2): 153.

doi: 10.1016/S0921-5093(00)00768-1
[40]
Liu S, Qin S H, Jiang Y, Song P G, Wang H. Compos. A Appl. Sci. Manuf., 2021, 145: 106376.

doi: 10.1016/j.compositesa.2021.106376
[41]
Gupta A, Choudhary V. Compos. Sci. Technol., 2011, 71(13): 1563.

doi: 10.1016/j.compscitech.2011.06.014
[42]
Yuan B Q, Yu L M, Sheng L M, An K, Zhao X L. J. Phys. D: Appl. Phys., 2012, 45(23): 235108.

doi: 10.1088/0022-3727/45/23/235108
[43]
Saini P, Choudhary V, Singh B P, Mathur R B, Dhawan S K. Mater. Chem. Phys., 2009, 113(2/3): 919.

doi: 10.1016/j.matchemphys.2008.08.065
[44]
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M, Gogotsi Y. Science, 2016, 353(6304): 1137.

doi: 10.1126/science.aag2421 pmid: 27609888
[45]
Wei Q W, Pei S F, Qian X T, Liu H P, Liu Z B, Zhang W M, Zhou T Y, Zhang Z C, Zhang X F, Cheng H M, Ren W C. Adv. Mater., 2020, 32(14): 1907411.

doi: 10.1002/adma.v32.14
[46]
Hwang U, Kim J, Seol M, Lee B, Park I K, Suhr J, Nam J D. ACS Omega, 2022, 7(5): 4135.

doi: 10.1021/acsomega.1c05657
[47]
Zhang W B, Wei L F, Ma Z L, Fan Q Q, Ma J Z. Carbon, 2021, 177: 412.

doi: 10.1016/j.carbon.2021.02.093
[48]
Lee S, Jo I, Kang S M, Jang B, Moon J, Park J B, Lee S, Rho S, Kim Y, Hong B H. ACS Nano, 2017, 11(6): 5318.

doi: 10.1021/acsnano.7b00370
[49]
Xia Y J, Fang J, Li P C, Zhang B M, Yao H Y, Chen J S, Ding J, Ouyang J Y. ACS Appl. Mater. Interfaces, 2017, 9(22): 19001.

doi: 10.1021/acsami.7b02443
[50]
Jung J, Lee H, Ha I, Cho H, Kim K K, Kwon J, Won P, Hong S, Ko S H. ACS Appl. Mater. Interfaces, 2017, 9(51): 44609.

doi: 10.1021/acsami.7b14626
[51]
Arief I, Biswas S, Bose S. ACS Appl. Mater. Interfaces, 2017, 9(22): 19202.

doi: 10.1021/acsami.7b04053
[52]
Lee T W, Lee S E, Jeong Y G. Compos. Sci. Technol., 2016, 131: 77.

doi: 10.1016/j.compscitech.2016.06.003
[53]
Hsiao S T, Ma C C M, Liao W H, Wang Y S, Li S M, Huang Y C, Yang R B, Liang W F. ACS Appl. Mater. Interfaces, 2014, 6(13): 10667.

doi: 10.1021/am502412q
[54]
Zhang Y, Huang Y, Chen H H, Huang Z Y, Yang Y, Xiao P S, Zhou Y, Chen Y S. Carbon, 2016, 105: 438.

doi: 10.1016/j.carbon.2016.04.070
[55]
Wu Y, Wang Z Y, Liu X, Shen X, Zheng Q B, Xue Q, Kim J K. ACS Appl. Mater. Interfaces, 2017, 9(10): 9059.

doi: 10.1021/acsami.7b01017
[56]
Sun R H, Zhang H B, Liu J, Xie X, Yang R, Li Y, Hong S, Yu Z Z. Adv. Funct. Mater., 2017, 27(45): 1702807.

doi: 10.1002/adfm.v27.45
[57]
Huang Z Y, Chen H H, Huang Y, Ge Z, Zhou Y, Yang Y, Xiao P S, Liang J J, Zhang T F, Shi Q, Li G H, Chen Y S. Adv. Funct. Mater., 2018, 28(2): 1704363.

doi: 10.1002/adfm.v28.2
[58]
Song Q, Ye F, Yin X W, Li W, Li H J, Liu Y S, Li K Z, Xie K Y, Li X H, Fu Q G, Cheng L F, Zhang L T, Wei B Q. Adv. Mater., 2017, 29(31): 1701583.

doi: 10.1002/adma.v29.31
[59]
Lin S C, Ma C C M, Hsiao S T, Wang Y S, Yang C Y, Liao W H, Li S M, Wang J A, Cheng T Y, Lin C W, Yang R B. Appl. Surf. Sci., 2016, 385: 436.

doi: 10.1016/j.apsusc.2016.05.063
[60]
Feng S Y, Zhan Z Y, Yi Y, Zhou Z H, Lu C H. Compos. A Appl. Sci. Manuf., 2022, 157: 106907.

doi: 10.1016/j.compositesa.2022.106907
[61]
Jia L C, Yan D X, Cui C H, Ji X, Li Z M. Macromol. Mater. Eng., 2016, 301(10): 1232.

doi: 10.1002/mame.v301.10
[62]
Kuang T R, Chang L Q, Chen F, Sheng Y, Fu D J, Peng X F. Carbon, 2016, 105: 305.

doi: 10.1016/j.carbon.2016.04.052
[63]
Lee S H, Kang D, Oh I K. Carbon, 2017, 111: 248.

doi: 10.1016/j.carbon.2016.10.003
[64]
Verma P, Saini P, Malik R S, Choudhary V. Carbon, 2015, 89: 308.

doi: 10.1016/j.carbon.2015.03.063
[65]
Velhal N, Patil N D, Kulkarni G, Shinde S K, Valekar N J, Barshilia H C, Puri V. J. Alloys Compd., 2019, 777: 627.

doi: 10.1016/j.jallcom.2018.11.041
[66]
Zhang C H, Lv Q T, Liu Y J, Wang C, Wang Q, Wei H, Liu L J, Li J Q, Dong H X. Polymer, 2021, 224: 123742.

doi: 10.1016/j.polymer.2021.123742
[67]
Wei L F, Ma J Z, Zhang W B, Bai S L, Ren Y J, Zhang L, Wu Y K, Qin J B. Carbon, 2021, 181: 212.

doi: 10.1016/j.carbon.2021.05.032
[68]
Chen Z, Yang T, Cheng L, Mu J X. Polymers, 2021, 13(20): 3493.

doi: 10.3390/polym13203493
[69]
Bhawal P, Ganguly S, Das T K, Mondal S, Choudhury S, Das N C. Compos. B Eng., 2018, 134: 46.

doi: 10.1016/j.compositesb.2017.09.046
[70]
Sharika T, Abraham J, Arif P M, George S C, Kalarikkal N, Thomas S. Compos. B Eng., 2019, 173: 106798.

doi: 10.1016/j.compositesb.2019.05.009
[71]
Pang H, Xu L, Yan D X, Li Z M. Prog. Polym. Sci., 2014, 39(11): 1908.

doi: 10.1016/j.progpolymsci.2014.07.007
[72]
Wang T, Yu W C, Sun W J, Jia L C, Gao J F, Tang J H, Su H J, Yan D X, Li Z M. Compos. Sci. Technol., 2020, 200: 108446.

doi: 10.1016/j.compscitech.2020.108446
[73]
Wang Y, Fan Z W, Zhang H, Guo J, Yan D X, Wang S F, Dai K, Li Z M. Mater. Des., 2021, 197: 109222.

doi: 10.1016/j.matdes.2020.109222
[74]
Eswaraiah V, Sankaranarayanan V, Ramaprabhu S. Macromol. Mater. Eng., 2011, 296(10): 894.

doi: 10.1002/mame.201100035
[75]
Zhang H M, Zhang G C, Gao Q, Tang M, Ma Z L, Qin J B, Wang M Y, Kim J K. Chem. Eng. J., 2020, 379: 122304.

doi: 10.1016/j.cej.2019.122304
[76]
Hamidinejad M, Zhao B, Zandieh A, Moghimian N, Filleter T, Park C B. ACS Appl. Mater. Interfaces, 2018, 10(36): 30752.

doi: 10.1021/acsami.8b10745
[77]
Wegst U G K, Bai H, Saiz E, Tomsia A P, Ritchie R O. Nat. Mater., 2015, 14(1): 23.

doi: 10.1038/nmat4089
[78]
Gong S S, Ni H, Jiang L, Cheng Q F. Mater. Today, 2017, 20(4): 210.

doi: 10.1016/j.mattod.2016.11.002
[79]
Zhao S, Zhang H B, Luo J Q, Wang Q W, Xu B, Hong S, Yu Z Z. ACS Nano, 2018, 12(11): 11193.

doi: 10.1021/acsnano.8b05739 pmid: 30339357
[80]
Zeng Z H, Jin H, Chen M J, Li W W, Zhou L C, Zhang Z. Adv. Funct. Mater., 2016, 26(2): 303.

doi: 10.1002/adfm.v26.2
[81]
Bai H, Chen Y, Delattre B, Tomsia A P, Ritchie R O. Sci. Adv., 2015, 1(11): e1500849.

doi: 10.1126/sciadv.1500849
[82]
Sambyal P, Iqbal A, Hong J, Kim H, Kim M K, Hong S M, Han M K, Gogotsi Y, Koo C M. ACS Appl. Mater. Interfaces, 2019, 11(41): 38046.

doi: 10.1021/acsami.9b12550
[83]
Zhou B, Zhang Z, Li Y L, Han G J, Feng Y Z, Wang B, Zhang D B, Ma J M, Liu C T. ACS Appl. Mater. Interfaces, 2020, 12(4): 4895.

doi: 10.1021/acsami.9b19768
[84]
Wang Z, Cheng Z, Xie L, Hou X L, Fang C Q. Ceram. Int., 2021, 47(4): 5747.

doi: 10.1016/j.ceramint.2020.10.161
[85]
Xu Y D, Yang Y Q, Yan D X, Duan H J, Zhao G Z, Liu Y Q. ACS Appl. Mater. Interfaces, 2018, 10(22): 19143.

doi: 10.1021/acsami.8b05129
[86]
Chen W, Liu L X, Zhang H B, Yu Z Z. ACS Nano, 2020, 14(12): 16643.

doi: 10.1021/acsnano.0c01635
[87]
Wei L F, Ma J Z, Ma L, Zhao C X, Xu M L, Qi Q, Zhang W B, Zhang L, He X, Park C B. Small Methods, 2022, 6(4): 2101510.

doi: 10.1002/smtd.v6.4
[88]
Zhan Y H, Hao X H, Wang L C, Jiang X C, Cheng Y, Wang C Z, Meng Y Y, Xia H S, Chen Z M. ACS Appl. Mater. Interfaces, 2021, 13(12): 14623.

doi: 10.1021/acsami.1c03692
[89]
Zuo S D, Liang Y Y, Yang H Z, Ma X X, Ge S B, Wu Y J, Fei B H, Guo M, Ahamad T, Le H S, Van Le Q, Xia C L. Prog. Org. Coat., 2022, 165: 106736.
[90]
Zeng Z H, Wu N, Wei J J, Yang Y F, Wu T T, Li B, Hauser S B, Yang W D, Liu J R, Zhao S Y. Nano Micro Lett., 2022, 14(1): 1.
[91]
Zhang P, Tian R J, Zhang X, Ding X, Wang Y Y, Xiao C, Zheng K, Liu X L, Chen L, Tian X Y. Compos. B Eng., 2022, 232: 109611.

doi: 10.1016/j.compositesb.2022.109611
[92]
Jiang Y Q, Ru X L, Che W B, Jiang Z H, Chen H L, Hou J F, Yu Y M. Compos. B Eng., 2022, 229: 109460.

doi: 10.1016/j.compositesb.2021.109460
[93]
Li X L, Sheng M J, Gong S, Wu H, Chen X L, Lu X, Qu J P. Chem. Eng. J., 2022, 430: 132928.

doi: 10.1016/j.cej.2021.132928
[94]
Lin S, Wang H, Wu F, Wang Q, Bai X, Zu D, Song J, Wang D, Liu Z, Li Z. npj Flex. Electron, 2019, 3(1): 1.

doi: 10.1038/s41528-018-0045-x
[95]
Liang C B, Ruan K P, Zhang Y L, Gu J W. ACS Appl. Mater. Interfaces, 2020, 12(15): 18023.

doi: 10.1021/acsami.0c04482
[96]
Wu X Y, Han B Y, Zhang H B, Xie X, Tu T X, Zhang Y, Dai Y, Yang R, Yu Z Z. Chem. Eng. J., 2020, 381: 122622.

doi: 10.1016/j.cej.2019.122622
[97]
Zhu Y, Zhang J, Zheng Y, Huang Z, Feng L, Jiang L. Adv. Funct. Mater., 2006, 16(4): 568.

doi: 10.1002/(ISSN)1616-3028
[98]
Li Q M, Liu H, Zhang S D, Zhang D B, Liu X H, He Y X, Mi L W, Zhang J X, Liu C T, Shen C Y, Guo Z H. ACS Appl. Mater. Interfaces, 2019, 11(24): 21904.

doi: 10.1021/acsami.9b03421
[99]
Wang L, Chen Y, Lin L W, Wang H, Huang X W, Xue H G, Gao J F. Chem. Eng. J., 2019, 362: 89.

doi: 10.1016/j.cej.2019.01.014
[100]
Yang H, Bai S C, Chen T R, Zhang Y, Wang H F, Guo X Z. Mater. Res. Express, 2019, 6(8): 086315.

doi: 10.1088/2053-1591/ab20d5
[101]
Tao Y, Pan D C. Mater. Res. Express, 2019, 6(7): 076430.

doi: 10.1088/2053-1591/ab17a4
[102]
Li T T, Wang Y T, Peng H K, Zhang X F, Shiu B C, Lin J H, Lou C W. Compos. A Appl. Sci. Manuf., 2020, 128: 105685.

doi: 10.1016/j.compositesa.2019.105685
[103]
Zhou B, Li Z Y, Li Y L, Liu X H, Ma J M, Feng Y Z, Zhang D B, He C G, Liu C T, Shen C Y. Compos. Sci. Technol., 2021, 201: 108531.

doi: 10.1016/j.compscitech.2020.108531
[104]
Mu S P, Xie H Y, Wang W, Yu D. Appl. Surf. Sci., 2015, 353: 608.

doi: 10.1016/j.apsusc.2015.06.126
[105]
Zhu M, Yan X X, Lei Y T, Guo J H, Xu Y J, Xu H L, Dai L, Kong L. ACS Appl. Mater. Interfaces, 2022, 14(12): 14520.

doi: 10.1021/acsami.1c23515
[106]
Jiao Y, Wan C C, Zhang W B, Bao W H, Li J. Nanomaterials, 2019, 9(3): 460.

doi: 10.3390/nano9030460
[107]
Kang S, Herzberg M, Rodrigues D F, Elimelech M. Langmuir, 2008, 24(13): 6409.

doi: 10.1021/la800951v
[108]
Yan J, Jeong Y G. Appl. Phys. Lett., 2014, 105(5): 051907.

doi: 10.1063/1.4892545
[109]
Wang Z G, Yang Y L, Zheng Z L, Lan R T, Dai K, Xu L, Huang H D, Tang J H, Xu J Z, Li Z M. Compos. Sci. Technol., 2020, 194: 108190.

doi: 10.1016/j.compscitech.2020.108190
[110]
Guo Y Q, Qiu H, Ruan K P, Zhang Y L, Gu J W. Nano Micro Lett., 2022, 14(1): 1.
[111]
Zhao B, Ma Z L, Sun Y Y, Han Y X, Gu J W. Small Struct., 2022, 3(10): 2200162.

doi: 10.1002/sstr.v3.10
[112]
Li Z W, Lin Z J, Han M S, Mu Y B, Yu P P, Zhang Y L, Yu J. Chem. Eng. J., 2021, 420: 129826.

doi: 10.1016/j.cej.2021.129826
[113]
Zhao B, Bai P W, Yuan M Y, Yan Z K, Fan B B, Zhang R, Che R C. Carbon, 2022, 197: 570.

doi: 10.1016/j.carbon.2022.06.010
[114]
Xing D, Rana M, Hao B, Zheng Q B, Ma P C. Electrochimica Acta, 2022, 427: 140847.

doi: 10.1016/j.electacta.2022.140847
[115]
Wang Z X, Jiao B, Qing Y C, Nan H Y, Huang L Q, Wei W, Peng Y, Yuan F, Dong H, Hou X, Wu Z X. ACS Appl. Mater. Interfaces, 2020, 12(2): 2826.

doi: 10.1021/acsami.9b17513
[1]
Wang H B, Teng K Y, Chen C, Li X J, Xu Z W, Chen L, Fu H J, Kuang L Y, Ma M J, Zhao L H. Mater. Lett., 2017, 186: 78.

doi: 10.1016/j.matlet.2016.09.086
[2]
Wang G L, Wang L, Mark L H, Shaayegan V, Wang G Z, Li H P, Zhao G Q, Park C B. ACS Appl. Mater. Interfaces, 2018, 10(1): 1195.

doi: 10.1021/acsami.7b14111
[3]
Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J. Adv. Funct. Mater., 2019, 29(25): 1807398.

doi: 10.1002/adfm.v29.25
[4]
Thomassin J M, JÉrôme C, Pardoen T, Bailly C, Huynen I, Detrembleur C. Mater. Sci. Eng. R Rep., 2013, 74(7): 211.

doi: 10.1016/j.mser.2013.06.001
[5]
Bhattacharjee Y, Chatterjee D, Bose S. ACS Appl. Mater. Interfaces, 2018, 10(36): 30762.

doi: 10.1021/acsami.8b10819
[6]
Abbasi H, Antunes M, Velasco J I. Prog. Mater. Sci., 2019, 103: 319.

doi: 10.1016/j.pmatsci.2019.02.003
[7]
Zhang F F, Hu J S, Zhao P, He P, Mi H Y, Guo Z H, Liu C T, Shen C Y. Compos. A Appl. Sci. Manuf., 2021, 147: 106472.

doi: 10.1016/j.compositesa.2021.106472
[8]
Sang G L, Xu P, Yan T, Murugadoss V, Naik N, Ding Y S, Guo Z H. Nano Micro Lett., 2021, 13(1): 1.
[9]
Das N C, Khastgir D, Chaki T K, Chakraborty A. Compos. A Appl. Sci. Manuf., 2000, 31(10): 1069.

doi: 10.1016/S1359-835X(00)00064-6
[10]
Hong X H, Chung D D L. Carbon, 2017, 111: 529.

doi: 10.1016/j.carbon.2016.10.031
[11]
Chen Y, Zhang H B, Yang Y B, Wang M, Cao A Y, Yu Z Z. Adv. Funct. Mater., 2016, 26(3): 447.

doi: 10.1002/adfm.v26.3
[12]
Zhao B, Deng J S, Zhao C X, Wang C D, Chen yu guang, Hamidinejad M, Li R S, Park C B. J. Mater. Chem. C, 2020, 8(1): 58.

doi: 10.1039/C9TC04575A
[13]
Wang L, Qiu H, Liang C B, Song P, Han Y X, Han Y X, Gu J W, Kong J, Pan D, Guo Z H. Carbon, 2019, 141: 506.

doi: 10.1016/j.carbon.2018.10.003
[14]
Jou W S, Cheng H Z, Hsu C F. J. Alloys Compd., 2007, 434/435: 641.

doi: 10.1016/j.jallcom.2006.08.203
[15]
Rohini R, Bose S. ACS Appl. Mater. Interfaces, 2014, 6(14): 11302.

doi: 10.1021/am502641h
[16]
Kim S, Oh J S, Kim M G, Jang W, Wang M, Kim Y, Seo H W, Kim Y C, Lee J H, Lee Y, Nam J D. ACS Appl. Mater. Interfaces, 2014, 6(20): 17647.

doi: 10.1021/am503893v
[116]
Wang L, Ma Z L, Qiu H, Zhang Y L, Yu Z, Gu J W. Nano Micro Lett., 2022, 14(1): 1.
[117]
Song P, Liu B, Liang C B, Ruan K P, Qiu H, Ma Z L, Guo Y Q, Gu J W. Nano Micro Lett., 2021, 13(1): 1.
[17]
Kumar R, Sahoo S, Joanni E, Singh R K, Yadav R M, Verma R K, Singh D P, Tan W K, PÉrez del Pino A, Moshkalev S A, Matsuda A. Nano Res., 2019, 12(11): 2655.

doi: 10.1007/s12274-019-2467-8
[18]
Munalli D, Dimitrakis G, Chronopoulos D, Greedy S, Long A. Compos. B Eng., 2019, 173: 106906.

doi: 10.1016/j.compositesb.2019.106906
[1] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[2] Wang Zhaoxiang, Chen Liquan, Huang Xuejie. Structural Design and Modification of Cathode Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2011, 23(0203): 284-301.