中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (5): 1153-1165 DOI: 10.7536/PC210510 Previous Articles   Next Articles

• Review •

Regulating Cell Adhesion by Material Surface Properties

Xuanshu Zhong1, Zongjian Liu2, Xue Geng1, Lin Ye1(), Zengguo Feng1, Jianing Xi2()   

  1. 1. School of Materials, Beijing Institute of Technology,Beijing 100081, China
    2. Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100044, China
  • Received: Revised: Online: Published:
  • Contact: Lin Ye, Jianing Xi
  • Supported by:
    National Natural Science Foundation of China(2017YFC1104101)
Richhtml ( 38 ) PDF ( 580 ) Cited
Export

EndNote

Ris

BibTeX

Biomaterials aim to achieve tissue regeneration and repair by regulating the interaction between materials and cells. The adhesion determines whether cells could perform the expected biological functions absolutely. Therefore, it is critical for biomaterials to regulate cell adhesion by surface physical and chemical properties, which have aroused more and more attention recently. The physical modification on materials surface usually includes the regulation of surface roughness, morphology, modulus, and porous properties in order to build a suitable environment for cell adhesion. On the other hand, the chemical modifications such as surface charge and hydrophobicity regulation, covalently grafting and encapsulating adhesion-promoting molecules into the surface have made great effort to improve the interaction between the material surface and the cell, which will be capable of promoting cell adhesion. In recent years, a great number of breakthroughs have been accomplished in the field. In addition to covalently graft various adhesion-promoting molecules on the surface, it is reported that the adhesion performance would be significantly promoted by precise control of the sequence of the adhesion-promoting molecules. The sequence modulation represents a new strategy of surface modification, which can greatly enhance cell adhesion without the introduction of more powerful cell-promoting molecules or increasing their density. Besides, the intelligent change of adhesion-promoting and anti-adhesion surface can be accomplished according to the stimuli of external signals, which has been successfully applied in cell sheet tissue engineering and shows promising potential to be put into clinical application. Consequently, the review comprehensively summarizes the influences of material surface properties on cell adhesion by physical and chemical surface modification as well as the regulation of stimuli-responsive surface, the designs of adhesion-promoting surface, the technologies of adhesion-promoting surface preparation, and discusses their prospects.

Contents

1 Introduction

2 Cell adhesion regulated by surface physical properties

2.1 Surface roughness

2.2 Surface topography

2.3 Surface modulus and viscoelasticity

3 Cell adhesion regulated by surface chemical properties

3.1 Hydrophilicity and surface charge

3.2 Surface chemical modification by adhesion-promoting molecules and their sequence modulation

3.3 Surface encapsulation of adhesion-promoting molecules

4 Cell adhesion regulated by stimuli-responsive surface

4.1 Cell sheet tissue engineering

4.2 Supramolecular hydrogel with dynamic surface modulus

5 Conclusion and outlook

Fig. 1 The mechanism and influencing factors of cell adhesion
Fig. 2 The selective adhesion of endothelial cells (EC) and smooth muscle cells (SMC) by surface roughness Sa[22]. Copyright 2021, Elsevier Bioactive Materials
Fig. 3 The various surface morphologies for cell adhesion
Fig. 4 Two strategies of chemical grafting of heparin to improve the surface hydrophilicity of materials
Fig. 5 The effect of ligand sequence on cell adhesion
Fig. 6 The molecular structure of polyrotaxane and its modulation on cell adhesion: (a)Molecular structure of rotaxane and polyrotaxane; (b)Polyrotaxane triblock copolymer and "polyrotaxane loop"[81]. Copyright 2012 Elsevier Colloids & Surfaces B Biointerfaces; (c)The rapid response mechanism of "polyrotaxane loop" to integrins[84]. Copyright 2013 American Chemical Society
Fig. 7 Functional coatings on various substrates by dopamine
Fig. 8 Hydroxyapatite film (HAP)-TiO2 -Ti composite structure
Fig. 9 Core-shell structure fiber loading with collagen in the shell: (a) Schematic diagram of coaxial electrospinning; (b) TEM photograph of core-shell structure fiber; (c) Endothelial cells adhesion on the scaffold with core-shell structure fiber
Fig. 10 Construction of stimuli-responsive materials surface for cell
Fig. 11 Polyrotaxane hydrogel with dynamic modulus
[1]
Pashneh-Tala S, MacNeil S, Claeyssens F. Tissue Eng. B: Rev., 2016, 22(1): 68.

doi: 10.1089/ten.teb.2015.0100
[2]
Gumbiner B M. Cell, 1996, 84(3): 345.

doi: 10.1016/s0092-8674(00)81279-9 pmid: 8608588
[3]
Shattil S J, Ginsberg M H. J. Clin. Invest., 1997, 100(1): 1.

pmid: 9202049
[4]
Parsons J T, Horwitz A R, Schwartz M A. Nat. Rev. Mol. Cell Biol., 2010, 11(9): 633.

doi: 10.1038/nrm2957
[5]
Takeichi M. Science, 1991, 251(5000): 1451.

pmid: 2006419
[6]
Albelda S M, Buck C A. FASEB J., 1990, 4(11): 2868.

pmid: 2199285
[7]
Grinnell B W, Hermann R B, Yan S B. Glycobiology, 1994, 4(2): 221.

pmid: 7519910
[8]
Hynes R O. Cell, 1992, 69(1): 11.

doi: 10.1016/0092-8674(92)90115-s pmid: 1555235
[9]
Ruoslahti E, Pierschbacher M D. Science, 1987, 238(4826): 491.

pmid: 2821619
[10]
Huang J, Gra Ter S V, Corbellini F, Rinck S, Bock E, Kemkemer R. Nano Lett., 2009, 9: 1111.

doi: 10.1021/nl803548b
[11]
Hersel U, Dahmen C, Kessler H. Biomaterials, 2003, 24(24): 4385.

doi: 10.1016/S0142-9612(03)00343-0
[12]
Wang Y F, Yu Z, Li K M, Hu J. Appl. Surf. Sci., 2020, 501: 144279.

doi: 10.1016/j.apsusc.2019.144279
[13]
Liang Y, Song D, Chen J. Chin. J. Mech. Eng., 2008, 44: 867.
[14]
Donaghy C, McFadden R, Smith G, Kelaini S, Carson L, Malinov S, Margariti A, Chan C W. Coatings, 2019, 9(3): 186.

doi: 10.3390/coatings9030186
[15]
Schnell G, Staehlke S, Duenow U, Nebe J B, Seitz H. Materials, 2019, 12(13): 2210.

doi: 10.3390/ma12132210
[16]
Stepanovska J, Matejka R, Otahal M, Rosina J, Bacakova L. Coatings, 2020, 10(8): 762.

doi: 10.3390/coatings10080762
[17]
Uzer B. Front. Mater., 2020, 7: 99.

doi: 10.3389/fmats.2020.00099
[18]
Jiang C, Wang K, Jiang X Z, Zhang C, Wang B. Polymers, 2020, 12(11): 2475.

doi: 10.3390/polym12112475
[19]
Bernhardt A, Schneider J, Schroeder A, Papadopoulous K, Lopez E, Brückner F, Botzenhart U. Mater. Sci. Eng. C, 2021, 119: 111631.

doi: 10.1016/j.msec.2020.111631
[20]
Xue J J, Xie J W, Liu W Y, Xia Y N. Acc. Chem. Res., 2017, 50: 1976.

doi: 10.1021/acs.accounts.7b00218
[21]
Metwally S, Ferraris S, Spriano S, Krysiak Z J, Kaniuk Ł, Marzec M M, Kim S K, Szewczyk P K, Gruszczyński A, Wytrwal-Sarna M, Karbowniczek J E, Bernasik A, Kar-Narayan S, Stachewicz U. Mater. Des., 2020, 194: 108915.

doi: 10.1016/j.matdes.2020.108915
[22]
Zhou K, Li Y T, Zhang L, Jin L, Yuan F, Tan J Y, Yuan G Y, Pei J. Bioact. Mater., 2021, 6(1): 262.

doi: 10.1016/j.bioactmat.2020.08.004 pmid: 32913933
[23]
Daskalova A, Angelova L, Carvalho A, Trifonov A, Nathala C, Monteiro F, Buchvarov I. Appl. Surf. Sci., 2020, 513: 145914.

doi: 10.1016/j.apsusc.2020.145914
[24]
Kunrath M, dos Santos R, de Oliveira S, Hubler R, Sesterheim P, Teixeira E. Int. J. Oral Maxillofac. Implants, 2020, 35(4): 773.

doi: 10.11607/jomi.8069
[25]
Liu H, Liu R, Ullah I, Zhang S Y, Sun Z Q, Ren L, Yang K. J. Mater. Sci. Technol., 2020, 48: 130.

doi: 10.1016/j.jmst.2019.12.019
[26]
Xu L N, Shao S Y, Zhu W Q, Chen C, Zhang S M, Qiu J. RSC Adv., 2019, 9(32): 18589.

doi: 10.1039/C9RA03173A
[27]
Schaeske J, Fadeeva E, Schlie-Wolter S, Deiwick A, Chichkov B N, Ingendoh-Tsakmakidis A, Stiesch M, Winkel A. Int. J. Mol. Sci., 2020, 21(22): 8442.

doi: 10.3390/ijms21228442
[28]
Weiss L, Nessler Y, Novelli M, Laheurte P, Grosdidier T. Metals, 2019, 9(12): 1344.

doi: 10.3390/met9121344
[29]
Huo B, Zhao Y, Bai X, Sun Q, Jiao F. Acta Mech. Sin., 2020, 36(5): 1158.

doi: 10.1007/s10409-020-00997-6
[30]
Rigolin M S M, Barbugli P A, Jorge J H, Reis M R D, Adabo G L, Casemiro L A, Martins C H G, de Lima O J, Mollo F D A. J. Prosthet. Dent., 2019, 122(6): 564.e1.
[31]
Czwartos J, Budner B, Bartnik A. eXPRESS Poly. Lett., 2020, 14: 1063.

doi: 10.3144/expresspolymlett.2020.86
[32]
Ge J P, Wang F, Xu Z Y, Shen X N, Gao C, Wang D L, Hu G F, Gu J L, Tang T T, Wei J. J. Mater. Chem. B, 2020, 8(13): 2618.

doi: 10.1039/C9TB02456E
[33]
Behera R R, Das A, Hasan A, Pamu D, Pandey L M, Sankar M R. J. Alloys Compd., 2020, 842: 155683.

doi: 10.1016/j.jallcom.2020.155683
[34]
Purnama A, Furlan V, Dessi D, Demir A G, Tolouei R, Paternoster C, Levesque L, Previtali B, Mantovani D. Surf. Eng., 2020, 36(12): 1240.

doi: 10.1080/02670844.2018.1495408
[35]
Yu M Z, Wan Y, Ren B, Wang H W, Zhang X, Qiu C, Liu A Q, Liu Z Q. ACS Omega, 2020, 5(49): 31738.

doi: 10.1021/acsomega.0c04373
[36]
Qi X, Zheng G, Sui L. Int. J. Stomatology, 2018, 45: 527.
[37]
Wang W, Wang Z B, Fu Y T, Dunne N, Liang C, Luo X, Liu K D, Li X M, Pang X N, Lu K. J. Biomed. Mater. Res. A, 2020, 108(9): 1824.

doi: 10.1002/jbm.a.36948 pmid: 32388898
[38]
Meng X C, Zhang J, Chen J, Nie B N, Yue B, Zhang W, Lyu Z C, Long T, Wang Y. J. Mater. Chem. B, 2020, 8(44): 10190.

doi: 10.1039/D0TB01899F
[39]
Ding R, Chen T J, Xu Q Z, Wei R, Feng B, Weng J, Duan K, Wang J X, Zhang K, Zhang X D. ACS Biomater. Sci. Eng., 2020, 6(2): 842.

doi: 10.1021/acsbiomaterials.9b01148 pmid: 33464863
[40]
Wang Z H, Cui Y, Wang J N, Yang X H, Wu Y F, Wang K, Gao X, Li D, Li Y J, Zheng X L, Zhu Y, Kong D L, Zhao Q. Biomaterials, 2014, 35(22): 5700.

doi: 10.1016/j.biomaterials.2014.03.078
[41]
Raczkowska J, Orzechowska B. Micron, 2020, 139: 102948.

doi: 10.1016/j.micron.2020.102948
[42]
Balion Z, Cėpla V, Svirskiene N, Svirskis G, Druceikaitė K, Inokaitis H, Rusteikaitė J, Masilionis I, Stankevičienė G, Jelinskas T, Ulčinas A, Samanta A, Valiokas R, Jekabsone A. Biomolecules, 2020, 10(5): 754.

doi: 10.3390/biom10050754
[43]
Chen J L, Backman L J, Zhang W, Ling C, Danielson P. ACS Biomater. Sci. Eng., 2020, 6(9): 5162.

doi: 10.1021/acsbiomaterials.0c00510
[44]
Zhang T. Master Dissertation of Chongqing University, 2016.
(张田. 重庆大学硕士论文, 2016.).
[45]
Chaudhuri O, Cooper-White J, Janmey P A, Mooney D J, Shenoy V B. Nature, 2020, 584(7822): 535.

doi: 10.1038/s41586-020-2612-2
[46]
Krishnan A. Doctoral Dissertation of the Pennsylvania State University, 2005.
[47]
Oster M, Schlatter G, Gallet S, Baati R, Pollet E, Gaillard C, AvÉrous L, Fajolles C, HÉbraud A. J. Mater. Chem. B, 2017, 5(11): 2181.

doi: 10.1039/c6tb03089k pmid: 32263691
[48]
Zhang Y J, Zhang Z K, C W Z. Acta Polym. Sinica. 2017, 2: 306.
[49]
Zhang J M, Wang J N, Wei Y Z, Gao C, Chen X J, Kong W, Kong D L, Zhao Q. Colloids Surf. B: Biointerfaces, 2016, 146: 280.

doi: 10.1016/j.colsurfb.2016.06.023
[50]
Cao J, Geng X, Wen J, Li Q X, Ye L, Zhang A Y, Feng Z G, Guo L R, Gu Y Q. J. Biomed. Mater. Res., 2017, 105(10): 2806.

doi: 10.1002/jbm.a.36144
[51]
Ye L, Wu X, Mu Q, Chen B, Duan Y H, Geng X, Gu Y Q, Zhang A Y, Zhang J, Feng Z G. J. Biomater. Sci. Polym. Ed., 2011, 22(1/3): 389.

doi: 10.1163/092050610X487710
[52]
Ye L, Wu X, Duan H Y, Geng X, Chen B, Gu Y Q, Zhang A Y, Zhang J, Feng Z G. J. Biomed. Mater. Res., 2012, 100A(12): 3251.

doi: 10.1002/jbm.a.34270
[53]
Geng X, Ye L, Chen B. Chem. J. Chin. U., 2010, 1: 205.
[54]
Metwally S, Stachewicz U. Mater. Sci. Eng. C, 2019, 104: 109883.

doi: 10.1016/j.msec.2019.109883
[55]
Kwan C S, Cerullo A R, Braunschweig A B. ChemPlusChem, 2020, 85(12): 2704.

doi: 10.1002/cplu.202000637
[56]
Wang K, Zheng W T, Pan Y W, Ma S Y, Guan Y, Liu R M, Zhu M F, Zhou X, Zhang J, Zhao Q, Zhu Y, Wang L Y, Kong D L. Macromol. Biosci., 2016, 16(4): 608.

doi: 10.1002/mabi.201500355 pmid: 26756321
[57]
Tang Y, Luo K Y, Chen Y Q, Gao X L, Tan J L, Dai Q J, Xu J Z, Dong S W, Luo F. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2020, 34: 1594.
(汤勇, 罗科宇, 陈玥奇, 高小亮, 谭玖林, 代其杰, 许建中, 董世武, 罗飞. 中国修复重建外科杂志, 2020, 34: 1594.).
[58]
Oliver-Cervelló L, Martin-Gómez H, Reyes L, Noureddine F, Ada Cavalcanti-Adam E, Ginebra M P, Mas-Moruno C. Adv. Healthcare Mater., 2021, 10(7): 2001757.

doi: 10.1002/adhm.202001757
[59]
Martin-Gómez H, Oliver-Cervelló L, Buxadera-Palomero J, Ginebra M P, Mas-Moruno C. ChemBioChem, 2021, 22(5): 839.

doi: 10.1002/cbic.202000670 pmid: 33094896
[60]
Li T, Hao L, Li J, Du C, Wang Y. Bioact. Mater., 2020, 5: 1044.
[61]
Xiao X, Chen C S, Liu W Q. Prog. Chem., 2017, 5: 513.
[62]
Li J S, Kwiatkowska B, Lu H, Voglstätter M, Ueda E, Grunze M, Sleeman J, Levkin P A, Nazarenko I. ACS Appl. Mater. Interfaces, 2016, 8(42): 28554.

doi: 10.1021/acsami.6b11338
[63]
Park G H, Kang M S, Knowles J C, Gong M S. J. Biomater. Appl., 2016, 30(9): 1350.

doi: 10.1177/0885328215626892 pmid: 26767393
[64]
Jia Z J, Shi Y Y, Xiong P, Zhou W H, Cheng Y, Zheng Y F, Xi T F, Wei S C. ACS Appl. Mater. Interfaces, 2016, 8(27): 17151.

doi: 10.1021/acsami.6b05198
[65]
Ren X K, Feng Y K, Guo J T, Wang H X, Li Q, Yang J, Hao X F, Lv J, Ma N, Li W Z. Chem. Soc. Rev., 2015, 44(15): 5745.

doi: 10.1039/C5CS90066B
[66]
Shan Y P, Jia B, Ye M, Shen H, Chen W C, Zhang H F. Artif. Organs, 2018, 42(8): 824.

doi: 10.1111/aor.13131
[67]
Butruk-Raszeja B A, Dresler M S, Kuźmińska A, Ciach T. Colloids Surf. B: Biointerfaces, 2016, 144: 335.

doi: 10.1016/j.colsurfb.2016.04.017
[68]
Tang D, Chen S Y, Hou D, Gao J C, Jiang L, Shi J, Liang Q G, Kong D L, Wang S F. Mater. Sci. Eng. C, 2017, 84: 1.

doi: 10.1016/j.msec.2017.11.005
[69]
Zheng W T, Guan D, Wang Z H, Kong D L, Zhang J. Using RGD peptide to realize PCL fiber membrane functionalization through natural condensation reaction. Beijing: Chinese scientific papers online. [2015-12-17]. http://www.paper.edu.cn/releasepaper/content/201512-954.
[70]
Arnold M, Hirschfeld-Warneken V C, Lohmüller T, Heil P, Blümmel J, Cavalcanti-Adam E A, LÓpez-García M, Walther P, Kessler H, Geiger B, Spatz J P. Nano Lett., 2008, 8(7): 2063.

doi: 10.1021/nl801483w pmid: 18558788
[71]
Huang J H, Gräter S V, Corbellini F, Rinck S, Bock E, Kemkemer R, Kessler H, Ding J D, Spatz J P. Nano Lett., 2009, 9(3): 1111.

doi: 10.1021/nl803548b
[72]
Wong S H D, Yin B H, Yang B G, Lin S E, Li R, Feng Q, Yang H R, Zhang L, Yang Z M, Li G, Choi C H J, Bian L M. Adv. Funct. Mater., 2019, 29(8): 1806822.

doi: 10.1002/adfm.201806822
[73]
Harada A. Advances in Polymer Science. Berlin Heidelberg, 1997. 142.
[74]
Yasuda Y, Hidaka Y, Mayumi K, Yamada T, Fujimoto K, Okazaki S, Yokoyama H, Ito K. J. Am. Chem. Soc., 2019, 141(24): 9655.

doi: 10.1021/jacs.9b03792
[75]
Yasuda Y, Toda M, Mayumi K, Yokoyama H, Morita H, Ito K. Macromolecules, 2019, 52(10): 3787.

doi: 10.1021/acs.macromol.9b00118
[76]
Cho I S, Ooya T. Chem. Eur. J., 2020, 26(4): 913.

doi: 10.1002/chem.201904446
[77]
Yan Z, Ye L, Zhang A Y, Feng Z G. Chin. J. Polym. Sci., 2017, 35(6): 752.f.
[78]
Yan Z, Guo A J, Ye L, Zhang A Y, Feng Z G. RSC Adv., 2016, 6(39): 33221.

doi: 10.1039/C5RA27178A
[79]
Ye L, Liu X Q, Ito K, Feng Z G. J. Mater. Chem. B, 2014, 2(35): 5746.

doi: 10.1039/C4TB00719K
[80]
Guo A J, Yan Z, Ye L, Zhang A Y, Feng Z G. Macromol. Chem. Phys., 2016, 217(5): 617.

doi: 10.1002/macp.201670014
[81]
Inoue Y, Ye L, Ishihara K, Yui N. Colloids Surf. B: Biointerfaces, 2012, 89: 223.

doi: 10.1016/j.colsurfb.2011.09.020
[82]
Rajendran A K, Arisaka Y, Iseki S, Yui N. ACS Biomater. Sci. Eng., 2019, 5(11): 5652.

doi: 10.1021/acsbiomaterials.8b01343
[83]
Hyun H, Yui N. Macromol. Biosci., 2011, 11(6): 765.

doi: 10.1002/mabi.201000507
[84]
Seo J H, Kakinoki S, Inoue Y, Yamaoka T, Ishihara K, Yui N. J. Am. Chem. Soc., 2013, 135(15): 5513.

doi: 10.1021/ja400817q
[85]
Masuda H, Arisaka Y, Sekiya-Aoyama R, Yoda T, Yui N. Polymers, 2020, 12(4): 924.

doi: 10.3390/polym12040924
[86]
Hyodo K, Arisaka Y, Yamaguchi S, Yoda T, Yui N. Macromol. Biosci., 2019, 19(4): 1800346.

doi: 10.1002/mabi.201800346
[87]
Arisaka Y, Yui N. Biomater. Sci., 2021, 9(6): 2271.

doi: 10.1039/D0BM02127J
[88]
Sekiya-Aoyama R, Arisaka Y, Hakariya M, Masuda H, Iwata T, Yoda T, Yui N. Biomater. Sci., 2021, 9(3): 675.

doi: 10.1039/D0BM01782E
[89]
Kulka M W, Nie C X, Nickl P, Kerkhoff Y, Garg A, Salz D, Radnik J, Grunwald I, Haag R. Adv. Mater. Interfaces, 2020, 7(24): 2000931.

doi: 10.1002/admi.202000931
[90]
Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318(5849): 426.

doi: 10.1126/science.1147241
[91]
Xiao Y, Wang W X, Tian X H, Tan X, Yang T, Gao P, Xiong K Q, Tu Q F, Wang M, Maitz M F, Huang N, Pan G Q, Yang Z L. Research, 2020, 2020: 7236946.
[92]
Yang Z L, Zhao X, Hao R, Tu Q F, Tian X H, Xiao Y, Xiong K Q, Wang M, Feng Y H, Huang N, Pan G Q. PNAS, 2020, 117(28): 16127.

doi: 10.1073/pnas.2003732117
[93]
Bao S H, Kang J L, Tu C Z, Xu C F, Ye L, Zhang H, Zhao H, Zhang A Y, Feng Z G, Zhang F X. New J. Chem., 2018, 42(5): 3722.

doi: 10.1039/C7NJ04138A
[94]
Ku S H, Ryu J, Hong S K, Lee H, Park C B. Biomaterials, 2010, 31(9): 2535.

doi: 10.1016/j.biomaterials.2009.12.020
[95]
Jalali F, Oveisi H, Meshkini A. J. Mater. Sci.: Mater. Med., 2020, 31(12): 114.
[96]
Lenis J A, Rico P, Ribelles J L G, Pacha-Olivenza M A, González-Martín M L, Bolívar F J. Mater. Sci. Eng. C, 2020, 116: 111268.

doi: 10.1016/j.msec.2020.111268
[97]
Sistanipour E, Meshkini A, Oveisi H. Colloids Surf. B: Biointerfaces, 2018, 169: 329.

doi: 10.1016/j.colsurfb.2018.05.046
[98]
Mohd Pu’ad N A S, Koshy P, Abdullah H Z, Idris M I, Lee T C. Heliyon, 2019, 5(5): e01588.

doi: 10.1016/j.heliyon.2019.e01588
[99]
Yang Y S, Wu Q Z, Wang M, Long J, Mao Z, Chen X H. Cryst. Growth Des., 2014, 14(9): 4864.

doi: 10.1021/cg501063j
[100]
Shams M, Karimi M, Heydari M, Salimi A. Mater. Sci. Eng. C, 2020, 117: 111271.

doi: 10.1016/j.msec.2020.111271
[101]
Scialla S, Palazzo B, Sannino A, Verri T, Gervaso F, Barca A. Biology, 2020, 9(11): 357.

doi: 10.3390/biology9110357
[102]
Nifant’ev I, Shlyakhtin A, Komarov P, Tavtorkin A, Kananykhina E, Elchaninov A, Vishnyakova P, Fatkhudinov T, Ivchenko P. Polymers, 2020, 12(12): 3039.

doi: 10.3390/polym12123039
[103]
da Silva B A, Valério A, Cesca K, Hotza D, Gómez González S Y. ChemistrySelect, 2020, 5(44): 14050.

doi: 10.1002/slct.202002399
[104]
Ye L, Cao J, Chen L, Geng X, Zhang A Y, Guo L R. J. Biomed. Mater. Res. A, 2015, 103A: 3863.
[105]
Duan N N, Geng X, Ye L, Zhang A Y, Feng Z G, Guo L R, Gu Y Q. Biomed. Mater., 2016, 11(3): 035007.

doi: 10.1088/1748-6041/11/3/035007
[106]
Geng X, Xu Z Q, Tu C Z, Peng J, Jin X, Ye L, Zhang A Y, Gu Y Q, Feng Z G. ACS Appl. Bio Mater., 2021, 4(3): 2373.

doi: 10.1021/acsabm.0c01225 pmid: 35014358
[107]
Imashiro C, Shimizu T. Int. J. Mol. Sci., 2021, 22(1): 425.

doi: 10.3390/ijms22010425
[108]
Sekine H, Okano T. Int. J. Mol. Sci., 2020, 22(1): 92.

doi: 10.3390/ijms22010092
[109]
Cole M A, Voelcker N H, Thissen H, Griesser H J. Biomaterials, 2009, 30(9): 1827.

doi: 10.1016/j.biomaterials.2008.12.026
[110]
Pelham R J, Wang Y L. PNAS, 1997, 94: 25.
[111]
Nakamura T, Takashima Y, Hashidzume A, Yamaguchi H, Harada A. Nat. Commun., 2014, 5(1): 4622.

doi: 10.1038/ncomms5622
[112]
Zheng Y T, Hashidzume A, Takashima Y, Yamaguchi H, Harada A. Nat. Commun., 2012, 3(1): 831.

doi: 10.1038/ncomms1841
[113]
Zheng Y T, Hashidzume A, Harada A. Macromol. Rapid Commun., 2013, 34(13): 1062.

doi: 10.1002/marc.201300324
[114]
Hörning M, Nakahata M, Linke P, Yamamoto A, Veschgini M, Kaufmann S, Takashima Y, Harada A, Tanaka M. Sci. Rep., 2017, 7(1): 7660.

doi: 10.1038/s41598-017-07934-x pmid: 28794475
[115]
Zhu Y T, Zhang Q, Shi X L, Han D. Adv. Mater., 2019, 31(45): 1804950.

doi: 10.1002/adma.201804950
[116]
Zou W, Liu H T, Li T, Wang M. Chin. J. Tissue Eng. Res., 2012, 16(41): 7762.
(邹薇, 刘慧通, 李腾, 王民. 中国组织工程研究, 2012, 16(41): 7762.)
[117]
Vishnu V, Muralikrishna B, Verma A, Nayak S C, Sowpati D T, Radha V, Shekar P C. Stem Cell Rev. Rep., 2021, 17(4): 1465.

doi: 10.1007/s12015-021-10136-8 pmid: 33624208
[118]
Pacelli S, Paolicelli P, Petralito S, Subham S, Gilmore D, Varani G, Yang G, Lin D, Casadei M A, Paul A. ACS Appl. Bio Mater., 2020, 3(2): 945.

doi: 10.1021/acsabm.9b00989
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[5] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[6] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[7] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.
[8] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[9] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[10] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[11] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.
[12] Ping Liu, Jing Wang, Hongye Hao, Yunfan Xue, Junjie Huang, Jian Ji. Photochemical Surface Modification of Biomedical Materials [J]. Progress in Chemistry, 2019, 31(10): 1425-1439.
[13] Dongdong Zha, Bin Guo, Bengang Li, Peng Yin, Panxin Li. Chemical and Physical Mechanism of Water Resistance for Thermoplastic Starch [J]. Progress in Chemistry, 2019, 31(1): 156-166.
[14] Wang Yali, Li Zhen, Liu Zhihong. Water Solubilization of Upconversion Nanoparticles [J]. Progress in Chemistry, 2016, 28(5): 617-627.
[15] Yang Caiyun, Cao Changqian, Cai Yao, Zhang Tongwei, Pan Yongxin. The Surface Modification of Ferritin and Its Applications [J]. Progress in Chemistry, 2016, 28(1): 91-102.