中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (3): 593-608 DOI: 10.7536/PC210340 Previous Articles   Next Articles

• Review •

Construction and Application of Molecularly Imprinted Fluorescence Sensor

Hao Tian1,2, Zimu Li1,2, Changzheng Wang1(), Ping Xu1, Shoufang Xu2()   

  1. 1 Key Laboratory of Urban Storm Water System and Water Environment, Beijing University of Civil Engineering and Architecture,Beijing 100044, China
    2 Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University,Linyi 276005, China
  • Received: Revised: Online: Published:
  • Contact: Changzheng Wang, Shoufang Xu
  • Supported by:
    National Natural Science Foundation of China(21777065); Youth Innovation Project for Colleges of Shandong Province(2019KJA021); Natural Science Foundation of Shandong Province(ZR2020KE002)
Richhtml ( 55 ) PDF ( 1103 ) Cited
Export

EndNote

Ris

BibTeX

The construction of a highly sensitive, highly selective sensor for detecting trace analytes has received wide attention from scientific researchers. Molecularly imprinted technology has been widely used in the field of sensor construction due to its highly selective recognition, high-capacity adsorption, fast binding, thermal stability, and low cost. The molecularly imprinted fluorescent sensor constructed with molecularly imprinted polymer as the identification unit combined with fluorescent sensing technology has become a research focus in the detection of environmental pollutants traces. This article mainly introduces the preparation methods of molecularly imprinted polymers. The construction mechanism of molecularly imprinted fluorescent sensors and the application of molecularly imprinted fluorescent sensors in the detection of metal ions, small organic molecules, and biomacromolecules are summarized. The molecularly imprinted sensors to detect one or more target analytes under different numbers of fluorophores are elaborated, including single-target single-fluorophore detection, single-target ratiometric fluorescence detection, and multiplex detection with molecularly imprinted fluorescence sensor. Finally, the current challenges of molecularly imprinted fluorescent sensors and the prospects of molecularly imprinted fluorescent sensors are proposed to accelerate the development of molecularly imprinted fluorescent sensors and to further develop multifunctional molecularly imprinted fluorescent sensors with a wide range of applications.

Contents

1 Introduction

2 Fluorescence sensing principle and fluorophore type

3 Construction of molecularly imprinted fluorescence sensor

3.1 Molecularly imprinted single emission fluorescence detection

3.2 Molecular imprinting ratiometric fluorescence detection

3.3 Molecularly imprinted multiplex fluorescence detection

4 Application of molecularly imprinted fluorescence sensor

4.1 Detection of metal ions

4.2 Detection of small organic molecules

4.3 Detection of biomacromolecules

5 Conclusion and outlook

Fig.1 Preparation principle of molecularly imprinted polymers. Copyright 2006, John Wiley and Sons[3]
Table 1 Comparison of advantages and disadvantages of different methods for preparing molecularly imprinted polymers
Fig.2 Molecularly imprinted fluorescent sensors prepared by doping fluorescent nanoparticles into molecularly imprinted polymers with different morphologies: (A) solid homogeneous; (B) mesoporous homogeneous; (C) core-shell structure; (D) hollow mesoporous structure; (E) core-shell mesoporous structure
Fig.3 Schematic illustration of the preparation of turn-on MIFS and detection of HRP based on boranate affinity sandwich assay and nanoparticle signal amplification[82]. Copyright 2020, Elsevier
Fig.4 The preparation process of a ratiometric molecularly imprinted fluorescence sensor with a mesoporous structure with a reference signal, and the corresponding fluorescence color change when the target analyte is recombined. (A) Red and green cadmium telluride quantum dots are ratiometric fluorophores[90]. Copyright 2015, Royal Society of Chemistry. (B) Cadmium telluride quantum dots are the target sensitive fluorophores, and hematoporphyrin is the reference fluorophores[92]. Copyright 2015, Elsevier
Fig.5 The preparation process of a ratiometric molecularly imprinted fluorescence sensor with two reversible signals of mesoporous structure, and the corresponding fluorescence color change when the target analyte is recombined. (A) Gold nanoparticles and carbon dots are ratiometric fluorophores[94]. Copyright 2017, Elsevier. (B) Carbon dots and quantum dots are ratio fluorophores[95]. Copyright 2019, Royal Society of Chemistry
Fig.6 Schematic diagram of ternary detection. The fluorescent color shows the evolution of yellow-green-yellow-purple-blue fluorescence color, which can visually detect BHb with the naked eye[96]. Copyright 2019, American Chemical Society
Fig.7 The preparation of the dual-reference ion imprinting ratiometric fluorescence sensor and the schematic diagram of the response mechanism of Pb2+ and Ag+ detection. In the pre-polymerization process, CDs are mixed with Ag+, while Au NCs are mixed with Pb2+ to form a functional group-template ion chelate[104]. Copyright 2019, Elsevier
Fig.8 Two-channel detection of Cr3+ and Pb2+ with blue and red carbon dots[106]. Copyright 2019, American Chemical Society
Table 2 Application of molecularly imprinted fluorescence sensors in detection of different fields
Detection field Fluorescent material Sensor type Target substance Detection matrix Linear range Detection limit ref
Metal ion CDs, Au NCs Double reference
type
Pb2+, Ag+ Real water 50 ~ 900 nmol/L
0.2 ~ 12.5 nmol/L
26 nmol/L
86 nmol/L
104
Amino modified CDs, carboxyl modified CDs Double reference
type
Cu2+, Fe3+ Real water 0.5 ~ 50 μmol/L
1 ~ 100 μmol/L
130 nmol/L
340 nmol/L
105
ZnSe QDs Microfluidic paper
chip
Cd2+, Pb2+ Real water 1 ~ 70 μg/L
1 ~ 60 μg/L
0.245 μg/L
0.335 μg/L
103
Blue and red CDs Two-channel detection Cr3+, Pb2+ Real water 0.1 ~ 6.0 μmol/L
0.1 ~ 5.0 μmol/L
27 nmol/L
34 nmol/L
106
Blue and red CDs Two-channel detection Cr6+, Cr3+ Real water 0.01 ~ 10.0 μmol/L
0.1 ~ 15.0 μmol/L
3.8 nmol/L
46 nmol/L
107
CdTe QDs Microfluidic paper
chip
Cu2+, Hg2+ Real water 0.11 ~ 58.0 μg/L
0.26 ~ 34.0 μg/L
0.035 μg/L
0.056 μg/L
101
CQDs Single emission
quenching
Cu2+ Tap Water 0.25 ~ 2 mg /L
3 ~ 10 mg /L
2.86μmol/L 109
Organic molecules CQDs, CdTe QDs Ratiometric type Dopamine Human serum 0.2853~ 5 μmol/L 0.2853μmol/L 110
3-(anthracen-9-
ylmethyl)-1-vinyl-1H-
imidazol-3-ium chloride
Single emission
quenching
P-nitroaniline Wastewater 10-8 ~ 10 mol/L 9 nmol/L 111
ZnS QDs Single emission
quenching
Sparfloxacin Biological serum 0.05~ 2.0 μg/mL 0.012 μg/mL 112
Nitrogen-doped CDs Single emission
quenching
Aspirin Human urine and saliva 0.9~ 9.0 mg/L 0.198 mg/L 113
CQDs Single emission
quenching
Tetracycline Real water 1.0 ~ 60 μmol/L 0.17 μmol/L 114
Calcium fluoride CDs Ratiometric type 5-Hydroxymethyl-
furfural
Honey 0.1~ 6.0 μg/mL 0.043 μg/mL 115
CQDs, CdTe QDs Ratiometric type Sulfadiazine Real water
and milk
0.25~ 20 μmol/L 0.042 μmol/L 116
Biomacromolecule ATTO 647N Signal amplification Porcine serum
albumin
Porcine serum 0.25~ 5 nmol/L 40 pmol/L 117
Cadmium telluride QDs Single emission
quenching
Myoglobin Human serum 7.39 ~ 291.3 pg/mL 3.08 pg/mL 118
Silanized CDs Single emission
quenching
Bovine hemoglobin Bovine serum 0.31~ 1.55μmol/L 1.55μmol/L 119
ZnS QDs Single emission
quenching
Lysozyme Real biologic
sample
0.1 ~ 1μmol/L 10.2 nmol/L 120
CdTe QDs Single emission
quenching
Myoglobin Human serum 0.304 ~ 571 pg/mL 0.045 pg/mL 121
Green and red
CdTe QDs
Ratiometric type Bovine hemoglobin Bovine urine 0.050 ~ 3.0μmol/L 9.6 nmol/L 93
Tetra(4-
carboxyphenyl)
porphyrin
Signal amplification Horseradish peroxidase Urine 10-4 ~ 10 mg/L 0.042 μg/L 82
Phycocyanin and CdTe QDs Ratiometric type Phycocyanin Seawater 0 ~ 1.8 μmol/L 3.2 nmol/L 122
[1]
Chen L X, Wang X Y, Lu W H, Wu X Q, Li J H. Chem. Soc. Rev., 2016, 45(8): 2137.

doi: 10.1039/C6CS00061D
[2]
BelBruno J J. Chem. Rev., 2019, 119(1): 94.

doi: 10.1021/acs.chemrev.8b00171 pmid: 30246529
[3]
Alexander C, Andersson H S, Andersson L I, Ansell R J, Kirsch N, Nicholls I A, O'Mahony J, Whitcombe M J. J. Mol. Recognit., 2006, 19(2): 106.

doi: 10.1002/jmr.760
[4]
Cheng W, Zeng X W, Chen H Z, Li Z M, Zeng W F, Mei L, Zhao Y L. ACS Nano, 2019, 13(8): 8537.

doi: 10.1021/acsnano.9b04436
[5]
Fu K X, Zhang R L, He J C, Bai H P, Zhang G L. Biosens. Bioelectron., 2019, 143: 111636.

doi: 10.1016/j.bios.2019.111636
[6]
de Rycke E, Trynda A, Jaworowicz M, Dubruel P, de Saeger S, Beloglazova N. Biosens. Bioelectron., 2021, 172: 112773.

doi: 10.1016/j.bios.2020.112773
[7]
Yu C L, Shan J H, Chen Y, Shao J T, Zhang F A. Mater. Today Commun., 2020, 24: 101076.
[8]
Amaly N, Istamboulie G, El-Moghazy A Y, Noguer T. J. Chem. Res., 2021, 45(1/2): 102.

doi: 10.1177/1747519820925998
[9]
Sun Y H, Yao C, Xie Z X, Zhang Y G. Colloids Surf. B: Biointerfaces, 2021, 197: 111446.

doi: 10.1016/j.colsurfb.2020.111446
[10]
Li Z Z, Chen X J, Zhang X W, Wang Y, Li D M, Gao H L, Duan X. Food Chem., 2021, 347: 129054.

doi: 10.1016/j.foodchem.2021.129054
[11]
Xu S J, Zou Y W, Zhang H Q. Talanta, 2020, 211: 120711.

doi: 10.1016/j.talanta.2020.120711
[12]
Shirani M P, Rezaei B, Ensafi A A, Ramezani M. Food Chem., 2021, 339: 127920.

doi: 10.1016/j.foodchem.2020.127920
[13]
Qi J F, Tan D, Wang X J, Ma H T, Wan Y C, Hu A, Li L H, Xiao B, Lu B. Sens. Actuat. B: Chem., 2021, 337: 129760.

doi: 10.1016/j.snb.2021.129760
[14]
Zhou T, Ding L, Che G B, Jiang W, Sang L. Trac Trends Anal. Chem., 2019, 114: 11.

doi: 10.1016/j.trac.2019.02.028
[15]
Xie X W, Ma X G, Guo L H. Prog. Chem., 2019, 31(12): 1749.
(谢晓纹, 马晓国, 郭丽慧. 化学进展, 2019, 31(12): 1749.).

doi: 10.7536/PC190529
[16]
Liu H C. Doctoral Dissertation of Jilin University, 2020.
(刘浩驰. 吉林大学博士论文, 2020.).
[17]
Ren X H, Wang H Y, Li S, He X W, Li W Y, Zhang Y K. Talanta, 2021, 223: 121706.

doi: 10.1016/j.talanta.2020.121706
[18]
Long R Q, Li T, Tong C Y, Wu L H, Shi S Y. Talanta, 2019, 196: 579.

doi: 10.1016/j.talanta.2019.01.007
[19]
Mori K, Hirase M, Morishige T, Takano E, Sunayama H, Kitayama Y, Inubushi S, Sasaki R, Yashiro M, Takeuchi T. Angew. Chem. Int. Ed., 2019, 58(6): 1522.

doi: 10.1002/anie.201814225
[20]
Almotiri R A, Ham K J, Vijayan V M, Catledge S A. Materials, 2019, 12(13): 2097.

doi: 10.3390/ma12132097
[21]
Gao L X, Deng C C, Xiong J, Zhu P P, Chen Q, Tan K J. Microchem. J., 2019, 150: 104096.

doi: 10.1016/j.microc.2019.104096
[22]
Zhang L B, Wang E K. Nano Today, 2014, 9(1): 132.

doi: 10.1016/j.nantod.2014.02.010
[23]
Fereja S L, Fang Z Y, Li P, Guo J H, Fereja T H, Chen W. Anal. Bioanal. Chem., 2021, 413(6): 1639.

doi: 10.1007/s00216-020-03126-1
[24]
Suber L, Pilloni L, Khanna K, Righi G, Primitivo L, de Angelis M, Caschera D. J. Nanosci. Nanotechnol., 2021, 21(5): 2816.

doi: 10.1166/jnn.2021.19048
[25]
An Y, Ren Y, Michael B, Aleksandra D, Ethan H W, Tang J, Chen J, Chang B S. Biosens. Bioelectron., 2020, 154: 112078.

doi: 10.1016/j.bios.2020.112078
[26]
Tanaka S I, Wadati H, Sato K, Yasuda H, Niioka H. ACS Omega, 2020, 5(37): 23718.

doi: 10.1021/acsomega.0c02578
[27]
Yuan L L, Niu Y S, Li R G, Zheng L H, Wang Y, Liu M L, Xu G F, Huang L, Xu Y H. J. Mater. Chem. B, 2018, 6(20): 3240.

doi: 10.1039/C8TB00475G
[28]
Zhao Z Y, Li Y T. Colloids Surf. B., 2020, 159: 111244.
[29]
Zhao Y, Zhou H M, Zhang S J, Xu J H. Methods Appl. Fluoresc., 2019, 8(1): 012001.

doi: 10.1088/2050-6120/ab57e7
[30]
Sun A L, Chai J Y, Xiao T T, Shi X Z, Li X J, Zhao Q L, Li D X, Chen J. Sens. Actuat. B: Chem., 2018, 258: 408.

doi: 10.1016/j.snb.2017.11.143
[31]
Turkie N S, Munshid H Q. J. Glob. Pharm. Technol., 2019, 11(3): 161.
[32]
Daly B, Ling J, de Silva A P. Chem. Soc. Rev., 2015, 44(13): 4203.

doi: 10.1039/C4CS00334A
[33]
Zhao Y N, Zou S Y, Huo D Q, Hou C J, Yang M, Li J J, Bian M H. Anal. Chimica Acta, 2019, 1047: 179.

doi: 10.1016/j.aca.2018.10.005
[34]
Chen K, Zhang W T, Zhang Y H, Huang L J, Wang R, Wang J L. Sens. Actuators B Chem., 2018, 259: 717.

doi: 10.1016/j.snb.2017.12.116
[35]
Sun S C, Lee C C, Chuang M C. Anal. Chimica Acta, 2018, 1030: 148.

doi: 10.1016/j.aca.2018.05.006
[36]
Daisuke J, Kazuki O, Keiichi I, Yousuke O. Mater. Adv., 2020, 1(3): 354.
[37]
McLaughlin B, Surender E M, Wright G D, Daly B, de Silva A P. Chem. Commun., 2018, 54(11): 1319.

doi: 10.1039/C7CC05929A
[38]
Zhang J Y, Zhou R H, Tang D D, Hou X D, Wu P. Trends Anal. Chem., 2019, 110: 183.

doi: 10.1016/j.trac.2018.11.002
[39]
Han L, Liu S G, Liang J Y, Ju Y J, Li N B, Luo H Q. J. Hazard. Mater., 2019, 362: 45.

doi: 10.1016/j.jhazmat.2018.09.025
[40]
Li Y Y, Hu Y L, He Y, Ge Y L, Song G W, Zhou J G. ChemistrySelect, 2019, 4(25): 7639.

doi: 10.1002/slct.201901714
[41]
Huynh T P, Wojnarowicz A, Kelm A, Woznicki P, Borowicz P, Majka A, D'Souza F, Kutner W. ACS Sens., 2016, 1(6): 636.

doi: 10.1021/acssensors.6b00055
[42]
Liu G Y, Huang X D, Li L Y, Xu X M, Zhang Y G, Lv J, Xu D H. Nanomaterials, 2019, 9(7): 1030.

doi: 10.3390/nano9071030
[43]
Ren B X, Qi H, Li X Y, Liu L H, Gao L, Che G B, Hu B, Wang L, Lin X. RSC Adv., 2018, 8(11): 6083.

doi: 10.1039/C7RA07742D
[44]
Ahmadpour H, Hosseini S M M. Talanta, 2019, 194: 534.

doi: 10.1016/j.talanta.2018.10.053
[45]
Fu Y X, Jin H, Bu X N, Gui R J. J. Mater. Chem. C, 2019, 7(37): 11483.

doi: 10.1039/C9TC03517F
[46]
Li C Y, Yang Q, Wang X Y, Arabi M, Peng H L, Li J H, Xiong H, Chen L X. Food Chem., 2020, 319: 126575.

doi: 10.1016/j.foodchem.2020.126575
[47]
Wang J X. Doctoral Dissertation of Jiangsu University, 2019.
(王吉祥. 江苏大学博士论文, 2019.).
[48]
Wagner R, Wan W, Biyikal M, Benito-Peña E, Moreno-Bondi M C, Lazraq I, Rurack K, Sellergren B. J. Org. Chem., 2013, 78(4): 1377.

doi: 10.1021/jo3019522
[49]
Ton X A, Acha V, Bonomi P, Tse Sum Bui B, Haupt K. Biosens. Bioelectron., 2015, 64: 359.

doi: 10.1016/j.bios.2014.09.017
[50]
Hsu T J, Lin Z K, Syu M J. Anal. Chem., 2010, 82(21): 8821.

doi: 10.1021/ac1011848
[51]
Gao L, Li X Y, Zhang Q, Dai J D, Wei X, Song Z L, Yan Y S, Li C X. Food Chem., 2014, 156: 1.

doi: 10.1016/j.foodchem.2013.12.065
[52]
Wu Y T, Liu Y J, Gao X, Gao K C, Xia H, Luo M F, Wang X J, Ye L, Shi Y, Lu B. Chemosphere, 2015, 119: 515.

doi: 10.1016/j.chemosphere.2014.07.017
[53]
Zhu L, Cui X, Wu J, Wang Z N, Wang P Y, Hou Y, Yang M. Anal. Methods, 2014, 6(12): 4430.

doi: 10.1039/C4AY00717D
[54]
Bhogal S, Kaur K, Maheshwari S, Malik A K. J. Fluoresc., 2019, 29(1): 145.

doi: 10.1007/s10895-018-2322-4
[55]
Li J, Guo H Q, Yu H, Tian L X, Yan L S, Liu X M, Lin L K, Wang J L. Chin. J. Anal. Chem., 2020, 48(11): 1493.
(李晶, 郭会琴, 于慧, 田凌溪, 颜流水, 刘小明, 林立钶, 汪嘉琳. 分析化学, 2020, 48(11): 1493.).
[56]
Huang S Y, Tan L, Zhang L, Wu J Y, Zhang L G, Tang Y W, Wang H L, Liang Y. Sens. Actuat. B: Chem., 2020, 325: 128751.

doi: 10.1016/j.snb.2020.128751
[57]
Gao L. Doctoral Dissertation of Jiangsu University, 2016.
(高林. 江苏大学博士论文, 2016.).
[58]
Deng F, Goldys E M, Liu G Z. Sens. Actuat. B: Chem., 2019, 292: 277.

doi: 10.1016/j.snb.2019.04.142
[59]
Zhang X, Yang S, Chen W J, Li Y S, Wei Y P, Luo A Q. Polymers, 2019, 11(7): 1210.

doi: 10.3390/polym11071210
[60]
Amjadi M, Jalili R. Biosens. Bioelectron., 2017, 96: 121.

doi: 10.1016/j.bios.2017.04.045
[61]
Ming W N, Wang X Y, Lu W H, Zhang Z, Song X L, Li J H, Chen L X. Sens. Actuat. B: Chem., 2017, 238: 1309.

doi: 10.1016/j.snb.2016.09.111
[62]
Bhogal S, Kaur K, Malik A K, Sonne C, Lee S S, Kim K H. Trac Trends Anal. Chem., 2020, 133: 116043.

doi: 10.1016/j.trac.2020.116043
[63]
Li D Y, He X W, Chen Y, Li W Y, Zhang Y K. ACS Appl. Mater. Interfaces, 2013, 5(23): 12609.

doi: 10.1021/am403942y
[64]
Jia M F, Zhang Z, Li J H, Shao H J, Chen L X, Yang X B. Sens. Actuat. B: Chem., 2017, 252: 934.

doi: 10.1016/j.snb.2017.06.090
[65]
Liu H L, Ni T H, Mu L, Zhang D W, Wang J, Wang S, Sun B G. Sens. Actuat. B: Chem., 2018, 256: 1038.

doi: 10.1016/j.snb.2017.10.048
[66]
Lee M H, Thomas J L, Chen Y L, Lin C F, Tsai H H, Juang Y Z, Liu B D, Lin H Y. Biosens. Bioelectron., 2013, 47: 56.

doi: 10.1016/j.bios.2013.03.001
[67]
Wei X, Zhou Z P, Hao T F, Li H J, Zhu Y Z, Gao L, Yan Y S. RSC Adv., 2015, 5(55): 44088.

doi: 10.1039/C5RA05093F
[68]
Kim Y, Jeon J B, Chang J Y. J. Mater. Chem., 2012, 22(45): 24075.

doi: 10.1039/c2jm34798a
[69]
Jia M F, Zhang Z, Li J H, Shao H J, Chen L X, Yang X B. Sens. Actuat. B: Chem., 2017, 252: 934.

doi: 10.1016/j.snb.2017.06.090
[70]
Zhang Z, Li J H, Wang X Y, Shen D Z, Chen L X. ACS Appl. Mater. Interfaces, 2015, 7(17): 9118.

doi: 10.1021/acsami.5b00908
[71]
Guo P Q, Yang W, Hu H, Wang Y T, Li P. Anal. Bioanal. Chem., 2019, 411(12): 2607.

doi: 10.1007/s00216-019-01708-2
[72]
Liu Y, Zhong G X, Liu Z C, Meng M J, Liu F F, Ni L. Chem. Eng. J., 2016, 296: 437.

doi: 10.1016/j.cej.2016.03.085
[73]
Limaee N Y, Rouhani S, Olya M E, Najafi F. J. Fluoresc., 2020, 30(2): 375.

doi: 10.1007/s10895-020-02508-z
[74]
Shariati R, Rezaei B, Jamei H R, Ensafi A A. Talanta, 2019, 194: 143.

doi: S0039-9140(18)30979-2 pmid: 30609514
[75]
Yang X X, Sun J D, Cui F C, Ji J, Wang L P, Zhang Y Z, Sun X L. Talanta, 2020, 219: 121343.

doi: 10.1016/j.talanta.2020.121343
[76]
Xu S F, Lu H Z. Biosens. Bioelectron., 2016, 85: 950.

doi: 10.1016/j.bios.2016.06.020
[77]
Lu H Z, Xu S F. Talanta, 2017, 165: 482.

doi: 10.1016/j.talanta.2016.12.087
[78]
Khattab T A, Kassem N F, Adel A M, Kamel S. J. Fluoresc., 2019, 29(3): 693.

doi: 10.1007/s10895-019-02381-5 pmid: 31041695
[79]
Zhu Y Y, Cui M X, Ma J J, Zhang Q J. Sens. Actuat. B: Chem., 2020, 305: 127323.

doi: 10.1016/j.snb.2019.127323
[80]
Li D Y, Qin Y P, Li H Y, He X W, Li W Y, Zhang Y K. Biosens. Bioelectron., 2015, 66: 224.

doi: 10.1016/j.bios.2014.11.023
[81]
Guo Y Y, Li J, Song X L, Xu K, Wang J, Zhao C. ACS Appl. Bio Mater., 2021, 4(1): 420.

doi: 10.1021/acsabm.0c00897
[82]
Lu H Z, Xu S F. Sens. Actuat. B: Chem., 2020, 306: 127566.

doi: 10.1016/j.snb.2019.127566
[83]
Sun X C, Wang Y, Lei Y. Chem. Soc. Rev., 2015, 44(22): 8019.

doi: 10.1039/C5CS00496A
[84]
Sun X F. Doctoral Dissertation of Jilin University, 2020.
(孙小飞. 吉林大学博士论文, 2020.).
[85]
Wang J R, Chen X L, Wang X Y, Kang Q, Shen D Z, Chen L X. Sens. Actuat. B: Chem., 2020, 322: 128581.

doi: 10.1016/j.snb.2020.128581
[86]
Wei X, Chen H. Anal. Bioanal. Chem., 2019, 411(22): 5809.

doi: 10.1007/s00216-019-01963-3
[87]
Cao T, Zhang L, Ma H, Zheng L, Cao Y P, Wang J M, Yang Y X, Zhang J, Qin W W, Liu Y. Sens. Actuat. B: Chem., 2021, 338: 129841.

doi: 10.1016/j.snb.2021.129841
[88]
Amjadi M, Jalili R. Spectrochim. Acta. A., 2018, 191, 345.

doi: 10.1016/j.saa.2017.10.026
[89]
Wang T, Lv L, Wei X. Chemistry, 2019, 82(10): 893.
(王通, 吕亮, 卫潇. 化学通报, 2019, 82(10): 893.).
[90]
Xu S F, Lu H Z. Chem. Commun., 2015, 51(15): 3200.

doi: 10.1039/C4CC09766A
[91]
Gui W Y, Wang H, Liu Y, Ma Q. Sens. Actuat. B: Chem., 2018, 266: 685.

doi: 10.1016/j.snb.2018.03.176
[92]
Xu S F, Lu H Z. Biosens. Bioelectron., 2015, 73: 160.

doi: 10.1016/j.bios.2015.05.064
[93]
Wang X Y, Yu S M, Liu W, Fu L W, Wang Y Q, Li J H, Chen L X. ACS Sens., 2018, 3(2): 378.

doi: 10.1021/acssensors.7b00804
[94]
Lu H Z, Xu S F. Biosens. Bioelectron., 2017, 92: 147.

doi: 10.1016/j.bios.2017.02.013
[95]
Lu H Z, Wei D, Zheng R K, Xu S F. Anal., 2019, 144(21): 6283.

doi: 10.1039/C9AN01503E
[96]
Yang Q, Li J H, Wang X Y, Xiong H, Chen L X. Anal. Chem., 2019, 91(10): 6561.

doi: 10.1021/acs.analchem.9b00082
[97]
Yang Q, Li C Y, Li J H, Wang X Y, Arabi M, Peng H L, Xiong H, Chen L X. Nanoscale, 2020, 12(11): 6529.

doi: 10.1039/D0NR00765J
[98]
Chullasat K, Kanatharana P, Bunkoed O. Sens. Actuat. B: Chem., 2019, 281: 689.

doi: 10.1016/j.snb.2018.11.003
[99]
Luo L H, Zhang F, Chen C Y, Cai C Q. Anal. Chem., 2019, 91(24): 15748.

doi: 10.1021/acs.analchem.9b04001
[100]
Wei F D, Xu G H, Wu Y Z, Wang X, Yang J, Liu L P, Zhou P, Hu Q. Sens. Actuat. B: Chem., 2016, 229: 38.

doi: 10.1016/j.snb.2016.01.113
[101]
Qi J, Li B W, Wang X R, Zhang Z, Wang Z, Han J L, Chen L X. Sens. Actuat. B: Chem., 2017, 251: 224.

doi: 10.1016/j.snb.2017.05.052
[102]
Qi J, Li B W, Wang X Y, Fu L W, Luo L Q, Chen L X. Anal. Chem., 2018, 90(20): 11827.

doi: 10.1021/acs.analchem.8b01291
[103]
Zhou J R, Li B W, Qi A J, Shi Y J, Qi J, Xu H Z, Chen L X. Sens. Actuat. B: Chem., 2020, 305: 127462.

doi: 10.1016/j.snb.2019.127462
[104]
Lu H Z, Yu C W, Xu S F. Sens. Actuat. B: Chem., 2019, 288: 691.

doi: 10.1016/j.snb.2019.03.069
[105]
Ying R J, Lu H Z, Xu S F. New J. Chem., 2019, 43(16): 6404.

doi: 10.1039/C9NJ01356C
[106]
Lu H Z, Xu S F, Liu J Q. ACS Sens., 2019, 4(7): 1917.

doi: 10.1021/acssensors.9b00886
[107]
Lu H Z, Xu S F. Anal., 2020, 145(7): 2661.

doi: 10.1039/D0AN00098A
[108]
Alizadeh T, Sharifi A R, Ganjali M R. RSC Adv., 2020, 10(7): 4110.

doi: 10.1039/C9RA06910K
[109]
Wang Z M, Zhou C, Wu S W, Sun C Y. Polymers, 2021, 13(9): 1376.

doi: 10.3390/polym13091376
[110]
Xu Y P, Wang J X, Lu Y, Dai X H, Yan Y S. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 219: 225.

doi: 10.1016/j.saa.2019.04.035
[111]
Lu X, Yang Y, Zeng Y, Li L, Wu X. Biosens. Bioelectron., 2018, 99: 47.

doi: 10.1016/j.bios.2017.07.041
[112]
Geng Y Y, Guo M L, Tan J A, Huang S Y, Tang Y W, Tan L, Liang Y. Sens. Actuat. B: Chem., 2019, 281: 821.

doi: 10.1016/j.snb.2018.10.098
[113]
Peng L, Xu Y Q, Huang T, Liu X Q, Yang X Y, Meng M J, Yan Y S. Nano, 2021, 16(2): 2150019.

doi: 10.1142/S1793292021500193
[114]
Wei X, Lv L, Zhang Z D, Guan W S. J. Appl. Polym. Sci., 2020, 137(38): 49126.

doi: 10.1002/app.49126
[115]
Luo K, Chen H C, Zhou Q, Yan Z H, Su Z Q, Li K. Anal. Chim. Acta, 2020, 1124: 113.

doi: 10.1016/j.aca.2020.05.006
[116]
Chen X Q, Luan Y, Wang N W, Zhou Z P, Ni X N, Cao Y F, Zhang G S, Lai Y F, Yang W M. J. Sep. Sci., 2018, 41(23): 4394.

doi: 10.1002/jssc.201800866
[117]
Cheubong C, Takano E, Kitayama Y, Sunayama H, Minamoto K, Takeuchi R, Furutani S, Takeuchi T. Biosens. Bioelectron., 2021, 172: 112775.

doi: 10.1016/j.bios.2020.112775
[118]
Piloto A M L, Ribeiro D S M, Rodrigues S S M, Santos J L M, Ferreira Sales M G. Sens. Actuat. B: Chem., 2020, 304: 127343.

doi: 10.1016/j.snb.2019.127343
[119]
Zhao Y J, Chen Y J, Fang M Y, Tian Y B, Bai G Y, Zhuo K L. Anal. Bioanal. Chem., 2020, 412(23): 5811.

doi: 10.1007/s00216-020-02803-5
[120]
Zhang X, Yang S, Jiang R, Sun L Q, Pang S P, Luo A Q. Sens. Actuat. B: Chem., 2018, 254: 1078.

doi: 10.1016/j.snb.2017.07.205
[121]
Piloto A M, Ribeiro D S M, Rodrigues S S M, Santos C, Santos J L M, Sales M G F. Sci. Rep., 2018, 8(1): 1.
[122]
Li J H, Fu J Q, Yang Q. Analyst, 2018, 143(15): 3570.

doi: 10.1039/C8AN00811F
[123]
René W, Lenoble V, Chioukh M, Branger C. Sens. Actuat. B: Chem., 2020, 319: 128252.

doi: 10.1016/j.snb.2020.128252
[124]
Han X, Han W Y, Zhang S T, Liu Z Q, Fu G Q. RSC Adv., 2019, 9(65): 38165.

doi: 10.1039/C9RA08556D
[125]
Boysen R I, Schwarz L J, Nicolau D V, Hearn M T W. J. Sep. Sci., 2017, 40(1): 314.

doi: 10.1002/jssc.201600849
[1] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[2] Yujian Liu, Zhimin Liu, Zhigang Xu, Gongke Li. Stir Bar Sorptive Extraction Technology [J]. Progress in Chemistry, 2020, 32(9): 1334-1343.
[3] Xiaowen Xie, Xiaoguo Ma, Lihui Guo. Molecularly Imprinting Polymers for Detection and Removal of Environmental Endocrine Disruptors [J]. Progress in Chemistry, 2019, 31(12): 1749-1758.
[4] Ming Weina, Wang Xiaoyan, Ming Yongfei, Li Jinhua, Chen Lingxin. Preparation and Applications of Core-Shell Molecularly Imprinted Polymers [J]. Progress in Chemistry, 2016, 28(4): 552-563.
[5] Xu Zhigang, Liu Zhimin, Yang Baomin, Zi Futing. Development of Dummy Template Molecularly Imprinted Techniques in Sample Pretreatment [J]. Progress in Chemistry, 2012, 24(08): 1592-1598.
[6] Lv Chunhui, Wang Shuo, Fang Guozhen, Tang Yiwei, Wang Suilou. Molecularly Imprinted Polymers as Antibody Alternatives in Sorbent Immunoassays [J]. Progress in Chemistry, 2012, 24(05): 844-851.
[7] Zhang Hui, He Hua, Li Jie, Li Hui, Yao Yuyang. Water-Compatible Molecular Imprinting Separation Technique and Its Application in Analytical Chemistry [J]. Progress in Chemistry, 2011, 23(10): 2140-2150.
[8] . Preparation and Application of Core-shell Magnetic Molecularly Imprinted Polymer Microspheres [J]. Progress in Chemistry, 2010, 22(09): 1819-1825.
[9] Kan Xianwen Yin Yuxin Geng Zhirong Wang Zhilin. The Preparation and Applications of Molecularly Imprinted Polymers Based on Silica Materials [J]. Progress in Chemistry, 2010, 22(01): 107-112.
[10] Li Zhenying|Duan Hongquan|Huang Yanping|Liu Zhaosheng**. Monolithic Column for High Performance Liquid Chromatography [J]. Progress in Chemistry, 2008, 20(05): 747-753.
[11] Wang Xuejun, Xu Zhenliang*|Yang Zuoguo,Bing Naici. Molecular Recognition in Aqueous Media with Molecular Imprinting Technique [J]. Progress in Chemistry, 2007, 19(05): 805-812.
[12] Hu Shuguo,Li Li,He Xiwen**. Molecularly Imprinted Polymers: A New Kind of Sorbent with High Selectivity in Solid Phase Extraction [J]. Progress in Chemistry, 2005, 17(03): 531-543.