中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (8): 1168-1176 DOI: 10.7536/PC221222 Previous Articles   Next Articles

• Review •

Design and Application of Chiral Plasmonic Core-Shell Nanostructures

Wenliang Liu, Yuqi Wang, Xiaohan Li, Xuanyu Zhang, Jiqian Wang()   

  1. State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China),Qingdao 266580, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: jqwang@upc.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22072181); Innovation Fund Project for Graduate Student of China University of Petroleum(23CX04031A); Fundamental Research Funds for the Central Universities.
Richhtml ( 21 ) PDF ( 278 ) Cited
Export

EndNote

Ris

BibTeX

Chirality describes the geometrical feature of an object that cannot overlap with its mirror image and has been a crucial concept in chemistry and biology since the 19th century. With the development of nanotechnology, chiral plasmonic nanomaterials are becoming the research focuses for scientists to develop chiral functional materials due to the special chiral optical properties and good biocompatibility. However, the relatively weak chiral signals limit their applications. Chiral plasmonic core-shell nanostructures combine the chiral plasmonic properties and core-shell structures, which is an effective strategy to amplify chiral signals. In addition, the core-shell nanostructure integrates the properties of both internal and external materials to complement each other, which can further improve the physicochemical properties and enhance the performance in various fields. This paper summarizes the design strategies of chiral plasmonic core-shell nanostructures based on the spatial distribution of chiral molecules, and reviews their applications in the fields of ultrasensitive sensing and chiral catalysis. We analyze the existing problems and their possible solutions, and make an outlook on their future development.

Contents

1 Introduction

2 Design strategies for chiral plasmonic core-shell nanostructures

2.1 Chiral molecules distributed on the shell

2.2 Chiral molecules distributed on the core

2.3 Chiral molecules distributed in the core-shell gap

3 Application of chiral plasmonic core-shell nanostructures

3.1 Ultra-sensitive sensing

3.2 Chiral catalysis

4 Conclusion and outlook

Fig.1 (a)Schematic diagram of Au@DNA modified Ag. (b)Schematic diagram of the preparation of Au@DNA modified Ag. (c)TEM image of Au@DNA modified Ag. (d)UV-vis absorption spectra of DNA and Au@DNA modified Ag. (e)CD spectra of DNA, Au@Ag, and Au@DNA modified Ag[38]
Fig.2 (a)Schematic diagram of DNA bridged Au@AgAu. (b)Schematic diagram of the preparation of DNA bridged Au@AgAu. (c)TEM images of DNA bridged Au@AgAu. (d)CD spectra of DNA bridged Au@AgAu[39]
Fig.3 (a)Schematic diagram of Au@cysteine modified Ag. (b)TEM images of Au@cysteine modified Ag(c)CD spectra of Au@cysteine modified Ag. (d~f)Chiral response signal amplification strategy for Au@cysteine modified Ag[43]
Fig.4 (a)Schematic diagram of chiral molecules modified Au@Ag. (b)Schematic diagram of the preparation of DNA modified Au@Ag.(c)TEM images of DNA modified Au@Ag[44]. (d)Schematic diagram of the preparation of cysteine modified Au@Ag.(e)TEM images of cysteine modified Au@Ag[45]
Fig.5 (a)Schematic diagram of cysteine modified Au@Ag. (b)TEM image of cysteine modified Au@Ag.(c)CD spectra of cysteine modified Au@Ag. (d~f)Chiral response signal amplification strategy for cysteine modified Au@Ag[46]
Fig.6 (a)Schematic diagram of penicillamine modified Au@AgAu. (b)TEM images of penicillamine modified Au@AgAu.(c)Schematic diagram of the preparation of penicillamine modified Au@AgAu[47]
Table 1 Spatial distribution of chiral molecules in chiral plasmonic core-shell nanostructures and their g factors
Fig.7 (a)DNA bridged Au@AgAu for zeptomolar DNA detection and sensing[39] ;(b)penicillamine-modified Au@AgAu for Zn2+ detection and sensing in living cells[47]
Fig.8 Cysteine modified Au@Ag for asymmetric catalysis[45]
[1]
Zheng G C, He J J, Kumar V, Wang S L, Pastoriza-Santos I, Perez-Juste J, Liz-Marzan L M, Wong K Y. Chem. Soc. Rev., 2021, 50(6): 3738.

doi: 10.1039/C9CS00765B
[2]
Liu B L, Wu F Q, Gui H, Zheng M, Zhou C W. ACS Nano, 2017, 11(1): 31.

doi: 10.1021/acsnano.6b06900
[3]
Akine S, Miyake H. Coord. Chem. Rev., 2022, 468: 214582.

doi: 10.1016/j.ccr.2022.214582
[4]
John N, Mariamma A T. Microchim. Acta, 2021, 188(12): 424.

doi: 10.1007/s00604-021-05066-8
[5]
Zhao T, Yang B W, Ji S Y, Luo J Y, Liu Y, Zhong Y H, Lu B Y. Food Chem., 2023, 403: 134311.

doi: 10.1016/j.foodchem.2022.134311
[6]
Zhang Q, Mi S N, Xie Y F, Yu H, Guo Y H, Yao W R. Spectrochim. Acta, Part A, 2023, 287: 122018.

doi: 10.1016/j.saa.2022.122018
[7]
Zhang M J, Tang L, Duan A B, Zhang Y, Xiao F J, Zhu Y, Wang J J, Feng C Y, Yin N. Chem. Eng. J., 2023, 452: 139068.

doi: 10.1016/j.cej.2022.139068
[8]
Scroccarello A, Della Pelle F, Del Carlo M, Compagnone D. Anal. Chim. Acta, 2023, 1237: 340594.

doi: 10.1016/j.aca.2022.340594
[9]
Chen Y, Ma W T. PLoS Comput. Biol., 2020, 16(1): e1007592.

doi: 10.1371/journal.pcbi.1007592
[10]
Niinomi H, Sugiyama T, Cheng A C, Tagawa M, Ujihara T, Yoshikawa H Y, Kawamura R, Nozawa J, Okada J T, Uda S. J. Phys. Chem. C, 2021, 125(11): 6209.

doi: 10.1021/acs.jpcc.0c11109
[11]
Miandashti A R, Khorashad L K, Kordesch M E, Govorov A O, Richardson H H. ACS Nano, 2020, 14(4): 4188.

doi: 10.1021/acsnano.9b09062 pmid: 32176469
[12]
Xu L G, Wang X X, Wang W W, Sun M Z, Choi W J, Kim J Y, Hao C L, Li S, Qu A H, Lu M R, Wu X L, Colombari F M, Gomes W R, Blanco A L, de Moura A F, Guo X, Kuang H, Kotov N A, Xu C L. Nature, 2022, 601(7893): 366.

doi: 10.1038/s41586-021-04243-2
[13]
Wu F X, Tian Y, Luan X X, Lv X L, Li F H, Xu G B, Niu W X. Nano Lett., 2022, 22(7): 2915.

doi: 10.1021/acs.nanolett.2c00094
[14]
Pan J H, Wang X Y, Zhang J J, Zhang Q, Wang Q B, Zhou C. Nano Res., 2022, 15(10): 9447.

doi: 10.1007/s12274-022-4520-2
[15]
Lee H E, Ahn H Y, Mun J, Lee Y Y, Kim M, Cho N H, Chang K, Kim W S, Rho J, Nam K T. Nature, 2018, 556(7701): 360.

doi: 10.1038/s41586-018-0034-1
[16]
Wu X L, Hao C L, Kumar J, Kuang H, Kotov N A, Liz-Marzan L M, Xu C L. Chem. Soc. Rev., 2018, 47(13): 4677.

doi: 10.1039/C7CS00894E
[17]
Zhan P F, Wang Z G, Li N, Ding B Q. ACS Catal., 2015, 5(3): 1489.

doi: 10.1021/cs5015805
[18]
Gao F L, Sun M Z, Ma W, Wu X L, Liu L Q, Kuang H, Xu C L. Adv. Mater., 2017, 29(18): 1606864.

doi: 10.1002/adma.v29.18
[19]
Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kelly S M, Barron L D, Gadegaard N, Kadodwala M. Nat. Nanotechnol., 2010, 5(11): 783.

doi: 10.1038/nnano.2010.209 pmid: 21037572
[20]
Henglein A. Chem. Rev., 1989, 89(8): 1861.

doi: 10.1021/cr00098a010
[21]
Spanhel L, Weller H, Henglein A. J. Am. Chem. Soc., 1987, 109(22): 6632.

doi: 10.1021/ja00256a012
[22]
Youn H C, Baral S, Fendler J H. J. Phys. Chem., 1988, 92(22): 6320.

doi: 10.1021/j100333a029
[23]
Dolamic I, Knoppe S, Dass A, Buergi T. Nat. Commun., 2012, 3: 798.

doi: 10.1038/ncomms1802 pmid: 22531183
[24]
Zhu M Z, Qian H F, Meng X M, Jin S S, Wu Z K, Jina R C. Nano Lett., 2011, 11(9): 3963.

doi: 10.1021/nl202288j
[25]
Roman-Velazquez C E, Noguez C, Garzon I L. J. Phys. Chem. B, 2003, 107(44): 12035.

doi: 10.1021/jp0356315
[26]
Govorov A O, Fan Z Y, Hernandez P, Slocik J M, Naik R R. Nano Lett., 2010, 10(4): 1374.

doi: 10.1021/nl100010v
[27]
Jiang J, Li Y Y, Liu J P, Huang X T, Yuan C Z, Lou X W. Adv. Mater., 2012, 24(38): 5166.

doi: 10.1002/adma.201202146
[28]
Jiang R B, Li B X, Fang C H, Wang J F. Adv. Mater., 2014, 26(31): 5274.

doi: 10.1002/adma.v26.31
[29]
Qi J, Lai X Y, Wang J Y, Tang H J, Ren H, Yang Y, Jin Q, Zhang L J, Yu R B, Ma G H, Su Z G, Zhao H J, Wang D. Chem. Soc. Rev., 2015, 44(19): 6749.

doi: 10.1039/C5CS00344J
[30]
Xie S F, Choi S I, Lu N, Roling L T, Herron J A, Zhang L, Park J, Wang J G, Kim M J, Xie Z X, Mavrikakis M, Xia Y N. Nano Lett., 2014, 14(6): 3570.

doi: 10.1021/nl501205j
[31]
Gao C B, Lu Z D, Liu Y, Zhang Q, Chi M F, Cheng Q, Yin Y D. Angew. Chem. Int. Ed., 2012, 51(23): 5629.

doi: 10.1002/anie.201108971
[32]
Zhao L, Zhou Y, Niu G M, Gao F C, Sun Z W, Li H, Jiang Y Y. Part. Part. Syst. Charact., 2022, 39(4): 2100231.

doi: 10.1002/ppsc.v39.4
[33]
Wu W B, Pauly M. Mater. Adv., 2022, 3(1): 186.

doi: 10.1039/D1MA00915J
[34]
Cao Z L, Gao H, Qiu M, Jin W, Deng S Z, Wong K Y, Lei D Y. Adv. Mater., 2020, 32(41): 1907151.

doi: 10.1002/adma.v32.41
[35]
Ma W, Xu L G, Wang L B, Xu C L, Kuang H. Adv. Funct. Mater., 2019, 29(1): 1805512.

doi: 10.1002/adfm.v29.1
[36]
Guerrero-Martínez A, Alonso-GÓmez J L, AuguiÉ B, Cid M M, Liz-Marzán L M. Nano Today, 2011, 6(4): 381.

doi: 10.1016/j.nantod.2011.06.003
[37]
Slocik J M, Govorov A O, Naik R R. Nano Lett., 2011, 11(2): 701.

doi: 10.1021/nl1038242
[38]
Lu F, Tian Y, Liu M Z, Su D, Zhang H, Govorov A O, Gang O. Nano Lett., 2013, 13(7): 3145.

doi: 10.1021/nl401107g
[39]
Zhao Y, Xu L G, Ma W, Wang L B, Kuang H, Xu C L, Kotov N A. Nano Lett., 2014, 14(7): 3908.

doi: 10.1021/nl501166m
[40]
Ma W, Kuang H, Xu L G, Ding L, Xu C L, Wang L B, Kotov N A. Nat. Commun., 2013, 4: 2689.

doi: 10.1038/ncomms3689
[41]
Wu X L, Xu L G, Ma W, Liu L Q, Kuang H, Kotov N A, Xu C L. Adv. Mater., 2016, 28(28): 5907.

doi: 10.1002/adma.201601261
[42]
Sun M Z, Ma W, Xu L G, Wang L B, Kuang H, Xu C L. J. Mater. Chem. C, 2014, 2(15): 2702.

doi: 10.1039/C4TC00040D
[43]
Bao Z Y, Zhang W, Zhang Y L, He J J, Dai J Y, Yeung C T, Law G L, Lei D Y. Angew. Chem. Int. Ed., 2017, 56(5): 1283.

doi: 10.1002/anie.v56.5
[44]
Wu X L, Xu L G, Ma W, Liu L Q, Kuang H, Yan W J, Wang L B, Xu C L. Adv. Funct. Mater., 2015, 25(6): 850.

doi: 10.1002/adfm.201403161
[45]
Hao C L, Xu L G, Ma W, Wu X L, Wang L B, Kuang H, Xu C L. Adv. Funct. Mater., 2015, 25(36): 5816.

doi: 10.1002/adfm.201502429
[46]
Hou S, Yan J, Hu Z J, Wu X C. Chem. Commun., 2016, 52(10): 2059.

doi: 10.1039/C5CC08505E
[47]
Hao C L, Xu L G, Sun M Z, Ma W, Kuang H, Xu C L. Adv. Funct. Mater., 2018, 28(33): 1802372.

doi: 10.1002/adfm.v28.33
[48]
Wu X L, Xu L G, Liu L Q, Ma W, Yin H H, Kuang H, Wang L B, Xu C L, Kotov N A. J. Am. Chem. Soc., 2013, 135(49): 18629.

doi: 10.1021/ja4095445
[49]
Wen T, Hou S, Yan J, Zhang H, Liu W Q, Ji Y L, Wu X C. RSC Adv., 2014, 4(85): 45159.

doi: 10.1039/C4RA07642G
[50]
Li S, Xu L G, Ma W, Wu X L, Sun M Z, Kuang H, Wang L B, Kotov N A, Xu C L. J. Am. Chem. Soc., 2016, 138(1): 306.

doi: 10.1021/jacs.5b10309
[51]
Narayanan R, El-Sayed M A. J. Phys. Chem. B, 2005, 109(26): 12663.

doi: 10.1021/jp051066p
[52]
Pedrueza-Villalmanzo E, Pineider F, Dmitriev A. Nanophotonics, 2020, 9(2): 481.

doi: 10.1515/nanoph-2019-0430
[53]
Silverio D L, Torker S, Pilyugina T, Vieira E M, Snapper M L, Haeffner F, Hoveyda A H. Nature, 2013, 494(7436): 216.

doi: 10.1038/nature11844
[54]
Zhuo C X, Zhang W, You S L. Angew. Chem. Int. Ed., 2012, 51(51): 12662.

doi: 10.1002/anie.201204822
[55]
Chen M, Roush W R. J. Am. Chem. Soc., 2012, 134(26): 10947.

doi: 10.1021/ja3031467
[56]
Lumbroso A, Cooke M L, Breit B. Angew. Chem. Int. Ed., 2013, 52(7): 1890.

doi: 10.1002/anie.v52.7
[57]
White R J, Luque R, Budarin V L, Clark J H, Macquarrie D J. Chem. Soc. Rev., 2009, 38(2): 481.

doi: 10.1039/B802654H
[58]
Shaw S, White J D. Chem. Rev., 2019, 119(16): 9381.

doi: 10.1021/acs.chemrev.9b00074
[59]
Wu B, Parquette J R, RajanBabu T V. Science, 2009, 326(5960): 1662.

doi: 10.1126/science.1180739
[60]
Mamontova E, Rodriguez-Castillo M, Oliviero E, Guari Y, Larionova J, Monge M, Long J. Inorg. Chem. Front., 2021, 8(9): 2248.

doi: 10.1039/D1QI00008J
[1] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[2] Yingying Wei, Lin Chen, Junli Wang, Shiping Yu, Xuguang Liu, Yongzhen Yang. Synthesis and Applications of Chiral Carbon Quantum Dots [J]. Progress in Chemistry, 2020, 32(4): 381-391.
[3] Liang Ma, Xuejuan Shi, Xiaoxiao Zhang, Lili Li. Preparation of the Controllable Core-Shell Structured Electrospun Polymer Fibers and Their Application [J]. Progress in Chemistry, 2019, 31(9): 1213-1220.
[4] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[5] Zhenjie Li, Du Zhong, Jie Zhang, Jinwei Chen, Gang Wang, Ruilin Wang. Silicon Nanoparticles/Carbon Composites for Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(1): 201-209.
[6] Yongyin Kang, Zhicheng Song, Peisheng Qiao, Xiangpeng Du, Fei Zhao. Research and Application of Photo-Luminescent Colloidal Quantum Dots [J]. Progress in Chemistry, 2017, 29(5): 467-475.
[7] Gong Dejun, Gao Guanbin, Zhang Mingxi, Sun Taolei. Chiral Gold Nanoclusters: Synthesis, Properties and Applications [J]. Progress in Chemistry, 2016, 28(2/3): 296-307.
[8] Zhang Dongjie, Zhang Congyun, Lu Ya, Hao Yaowu, Liu Yaqing. Preparation of Au@Ag Core-Shell Nanoparticles through Seed-Mediated Growth Method [J]. Progress in Chemistry, 2015, 27(8): 1057-1064.
[9] Chen Siyuan, Dong Xu, Zha Liusheng. Inorganic/Organic Core-Shell Composite Nanoparticles by Surface-Initiated Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2015, 27(7): 831-840.
[10] Li Lei, Li Yanxing, Yao Yao, Yao Lianghong, Ji Weijie, Au Chak-Tong. Progress and Prospective in Fabrication and Application of Core-Shell Structured Nanomaterials in Catalytic Chemistry [J]. Progress in Chemistry, 2013, 25(10): 1681-1690.
[11] Chen Lifeng, Shi Jing, Zhang Yahong, Tang Yi. Core-Shell Zeolite Composites and Reactors [J]. Progress in Chemistry, 2012, 24(07): 1262-1269.
[12] Li Guanglu, He Tao, Li Xuemei. Preparation and Applications of Core-Shell Structured Nanocomposite Materials: the State-of-the-Art [J]. Progress in Chemistry, 2011, 23(6): 1081-1089.
[13] Liu Bin, Liao Shijun, Liang Zhenxing. Core-Shell Structure: The Best Way to Achieve Low-Pt Fuel Cell Electrocatalysts [J]. Progress in Chemistry, 2011, 23(5): 852-859.
[14] . Preparation and Application of Magnetic Core-shell Mesoporous Silica Microspheres [J]. Progress in Chemistry, 2010, 22(06): 1116-1124.
[15] Shi Jing Ren Nan Zhang Yahong Tang Yi. Advances in the Research of Microcapsular Reactor [J]. Progress in Chemistry, 2009, 21(09): 1750-1756.