中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (11): 2476-2488 DOI: 10.7536/PC220321 Previous Articles   Next Articles

• Review •

Construction and Application of Photoresponsive Janus Particles

Mingxin Zheng, Zhenzhi Tan, Jinying Yuan()   

  1. Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University,Beijing 100084, China
  • Received: Revised: Online: Published:
  • Contact: Jinying Yuan
  • Supported by:
    National Natural Science Foundation of China(22071131); National Natural Science Foundation of China(21871162)
Richhtml ( 38 ) PDF ( 507 ) Cited
Export

EndNote

Ris

BibTeX

Janus particles are usually composed of parts with two or more different physical or chemical properties, and are characterized by structural asymmetry, which leads to asymmetries in particle morphology and physical properties. Compared with static Janus particles, dynamic Janus particles, which can realize stimuli-response, can interact with the environment well to express their special role in a specific environment under external stimulus. Photoresponsive Janus particles are asymmetric particles that can respond to specific light stimuli. Different materials on both sides of Janus particles can not only compound with different types of photoresponse, but also can compound with other types of stimuli-responses, to achieve precise regulation of specific systems. Because the energy of light can be easily regulated, photoresponsive Janus particles can produce specific reactions to inorganic nanoclusters or organic functional groups. So photoresponsive Janus particles can present photothermal effect, color adjustment, photodynamic therapy and other unique properties. They can also be applicated in drug delivery, biological sensing and imaging, micro nanomotors and photoluminescence, which provides a new way to solve problems in the field of biomedicine and optical devices. In this paper, the recent development of preparation methods of inorganic and polymeric photoresponsive Janus particles are introduced, and their unique regulatory mechanism and outstanding applications in the fields of biomedicine and luminescent materials are emphasized. Finally, the challenges and development prospects in this field are discussed.

Contents

1 Introduction

2 Preparation of photoresponsive Janus particles

2.1 Preparation of inorganic photoresponsive Janus particles

2.2 Preparation of polymeric photoresponsive Janus particles

2.3 Preparation of hybrid photoresponsive Janus particles

3 Regulation of photoresponsive Janus particles

3.1 Structure regulation

3.2 Performance regulation

3.3 Other regulation

4 Application of photoresponsive Janus particles

4.1 Drug delivery

4.2 Biosensing and imaging

4.3 Micro/nano-motor

4.4 Photoluminescence

5 Conclusion and outlook

Fig. 1 (a) Self-assembly of crosslinking amphiphilic block copolymer to form Janus particles. Copyright 2012, American Chemical Society[33]. (b) Triblock[34] and (c) two diblock amphiphilic copolymers to form Janus particles[35]. Copyright 2016, Wiley-VCH. Copyright 2017, American Chemical Society
Fig.2 (a)Synthesis of photodeformed Janus particles based on PAZO-ADMA. (b)-(d) Direction and degree of photodeformation of Janus particles under different optical polarization[44]. Copyright 2018, American Chemical Society
Fig.3 Morphology of PMAAz photodeformed Janus particles under (a) ultraviolet light and (b) visible light. (c) Composition of the PMAAz Janus particles in each segment. (d) UV-visible deformation mechanism of PMAAz Janus particles[47]. Copyright 2018, American Chemical Society
Fig.4 The B-L structure Janus particles can reflect different wavelengths of light due to their asymmetric structure. (a) B-L Janus particle synthesis route. (b) SEM micrograph of B-L layer. (c), (d) Different color patterns of B-L Janus particles with different PEO-b-PCL contents[54]. Copyright 2021, Wiley-VCH
Fig.5 Mechanism and morphology of FA-PEG-MNS Janus particles in cancer therapy[62]. Copyright 2019, American Chemical Society
Fig.6 Cancer therapeutic mechanisms of UCNPs and PCN-224(Fe) core-shell-shell Janus particles[67]. Copyright 2021, American Chemical Society
Fig.7 (a~c) The preparation process, action mechanism and particle morphology of MPCM-JMSNM[75]. Copyright 2018, Wiley-VCH. (d~f) The structure and cancer cell killing mechanism of Au Janus particle doped with Gd(Ⅲ)[76]. Copyright 2021, Wiley-VCH
Fig.8 Preparation route of Au-WO3@C Janus particle and catalytic decomposition mechanism of dyes[79]. Copyright 2017, American Chemical Society
Fig.9 (a,b) Ag2S-ZnS photoluminescent Janus particles[85]. Copyright 2011, Wiley-VCH. (c~e) Preparation and morphology of CsPbBr3 photoluminescent Janus particles stabilized by Cap-like SiO2[87]. Copyright 2018, American Chemical Society.
[1]
Lattuada M, Hatton T A. Nano Today, 2011, 6(3): 286.

doi: 10.1016/j.nantod.2011.04.008
[2]
Synytska A, Ionov L. Part. Part. Syst. Charact., 2013, 30(11): 922.

doi: 10.1002/ppsc.201300146
[3]
Zhang Y X, Bao Y, Ma J Z. Prog. Chem., 2021, 33: 254.
(张元霞, 鲍艳, 马建中, 化学进展, 2021, 33: 254.).

doi: 10.7536/PC200449
[4]
Zou D Q, Wang C, Xiao F, Wei Y C, Geng L, Wang L. Prog. Chem., 2021, 33:2056.
(邹丹青, 王琮, 肖斐, 魏宇琛, 耿林, 王磊, 化学进展, 2021, 33: 2056.).

doi: 10.7536/PC200919
[5]
Zhang X, Fu Q R, Duan H W, Song J B, Yang H H. ACS Nano, 2021, 15(4): 6147.

doi: 10.1021/acsnano.1c01146 pmid: 33739822
[6]
Kirillova A, Marschelke C, Synytska A. ACS Appl. Mater. Interfaces, 2019, 11(10): 9643.

doi: 10.1021/acsami.8b17709
[7]
Haarindraprasad R, Gopinath S C B, Veeradassan P. Biotechnol. Appl. Biochem., 2022, doi: 10.1002/bab.2316.

doi: 10.1002/bab.2316
[8]
Duan W, Qiu Z W, Cao S F, Guo Q, Huang J K, Xing J Y, Lu X Q, Zeng J B. Biosens. Bioelectron., 2022, 196: 113724.

doi: 10.1016/j.bios.2021.113724
[9]
Hartley G S. Nature, 1937, 140(3537): 281.
[10]
Abdollahi A, Roghani-Mamaqani H, Herizchi A, Alidaei-Sharif H, Enayati A, Sajedi-Amin S. Polym. Chem., 2020, 11(12): 2053.

doi: 10.1039/D0PY00078G
[11]
Li S N, Zhang L Y, Liang X, Wang T T, Chen X J, Liu C M, Li L, Wang C G. Chem. Eng. J., 2019, 378: 122175.

doi: 10.1016/j.cej.2019.122175
[12]
Gao P C, Sun S, Wang Y, Wei Y Y, Jiang Y. Chem. Eng. J., 2022, 428: 131284.

doi: 10.1016/j.cej.2021.131284
[13]
Niehues M, Engel S, Ravoo B J. Langmuir, 2021, 37(37): 11123.

doi: 10.1021/acs.langmuir.1c01979
[14]
Wen W, Chen A H. Polym. Chem., 2021, 12(16): 2447.

doi: 10.1039/D1PY00223F
[15]
Wang H, Cai L J, Zhang D G, Shang L R, Zhao Y J. Research, 2021, 2021: 9829068.
[16]
Zhang D, Lin Z G, Lan S Y, Sun H Y, Zeng Y Y, Liu X L. Mater. Chem. Front., 2019, 3(4): 656.

doi: 10.1039/C8QM00623G
[17]
Zhou X, Huang X H, Wang B C, Tan L H, Zhang Y, Jiao Y P. Chem. Eng. J., 2021, 408: 127897.

doi: 10.1016/j.cej.2020.127897
[18]
Rostami-Tapeh-Esmail E, Golshan M, Salami-Kalajahi M, Roghani-Mamaqani H. Mater. Sci. Eng. C, 2020, 110: 110745.

doi: 10.1016/j.msec.2020.110745
[19]
Hao L W, Liu J D, Li Q, Qing R K, He Y Y, Guo J Z, Li G, Zhu L L, Xu C, Chen S. J. Mater. Sci. Technol., 2021, 81: 203.

doi: 10.1016/j.jmst.2020.11.063
[20]
Gao W, D'Agostino M, Garcia-Gradilla V, Orozco J, Wang J. Small, 2013, 9(3): 467.

doi: 10.1002/smll.201201864
[21]
Huang Y Y, Li T, Gao W T, Wang Q, Li X Y, Mao C, Zhou M, Wan M M, Shen J. J. Mater. Chem. B, 2020, 8(26): 5765.

doi: 10.1039/D0TB00789G
[22]
Qin W W, Peng T H, Gao Y J, Wang F, Hu X C, Wang K, Shi J Y, Li D, Ren J C, Fan C H. Angew. Chem. Int. Ed., 2017, 56(2): 515.

doi: 10.1002/anie.201609121
[23]
Mogulkoc Y, Caglayan R, Ciftci Y O. Phys. Rev. Applied, 2021, 16(2): 024001.

doi: 10.1103/PhysRevApplied.16.024001
[24]
Montes-García V, Samorì P. Chem. Sci., 2022, 13(2): 315.

doi: 10.1039/d1sc05836c pmid: 35126966
[25]
Guo X Y, Liu S, Wang W J, Zhu C T, Li C Y, Yang Y, Tian Q H, Liu Y. J. Colloid Interface Sci., 2021, 600: 838.

doi: 10.1016/j.jcis.2021.05.073
[26]
Cozzoli P D, Pellegrino T, Manna L. Chem. Soc. Rev., 2006, 35(11): 1195.

doi: 10.1039/b517790c
[27]
Casavola M, Buonsanti R, Caputo G, Cozzoli P D. Eur. J. Inorg. Chem., 2008, 2008(6): 837.

doi: 10.1002/ejic.200701047
[28]
Iqbal M Z, Ren W Z, Saeed M, Chen T X, Ma X H, Yu X, Zhang J C, Zhang L L, Li A G, Wu A G. Nano Res., 2018, 11(10): 5735.

doi: 10.1007/s12274-017-1628-x
[29]
Singh G, Komal K, Singh G, Kaur M, Kang T S. J. Mater. Chem. A, 2019, 7(10): 5185.

doi: 10.1039/C9TA00178F
[30]
Singh G, Kamboj R, Singh Mithu V, Chauhan V, Kaur T, Kaur G, Singh S, Singh Kang T. J. Colloid Interface Sci., 2017, 496: 278.

doi: 10.1016/j.jcis.2017.02.021
[31]
Shao J X, Cao S P, Williams D S, Abdelmohsen L K E A, Hest J C M. Angew. Chem. Int. Ed., 2020, 59(39): 16918.

doi: 10.1002/anie.202003748
[32]
Zhang L L, Xiao Z Y, Chen X, Chen J Y, Wang W. ACS Nano, 2019, 13(8): 8842.

doi: 10.1021/acsnano.9b02100
[33]
Gröschel A H, Walther A, Löbling T I, Schmelz J, Hanisch A, Schmalz H, Müller A H E. J. Am. Chem. Soc., 2012, 134(33): 13850.

doi: 10.1021/ja305903u pmid: 22834562
[34]
Zhang Z, Zhou C M, Dong H Y, Chen D Y. Angew. Chem. Int. Ed., 2016, 55(21): 6182.

doi: 10.1002/anie.201511768 pmid: 27071692
[35]
Zhang Z, Li H D, Huang X Y, Chen D Y. ACS Macro Lett., 2017, 6(6): 580.

doi: 10.1021/acsmacrolett.7b00296
[36]
Long S, Chen C Y, Luo J, Dong H Y, Wu L M, Chen D Y. Polym. Chem., 2016, 7(46): 7170.

doi: 10.1039/C6PY01816E
[37]
Romano A, Sangermano M, Rossegger E, Mühlbacher I, Griesser T, Giebler M, Palmara G, Frascella F, Roppolo I, Schlögl S. Polym. Chem., 2021, 12(27): 3925.

doi: 10.1039/D1PY00459J
[38]
Wei C, Du Y X, Liu Y Y, Lin X Q, Zhang C, Yao J N, Zhao Y S. J. Am. Chem. Soc., 2019, 141(13): 5116.

doi: 10.1021/jacs.9b00362
[39]
Han S W, Choi S E, Chang D H, Lee D, Kim B, Yang H, Seo M, Kim J W. Adv. Funct. Mater., 2019, 29(6): 1805392.

doi: 10.1002/adfm.201805392
[40]
Lone S, Kim S H, Nam S W, Park S, Joo J, Cheong I W. Chem. Commun., 2011, 47(9): 2634.

doi: 10.1039/c0cc04517a
[41]
Kang C J, Honciuc A. ACS Nano, 2018, 12(4): 3741.

doi: 10.1021/acsnano.8b00960
[42]
Wang L, Liu Y J, He J, Hourwitz M J, Yang Y L, Fourkas J T, Han X J, Nie Z H. Small, 2015, 11(31): 3762.

doi: 10.1002/smll.201500527 pmid: 25925707
[43]
Wang Y, Shang M X, Wang Y N, Xu Z R. Anal. Methods, 2019, 11(31): 3966.

doi: 10.1039/C9AY01213C
[44]
Zhou X R, Du Y, Wang X G. ACS Macro Lett., 2016, 5(2): 234.

doi: 10.1021/acsmacrolett.5b00932
[45]
Rochon P, Batalla E, Natansohn A. Appl. Phys. Lett., 1995, 66(2): 136.

doi: 10.1063/1.113541
[46]
Kim D Y, Tripathy S K, Li L, Kumar J. Appl. Phys. Lett., 1995, 66(10): 1166.

doi: 10.1063/1.113845
[47]
Hou X J, Guan S, Qu T, Wu X F, Wang D, Chen A H, Yang Z Z. ACS Macro Lett., 2018, 7(12): 1475.

doi: 10.1021/acsmacrolett.8b00750
[48]
Cao Z Q, Wang G J, Chen Y, Liang F X, Yang Z Z. Macromolecules, 2015, 48(19): 7256.

doi: 10.1021/acs.macromol.5b01257
[49]
Eustis S, El-Sayed M A. Chem. Soc. Rev., 2006, 35(3): 209.

pmid: 16505915
[50]
Ding X G, Liow C H, Zhang M X, Huang R J, Li C Y, Shen H, Liu M Y, Zou Y, Gao N, Zhang Z J, Li Y G, Wang Q B, Li S Z, Jiang J. J. Am. Chem. Soc., 2014, 136(44): 15684.

doi: 10.1021/ja508641z
[51]
Huang X H, El-Sayed I H, Qian W, El-Sayed M A. J. Am. Chem. Soc., 2006, 128(6): 2115.

doi: 10.1021/ja057254a
[52]
Chu M Q, Shao Y X, Peng J L, Dai X Y, Li H K, Wu Q S, Shi D L. Biomaterials, 2013, 34(16): 4078.

doi: 10.1016/j.biomaterials.2013.01.086
[53]
Xuan M J, Wu Z G, Shao J X, Dai L R, Si T Y, He Q. J. Am. Chem. Soc., 2016, 138(20): 6492.

doi: 10.1021/jacs.6b00902
[54]
Guo Q L, Li Y L, Liu Q J, Li Y S, Song D P. Angewandte Chemie Int. Ed., 2022, 61(5): e202113759.
[55]
Dougherty T J, Gomer C J, Henderson B W, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. JNCI J. Natl. Cancer Inst., 1998, 90(12): 889.

doi: 10.1093/jnci/90.12.889
[56]
Liang C, Zhang X L, Wang Z C, Wang W J, Yang M S, Dong X C. J. Mater. Chem. B, 2020, 8(22): 4748.

doi: 10.1039/d0tb00098a pmid: 32129418
[57]
Li Y, Zhang W, Niu J F, Chen Y S. ACS Nano, 2012, 6(6): 5164.

doi: 10.1021/nn300934k
[58]
Hou Y J, Yang X X, Liu R Q, Zhao D, Guo C X, Zhu A C, Wen M N, Liu Z, Qu G F, Meng H X. Int. J. Nanomed., 2020, 15: 6827.

doi: 10.2147/IJN.S269321
[59]
Zhao L Y, Liu Y M, Xing R R, Yan X H. Angew. Chem. Int. Ed., 2020, 59(10): 3793.

doi: 10.1002/anie.201909825
[60]
Li J, Zhang W, Ji W H, Wang J Q, Wang N X, Wu W X, Wu Q, Hou X Y, Hu W B, Li L. J. Mater. Chem. B, 2021, 9(38): 7909.

doi: 10.1039/D1TB01310F
[61]
Mura S, Nicolas J, Couvreur P. Nat. Mater., 2013, 12(11): 991.

doi: 10.1038/nmat3776
[62]
Wang Z, Chang Z M, Shao D, Zhang F, Chen F M, Li L, Ge M F, Hu R, Zheng X, Wang Y S, Dong W F. ACS Appl. Mater. Interfaces, 2019, 11(38): 34755.

doi: 10.1021/acsami.9b12879
[63]
Niu C, An L, Zhang H J. ACS Appl. Polym. Mater., 2022, 4(6): 4189.

doi: 10.1021/acsapm.2c00161
[64]
Noh S H, Moon S H, Shin T H, Lim Y, Cheon J. Nano Today, 2017, 13: 61.

doi: 10.1016/j.nantod.2017.02.006
[65]
Johannsen M, Gneveckow U, Eckelt L, Feussner A, WaldÖFner N, Scholz R, Deger S, Wust P, Loening S A, Jordan A. Int. J. Hyperth., 2005, 21(7): 637.

doi: 10.1080/02656730500158360
[66]
Liu X L, Yang Y, Ng C T, Zhao L Y, Zhang Y, Bay B H, Fan H M, Ding J. Adv. Mater., 2015, 27(11): 1939.

doi: 10.1002/adma.201405036
[67]
Ma X W, Wang Y Y, Liu X L, Ma H J, Li G L, Li Y, Gao F, Peng M L, Fan H M, Liang X J. Nanoscale Horiz., 2019, 4(6): 1450.

doi: 10.1039/C9NH00233B
[68]
Espinosa A, Reguera J, Curcio A, Muñoz-Noval Á, Kuttner C, van de Walle A, Liz-Marzán L M, Wilhelm C. Small, 2020, 16(11): 1904960.

doi: 10.1002/smll.201904960
[69]
Wang Z, Liu B, Sun Q Q, Feng L L, He F, Yang P P, Gai S L, Quan Z W, Lin J. ACS Nano, 2021, 15(7): 12342.

doi: 10.1021/acsnano.1c04280
[70]
Wang L, Hortelão A C, Huang X, Sánchez S. Angew. Chem. Int. Ed., 2019, 58(24): 7992.

doi: 10.1002/anie.201900697 pmid: 30990243
[71]
Wang L, Marciello M, EstÉvez-Gay M, Soto Rodriguez P E D, Luengo Morato Y, Iglesias-Fernández J, Huang X, Osuna S, Filice M, Sánchez S. Angew. Chem. Int. Ed., 2020, 59(47): 21080.

doi: 10.1002/anie.202008339
[72]
Wang L, Villa K. Environ. Sci.: Nano, 2021, 8(12): 3440.
[73]
Jalilvand Z, Haider H, Cui J Q, Kretzschmar A I. Langmuir, 2020, 36(25): 6880.

doi: 10.1021/acs.langmuir.9b03454 pmid: 32050073
[74]
Valadares L F, Tao Y G, Zacharia N S, Kitaev V, Galembeck F, Kapral R, Ozin G A. Small, 2010, 6(4): 565.

doi: 10.1002/smll.200901976 pmid: 20108240
[75]
Xuan M J, Shao J X, Gao C Y, Wang W, Dai L R, He Q. Angew. Chem. Int. Ed., 2018, 57(38): 12463.

doi: 10.1002/anie.201806759
[76]
Zheng S H, Wang Y, Pan S H, Ma E H, Jin S, Jiao M, Wang W J, Li J J, Xu K, Wang H. Adv. Funct. Mater., 2021, 31(24): 2100936.

doi: 10.1002/adfm.202100936
[77]
Cao S P, Shao J X, Wu H L, Song S D, de Martino M T, Pijpers I A B, Friedrich H, Abdelmohsen L K E A, Williams D S, van Hest J C M. Nat. Commun., 2021, 12: 2077.

doi: 10.1038/s41467-021-22279-w
[78]
Zuo X Y, Zhang M, Wu Q H, Li Y Y, Zhang G L, Liang F X, Yang Z Z. Chem. Commun., 2021, 57(47): 5834.

doi: 10.1039/D1CC01172C
[79]
Zhang Q L, Dong R F, Wu Y F, Gao W, He Z H, Ren B Y. ACS Appl. Mater. Interfaces, 2017, 9(5): 4674.

doi: 10.1021/acsami.6b12081
[80]
Dong R F, Zhang Q L, Gao W, Pei A, Ren B Y. ACS Nano, 2016, 10(1): 839.

doi: 10.1021/acsnano.5b05940
[81]
Bailey M R, Grillo F, Spencer N D, Isa L. Adv. Funct. Mater., 2022, 32(7): 2109175.

doi: 10.1002/adfm.202109175
[82]
Dexter D L. J. Chem. Phys., 1953, 21(5): 836.

doi: 10.1063/1.1699044
[83]
Du Y P, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q B. J. Am. Chem. Soc., 2010, 132(5): 1470.

doi: 10.1021/ja909490r
[84]
Zhang Y J, Xu H R, Wang Q B. Chem. Commun., 2010, 46(47): 8941.

doi: 10.1039/c0cc02549f
[85]
Shen S L, Zhang Y J, Peng L, Du Y P, Wang Q B. Angew. Chem. Int. Ed., 2011, 50(31): 7115.

doi: 10.1002/anie.201101084
[86]
Zhang H B, Huang C, Li N S, Wei J. J. Colloid Interface Sci., 2021, 592: 249.

doi: 10.1016/j.jcis.2021.02.068
[87]
Hu H C, Wu L Z, Tan Y S, Zhong Q X, Chen M, Qiu Y H, Yang D, Sun B Q, Zhang Q, Yin Y D. J. Am. Chem. Soc., 2018, 140(1): 406.

doi: 10.1021/jacs.7b11003
[88]
Li M, Zhang X, Yang P. Nanoscale, 2021, 13(6): 3860.

doi: 10.1039/D0NR08325A
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Chuanjun Yuan, Meng Wang, Ming Li, Jinpeng Bao, Pengrui Sun, Rongxuan Gao. Application of Luminescent Materials Based on Carbon Dots in Development of Latent Fingerprints [J]. Progress in Chemistry, 2022, 34(9): 2108-2120.
[3] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[4] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[5] Xingchen Wu, Wenhui Liang, Chenxin Cai. Photoluminescence Mechanisms of Carbon Quantum Dots [J]. Progress in Chemistry, 2021, 33(7): 1059-1073.
[6] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[7] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[8] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[9] Yafang Sun, Ziping Zhou, Tong Shu, Lisheng Qian, Lei Su, Xueji Zhang. Multicolor Luminescent Gold Nanoclusters: From Structure to Biosensing and Bioimaging [J]. Progress in Chemistry, 2021, 33(2): 179-187.
[10] Yuanxia Zhang, Yan Bao, Jianzhong Ma. Synthesis of Janus Particles and Their Application Progress in Pickering Emulsion [J]. Progress in Chemistry, 2021, 33(2): 254-262.
[11] Shuang Yang, Xianpeng Yang, Baojun Wang, Lei Wang. Design and Applications of Fluorogenic Nucleic Acid-Based Paper Biosensors [J]. Progress in Chemistry, 2021, 33(12): 2309-2315.
[12] Danqing Zou, Cong Wang, Fei Xiao, Yuchen Wei, Lin Geng, Lei Wang. Janus Particles Applied in Environmental Detection [J]. Progress in Chemistry, 2021, 33(11): 2056-2068.
[13] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[14] Kaiyu Zhang, Guowei Gao, Yansheng Li, Yu Song, Yongqiang Wen, Xueji Zhang. Development and Application of DNA Hydrogel in Biosensing [J]. Progress in Chemistry, 2021, 33(10): 1887-1899.
[15] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.