中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (6): 1252-1262 DOI: 10.7536/PC211211 Previous Articles   Next Articles

• Review •

Responsiveness of Excited State Chirality Based on Supramolecular Assembly

Dongxue Han1,2, Xue Jin2, Wangen Miao3, Tifeng Jiao1(), Pengfei Duan2()   

  1. 1 School of Environmental and Chemical Engineering, Yanshan University,Qinhuangdao 066004, China
    2 Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST),Beijing 100190, China
    3 School of Chemistry and Chemical Engineering, Institute of Physical Chemistry, Lingnan Normal University,Zhanjiang 524048, China
  • Received: Revised: Online: Published:
  • Contact: Tifeng Jiao, Pengfei Duan
  • Supported by:
    National Natural Science Foundation of China(21773103); National Natural Science Foundation of China(22172041); National Natural Science Foundation of China(52173159)
Richhtml ( 64 ) PDF ( 632 ) Cited
Export

EndNote

Ris

BibTeX

Circularly polarized luminescence (CPL) as one of the optical properties of chiral materials, referring to the excited state properties of the chiral systems, has attracted much attention due to their potential applications in information encryption, high-resolution 3D displays and smart sensors. Besides the optical methods by applying a liner polarizer and a quarter waveplates, circularly polarized light could also be directly generated from chiral luminescent systems under excitation with photoluminescence or electroluminescence. Thus, a variety of CPL-active materials have been developed, including small molecular luminescence systems such as chiral organic molecules and coordination complexes, and chiral supramolecular assemblies. Self-assembly offers a powerful solution to obtaining the CPL-active materials with high quantum yields and dissymmetry factors. Responsive chiral assembled luminescent materials constructed by combining the chiral and responsive components play an important role in the development of intelligent CPL materials, reducing the tedious long synthesis process. Here, we summarize the responsive supramolecular chiroptical systems toward various stimuli, such as light irradiation, pH, solvent, temperature, mental ions, etc. This review is aimed to stimulate further academic and applied research and boost the practical applications of CPL materials in multidisciplinary fields.

Contents

1 Introduction

2 Basic concepts of CD and CPL

3 Research progress of excited state chirality based on supramolecular assembly under different stimulus responses

3.1 Photo-irradiation

3.2 Temperature

3.3 Solvent

3.4 pH

3.5 Metal ions

3.6 Others

4 Conclusion and outlook

Fig. 1 (a) Illustration of circular dichroism for chiral systems. (b) Illustration of circularly polarized luminescence test for chiral systems
Fig. 2 (a) Molecular structure of the enantiomeric glutamate derivatives containing spiropyran and the photochromic property of gels self-assembled. (b) CD spectra of SP-LG and SP-DG gels after UV irradiation. (c) Reversible switching of the gCD value of enantiomeric gels at 662 nm on stimulating with alternating UV and visible light. (d) CPL spectra of SP-LG and SP-DG gels after UV irradiation. (e) Reversible switching of the CPL of enantiomeric gels at 675 nm on stimulating with alternating UV and visible light irradiation[52]
Fig. 3 Schematic representation of the molecular structure of CSC and Nile Red (NR) as well as their self-assemblies into chiroptical vesicles with light responsiveness[53]
Fig. 4 (a) Skeleton of DTG possessing phenylisoxazoles and the CPL signals of the assembly in the elongation regime were inverted with respect to those in the nucleation regime. (b) Temperature-dependent emission (left) and CPL spectra (right) of gel from the methylcyclohexane solution[54]
Fig. 5 Schematic demonstration about the assembly states of g-PA dependence on its surrounding environment such as temperature[55]
Fig. 6 (a) Self-assembly of chiral molecules into different nanostructures with different CPL property by adjusting the solvent[56]. (b) Dimensionality control of monomeric achiral molecules by adjusting the solvent[57]
Fig. 7 Illustration of the formation of coassembly and orthogonal assembly of achiral PBI with LBG/DBG. CPL emission could be switched by alternating acid-base exposure[59]
Fig. 8 The schematic illustration of the molecular structures of LG and HPTS. LG and HPTS co-assemble into emissive nanotubular structures. The formed nanotubes exhibit solvent and pH adjustable CPL emission[60]
Fig. 9 Schematic illustration about assembly changes and CPL changes of the chiral gelator PyHis toward Zn2+[61]
Fig. 10 Schematic illustration of CPL behaviors dependent on pyridyl-N location of coumarin derivatives, and further Ni2+ andAg+[62]
Fig. 11 Illustration of invertible CPL regulation based on natural human telomeric G-quadruplex (Tel G4) and ThT dye[63]
Fig. 12 CPL and glum value of the hydrogels prepared with clockwise (CW, red) and counterclockwise (CCW, blue) stirring, and no stirring (black)[65]
Fig. 13 Magnetic field dependent glum value of chiral EuIII complexes excited at 350 nm at room temperature[67]
[1]
Song F Y, Xu Z, Zhang Q S, Zhao Z, Zhang H K, Zhao W J, Qiu Z J, Qi C X, Zhang H, Sung H H Y, Williams I D, Lam J W Y, Zhao Z J, Qin A J, Ma D G, Tang B Z. Adv. Funct. Mater., 2018, 28(17): 1800051.

doi: 10.1002/adfm.201800051
[2]
Zhang D W, Li M, Chen C F. Chem. Soc. Rev., 2020, 49(5): 1331.

doi: 10.1039/C9CS00680J
[3]
Qian G W, Yang X F, Wang X B, Herod J D, Bruce D W, Wang S Y, Zhu W G, Duan P F, Wang Y F. Adv. Optical Mater., 2020, 8(20): 2000775.

doi: 10.1002/adom.202000775
[4]
Heffern M C, Matosziuk L M, Meade T J. Chem. Rev., 2014, 114(8): 4496.

doi: 10.1021/cr400477t pmid: 24328202
[5]
Carr R, Evans N H, Parker D. Chem. Soc. Rev., 2012, 41(23): 7673.

doi: 10.1039/c2cs35242g
[6]
Schadt M. Annu. Rev. Mater. Sci., 1997, 27: 305.

doi: 10.1146/annurev.matsci.27.1.305
[7]
Zinna F, Giovanella U, Bari L D. Adv. Mater., 2015, 27(10): 1791.

doi: 10.1002/adma.201404891
[8]
Kim Y, Yeom B, Arteaga O, Jo Yoo S, Lee S G, Kim J G, Kotov N A. Nat. Mater., 2016, 15(4): 461.

doi: 10.1038/nmat4525
[9]
Yang Y, da Costa R C, Fuchter M J, Campbell A J. Nat. Photonics, 2013, 7(8): 634.

doi: 10.1038/nphoton.2013.176
[10]
Han D X, Yang X F, Han J L, Zhou J, Jiao T F, Duan P F. Nat. Commun., 2020, 11: 5659.

doi: 10.1038/s41467-020-19479-1
[11]
Bozoklu G, Gateau C, Imbert D, Pécaut J, Robeyns K, Filinchuk Y, Memon F, Muller G, Mazzanti M. J. Am. Chem. Soc., 2012, 134(20): 8372.

doi: 10.1021/ja3020814 pmid: 22548280
[12]
Kitchen J A, Barry D E, Mercs L, Albrecht M, Peacock R D, Gunnlaugsson T. Angew. Chem. Int. Ed., 2012, 51(3): 704.

doi: 10.1002/anie.201106863
[13]
Yeung C T, Yim K H, Wong H Y, Pal R, Lo W S, Yan S C, Yee-Man Wong M, Yufit D, Smiles D E, McCormick L J, Teat S J, Shuh D K, Wong W T, Law G L. Nat. Commun., 2017, 8: 1128.

doi: 10.1038/s41467-017-01025-1
[14]
Chen Y T, Xu C, Xu B J, Mao Z, Li J A, Yang Z, Peethani N R, Liu C, Shi G, Gu F L, Zhang Y, Chi Z G. Mater. Chem. Front., 2019, 3(9): 1800.

doi: 10.1039/C9QM00312F
[15]
Maeda C, Nagahata K, Shirakawa T, Ema T. Angew. Chem. Int. Ed., 2020, 59(20): 7813.

doi: 10.1002/anie.202001186
[16]
Xie F M, Zhou J X, Zeng X Y, An Z D, Li Y Q, Han D X, Duan P F, Wu Z G, Zheng Y X, Tang J X. Adv. Optical Mater., 2021, 9(9): 2100017.

doi: 10.1002/adom.202100017
[17]
Zheng S Y, Han J L, Jin X, Ye Q, Zhou J, Duan P F, Liu M H. Angew. Chem. Int. Ed., 2021, 60(42): 22711.

doi: 10.1002/anie.202108661
[18]
Han J L, Yang D, Jin X, Jiang Y Q, Liu M H, Duan P F. Angew. Chem. Int. Ed., 2019, 58(21): 7013.

doi: 10.1002/anie.201902090
[19]
Wu Y, You L H, Yu Z Q, Wang J H, Meng Z G, Liu Y, Li X S, Fu K, Ren X K, Tang B Z. ACS Mater. Lett., 2020, 2(5): 505.
[20]
Sang Y T, Han J L, Zhao T H, Duan P F, Liu M H. Adv. Mater., 2020, 32(41): 1900110.

doi: 10.1002/adma.201900110
[21]
Han J L, You J, Li X G, Duan P F, Liu M H. Adv. Mater., 2017, 29(19): 1606503.

doi: 10.1002/adma.201606503
[22]
Zhao J J, Liu Y Q, Hao A Y, Xing P Y. ACS Nano, 2020, 14(2): 2522.

doi: 10.1021/acsnano.0c00352
[23]
Li W J, Gu Q Y, Wang X Q, Zhang D Y, Wang Y T, He X, Wang W, Yang H B. Angew. Chem. Int. Ed., 2021, 60(17): 9507.

doi: 10.1002/anie.202100934
[24]
Han B. Acta Phys. Chim. Sin., 2019, 35: 1177.

doi: 10.3866/PKU.WHXB201904088
[25]
Zhao T H, Han J L, Shi Y H, Zhou J, Duan P F. Adv. Mater., 2021, 33(33): 2101797.

doi: 10.1002/adma.202101797
[26]
Zhang H W, Han J L, Jin X, Duan P F. Angew. Chem. Int. Ed., 2021, 60(9): 4575.

doi: 10.1002/anie.202014891
[27]
Zhou M H, Sang Y T, Jin X, Chen S X, Guo J C, Duan P F, Liu M H. ACS Nano, 2021, 15(2): 2753.

doi: 10.1021/acsnano.0c08539
[28]
Yang D, Duan P F, Zhang L, Liu M H. Nat. Commun., 2017, 8: 15727.

doi: 10.1038/ncomms15727
[29]
Fu K, Jin X, Zhou M H, Ma K, Duan P F, Yu Z Q. Nanoscale, 2020, 12(38): 19760.

doi: 10.1039/D0NR04510A
[30]
Wu Y, Yan C X, Li X S, You L H, Yu Z Q, Wu X F, Zheng Z G, Liu G F, Guo Z Q, Tian H, Zhu W H. Angew. Chem. Int. Ed., 2021, 60(46): 24549.

doi: 10.1002/anie.202109054
[31]
Liu Y H, Liu Y. Prog. Chem., 2019, 31(11): 1528.
( 刘耀华, 刘育. 化学进展, 2019, 31(11): 1528.)

doi: 10.7536/PC190708
[32]
赵君, 黄仁亮, 齐崴, 王跃飞, 苏荣欣, 何志敏. 化学进展, 2014, 26(9): 1445.
( Zhao J, Huang R L, Qi W, Wang Y F, Su R X, He Z M. Prog. Chem., 2014, 26(9): 1445.)
[33]
Hayasaka H, Miyashita T, Tamura K, Akagi K. Adv. Funct. Mater., 2010, 20(8): 1243.

doi: 10.1002/adfm.200902059
[34]
Hashimoto Y, Nakashima T, Shimizu D, Kawai T. Chem. Commun., 2016, 52(29): 5171.

doi: 10.1039/C6CC01277A
[35]
Shigeno M, Kushida Y, Yamaguchi M. J. Am. Chem. Soc., 2014, 136(22): 7972.

doi: 10.1021/ja502009f
[36]
Saito N, Kobayashi H, Yamaguchi M. Chem. Sci., 2016, 7(6): 3574.

doi: 10.1039/C5SC04959H
[37]
Sun Z B, Liu J K, Yuan D F, Zhao Z H, Zhu X Z, Liu D H, Peng Q, Zhao C H. Angew. Chem. Int. Ed., 2019, 58(15): 4840.

doi: 10.1002/anie.201813320
[38]
Takaishi K, Iwachido K, Ema T. J. Am. Chem. Soc., 2020, 142(4): 1774.

doi: 10.1021/jacs.9b13184 pmid: 31909994
[39]
Uchida T A, Nozaki K, Iwamura M. Chem. Asian J., 2016, 11(17): 2415.

doi: 10.1002/asia.201600798
[40]
Pascal S, Besnard C, Zinna F, di Bari L, Le Guennic B, Jacquemin D, Lacour J. Org. Biomol. Chem., 2016, 14(20): 4590.

doi: 10.1039/c6ob00752j pmid: 27139039
[41]
Ji L K, He Q W, Niu D, Tan J J, Ouyang G H, Liu M H. Chem. Commun., 2019, 55(78): 11747.

doi: 10.1039/C9CC06305F
[42]
Ito H, Sakai H, Okayasu Y, Yuasa J, Mori T, Hasobe T. Chem. Eur. J., 2018, 24(63): 16889.

doi: 10.1002/chem.201804171
[43]
Zhang L, Wang H X, Li S, Liu M H. Chem. Soc. Rev., 2020, 49(24): 9095.

doi: 10.1039/d0cs00191k pmid: 33118560
[44]
Gao Y, Ren C, Lin X D, He T C. Front. Chem., 2020, 8: 458.

doi: 10.3389/fchem.2020.00458
[45]
Canary J W. Chem. Soc. Rev., 2009, 38(3): 747.

doi: 10.1039/b800412a pmid: 19322467
[46]
Wong H Y, Lo W S, Yim K H, Law G L. Chem, 2019, 5(12): 3058.

doi: 10.1016/j.chempr.2019.08.006
[47]
Richardson F S, Riehl J P. Chem. Rev., 1977, 77(6): 773.

doi: 10.1021/cr60310a001
[48]
Li Z L, Zeman C J IV, Valandro S R, Bantang J P O, Schanze K S. J. Am. Chem. Soc., 2019, 141(32): 12610.

doi: 10.1021/jacs.9b04133
[49]
Liu C X, Yang D, Jin Q X, Zhang L, Liu M H. Adv. Mater., 2016, 28(8): 1644.

doi: 10.1002/adma.201504883
[50]
Wu Z, Pan K, Lü B, Ma L, Yang W T, Yin M Z. Chem. Asian J., 2016, 11(21): 3102.

doi: 10.1002/asia.201601114
[51]
Ciardelli F, Fabbri D, Pieroni O, Fissi A. J. Am. Chem. Soc., 1989, 111(9): 3470.

doi: 10.1021/ja00191a076
[52]
Miao W G, Wang S, Liu M H. Adv. Funct. Mater., 2017, 27(29): 1701368.

doi: 10.1002/adfm.201701368
[53]
Cao Z Z, Hao A Y, Xing P Y. Nanoscale, 2021, 13(2): 700.

doi: 10.1039/D0NR06835G
[54]
Hirano K, Ikeda T, Fujii N, Hirao T, Nakamura M, Adachi Y, Ohshita J, Haino T. Chem. Commun., 2019, 55(71): 10607.

doi: 10.1039/C9CC05253D
[55]
Jintoku H, Kao M T, del Guerzo A, Yoshigashima Y, Masunaga T, Takafuji M, Ihara H. J. Mater. Chem. C, 2015, 3(23): 5970.

doi: 10.1039/C5TC00878F
[56]
Ma K, Chen W J, Jiao T F, Jin X, Sang Y T, Yang D, Zhou J, Liu M H, Duan P F. Chem. Sci., 2019, 10(28): 6821.

doi: 10.1039/C9SC01577A
[57]
Sang Y T, Duan P F, Liu M H. Chem. Commun., 2018, 54(32): 4025.

doi: 10.1039/C8CC02130A
[58]
Zhang S J, Yang Y, Sun X Q, Yin F H, Qiang J L, Wang L Y. Prog. Chem., 2016, 28(2/3): 244.
( 张双进, 杨扬, 孙小强, 尹芳华, 强琚莉, 王乐勇. 化学进展, 2016, 28(2/3)
[59]
Han D X, Han J L, Huo S W, Qu Z M, Jiao T F, Liu M H, Duan P F. Chem. Commun., 2018, 54(44): 5630.

doi: 10.1039/C8CC02777C
[60]
Fan H H, Jiang H J, Zhu X F, Guo Z X, Zhang L, Liu M H. Nanoscale, 2019, 11(21): 10504.

doi: 10.1039/C9NR01959F
[61]
Niu D, Jiang Y Q, Ji L K, Ouyang G H, Liu M H. Angew. Chem. Int. Ed., 2019, 58(18): 5946.

doi: 10.1002/anie.201900607
[62]
Wang F, Ji W, Yang P, Feng C L. ACS Nano, 2019, 13(6): 7281.

doi: 10.1021/acsnano.9b03255
[63]
Chen J Q, Chen Y Y, Zhao L J, Feng L Y, Xing F F, Zhao C Q, Hu L Z, Ren J S, Qu X G. J. Mater. Chem. C, 2019, 7(44): 13947.

doi: 10.1039/C9TC04508B
[64]
David A H G, Casares R, Cuerva J M, Campaña A G, Blanco V. J. Am. Chem. Soc., 2019, 141(45): 18064.

doi: 10.1021/jacs.9b07143
[65]
Okano K, Taguchi M, Fujiki M, Yamashita T. Angew. Chem. Int. Ed., 2011, 50(52): 12474.

doi: 10.1002/anie.201104708
[66]
Zhang X P, Mei J F, Lai J C, Li C H, You X Z. J. Mater. Chem. C, 2015, 3(10): 2350.

doi: 10.1039/C4TC02800G
[67]
Zhang J H, Dai L X, Webster A M, Chan W T K, MacKenzie L E, Pal R, Cobb S L, Law G L. Angew. Chem. Int. Ed., 2021, 60(2): 1004.

doi: 10.1002/anie.202012133
[68]
Yeom J, Santos U S, Chekini M, Cha M, de Moura A F, Kotov N A. Science, 2018, 359(6373): 309.

doi: 10.1126/science.aao7172
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[3] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[4] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[5] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[6] Minghao Zhou, Shuang Jiang, Tianyong Zhang, Yonghong Shi, Xue Jin, Pengfei Duan. Construction and Optoelectrical Properties of Chiral Perovskite Nanomaterials [J]. Progress in Chemistry, 2020, 32(4): 361-370.
[7] Chenghao Zhu, Junliang Zhang. Palladium Catalyzed Heck-Type Reaction of Organic Halides and Alkyl-Alkynes [J]. Progress in Chemistry, 2020, 32(11): 1745-1752.
[8] Mingfang Ma, Tianxiang Luan, Pengyao Xing, Zhaolou Li, Xiaoxiao Chu, Aiyou Hao. Low Molecular Weight Organic Compound Gel Based on β-cyclodextrin [J]. Progress in Chemistry, 2019, 31(2/3): 225-235.
[9] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[10] Xie Zheng, Yifan Zhou, Siyuan Chen, Xiaoyun Liu, Liusheng Zha. Stimuli-Responsive Electrospun Nanofibers [J]. Progress in Chemistry, 2018, 30(7): 958-975.
[11] Hongchuan Fan, Dong Yang, Pengfei Duan. Triplet-Triplet Annihilation-Based Upconversion in Supramolecular System [J]. Progress in Chemistry, 2018, 30(7): 879-887.
[12] Yuxia Gao, Yun Liang, Jun Hu, Yong Ju. Supramolecular Chiral Self-Assembly Based on Small Molecular Natural Products [J]. Progress in Chemistry, 2018, 30(6): 737-752.
[13] Jun Luo, YanSong Zheng. Chiral Calixarenes and Their Supramolecular Chirality [J]. Progress in Chemistry, 2018, 30(5): 601-615.
[14] Juan Ren, Shen Bian, Yiyun Wang, Xianglei Kong. Magic-Number Cluster of Serine Octamer: Structure and Chiral Characteristics [J]. Progress in Chemistry, 2018, 30(4): 383-397.
[15] Mengnan Qu*, Mingjuan Yuan, Jiao He, Menghui Xue, Jinmei He*. Smart Responsive Superwetting Materials [J]. Progress in Chemistry, 2018, 30(12): 1874-1886.