中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (12): 2392-2403 DOI: 10.7536/PC201109 Previous Articles   Next Articles

• Review •

Single-Atom-Modified MoS2 for Efficient Hydrogen Evolution

Jiaqi Han, Zhida Li, Deqiang Ji, Dandan Yuan, Hongjun Wu()   

  1. College of Chemistry & Chemical Engineering, Northeast Petroleum University,Daqing 163318, China
  • Received: Revised: Online: Published:
  • Contact: Hongjun Wu
Richhtml ( 12 ) PDF ( 213 ) Cited
Export

EndNote

Ris

BibTeX

The over-reliance on fossil fuels leads to deteriorating ecological environment and motivates us to develop sustainable and clean energy alternatives in order for our long-term survival on the earth. Hydrogen energy is one of the most promising energy carriers in the 21st century since the only by-product is H2O. In comparison to steam reforming of natural gas and coal, hydrogen evolution reaction (HER) via H2O electrolysis is a more attracting pathway for H2 production because of the low cost, high efficiency and abundant raw materials, which would contribute to a lower carbon footprint. HER requires stable and active enough catalyst materials to overcome the reaction barriers. It is well known that Pt group materials are state-of-the-art HER catalysts, but unfortunately, the low abundance and high cost complicate its large-scale applications. The transition metal disulfides (TMDs) possess a two-dimensional layered structure and a larger specific surface area, which is conducive to expose more active sites. In particular, MoS2, a representative of TMDs, has attracted tremendous research interests in HER domain and is supposed to be a cost-affordable alternative to Pt-based catalysts. In this work, the research status of MoS2 modified by single atoms (SA-MoS2) of noble metal, non-noble metal, and nonmetal, to catalyze HER reactions is reviewed. Based on the overpotential and Tafel slope, the structure-function relationship between HER performance and SA-MoS2 structures is summarized. Finally, future research directions are proposed and hopefully, this paper will guide rational design of SA-MoS2 for a more efficient HER electrocatalyst.

Contents

1 Introduction

2 Metal single-atom doped MoS2

2.1 Noble metal elements platinum (Pt), palladium (Pd), ruthenium (Ru), tungsten (W)

2.2 Transition metal elements nickel (Ni), cobalt (Co), copper (Cu)

3 Non-metal single-atom doped MoS2

4 Conclusion and outlook

Fig.1 The hydrogen evolution mechanism of MoS2 nanoflowers in 0.5 mol·L-1 H2SO4[43]. Reproduced from Ref. 43 with permission from the Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry.
Fig.2 Phase diagrams of MoS4[53]
Table 1 MoS2 electrocatalysts modified with noble metal single atoms
Fig.3 TEM and HAADF-STEM images of Pt-MoS2(a) TEM image of Pt-MoS2; (b) the single Pt atoms (marked by red circles) uniformly disperse on the 2D MoS2 plane; (c) a honeycomb arrangement of MoS2 and the amplificatory image[61].Reproduced from Ref. 61 with permission from the Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry
Fig.4 EDX mappings of Pt-MoS2 (a) HAADF-STEM image of Pt-MoS2; (b~d) EDX mappings of Mo, S and Pt[61]
Fig.5 HER performance of Pt-MoS2 (a) polarization curves; (b) Tafel plots[61]
Fig.6 Schematic illustration of the spontaneous MoS2/Pd (Ⅱ) redox reaction[62]
Fig.7 HAADF-STEM images of (a) MoS2, (b) 1%Pd-MoS2[62]
Fig.8 HER performance of Pd-MoS2 electrocatalysts (a) polarization curves, (b) Tafel plots[62]
Fig.9 (a,c) HAADF-STEM images of SA-Ru-MoS2; (b,d) Magnified domains of the orange dashed rectangles shown in (a) and (c)[63]
Fig.10 Schematic diagram of the generation of S vacancies caused by Ru single atom doping[63]
Fig.11 HER catalytic performance of Ru-MoS2(a) LSV polarization curves; (b) Tafel plots[63]
Fig.12 HER activity of Mo1-xWxS2(a) polarization curves, (b) corresponding Tafel plots[64]
Fig.13 HAADF-STEM image of Mo0.5W0.5S2[64]
Table 2 MoS2 electrocatalysts modified with transition metal single atoms
Fig.14 HER activity of NiO@1T-MoS2(a) Polarization curves; (b) Tafel plots[70]
Fig.15 (a,b) HAADF-STEM image of Co-MoS2; (c,d) Atomic structure diagram, yellow, green and red balls represent S, Mo and Co[66].Reproduced from Ref. 70 with permission from the Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry
Fig.16 HER activity of SA Co-D 1T MoS2 (a) Polarization curves; (b) Tafel plots[72]
Table 3 MoS2 electrocatalysts modified with non-metal single atoms
Fig.17 TEM and HRTEM images of N-MoS2-3[75]
Fig.18 EDX mapping of N-MoS2-3[75]
Fig.19 HER activity of N-MoS2(a) polarization curves ; (b)Tafel plots ; (c) polarization curves for N-MoS2-3 before and after 5000 CV cycles ; (d)The theoretical and experimental amount of hydrogen produced by the sample N-MoS2-3 as a function of time for 60 min[75]
Fig.20 XPS spectra A: high-resolution Mo 3d; B: high-resolution S 2p ; C: high-resolution O 1s[76]
Fig.21 HER activity of the oxygen-incorporated MoS2 ultrathin nanosheets A: polarization curves ; B: Tafel plots[76]
Table 4 Tafel slopes of MoS2 prepared under different temperatures[76]
Fig.22 Atomic structure diagram of P-doped MoS2[77]
Fig.23 (a) SEM image of P-doped MoS2 (b) TEM image of P-doped MoS2[77]
Fig.24 HER activity of P-MoS2 (a) Polarization curves ; (b) Tafel plots ; (c) Electrochemical impedance spectra of different electrodes at -0.25 V versus RHE; (d) Plot of charge transport resistance of P-MoS2-1, P-MoS2-2, MoS2[78].Reproduced from Ref. 78 and Ref. 79 with permission from the Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry
Fig.25 Schematic illustration of preparing Se-doped MoS2 nanosheets[79]
Fig.26 HER activity of Se-doped MoS2 nanosheets (a)Polarization curves; (b)Tafel plots[79]
[1]
Chen X S, Liu G B, Zheng W, Feng W, Cao W W, Hu W P, Hu P G. Adv. Funct. Mater., 2016, 26(46): 8537.
[2]
Wu F, Yang H Y, Bai Y, Wu C. Adv. Mater., 2019, 31(16): 1806510.
[3]
Shen Z B, Zhao H, Liu Y, Kan Z Y, Xing P, Zhong J G, Jiang B. React. Chem. Eng., 2018, 3(1): 34.
[4]
Chao S L, Zou F, Wan F F, Dong X B, Wang Y L, Wang Y X, Guan Q X, Wang G C, Li W. Sci. Rep., 2017, 7(1): 1.
[5]
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, N􀱼rskov J K, Jaramillo T F. Science, 2017, 355(6321): eaad4998. DOI:10.1126/science.aad4998.
[6]
Lewis N S, Nocera D G. PNAS, 2006, 103(43): 15729.
[7]
Yan Y, Xia B Y, Zhao B, Wang X. J. Mater. Chem. A, 2016, 4(45): 17587.
[8]
Liu S, Zhang E, Zhang X, Liu J, Zhang J. Scientia Sinica Chimica, 2020, 50: 1001.
[9]
Shen R C, Zhang L P, Chen X Z, Jaroniec M, Li N, Li X. Appl. Catal. B: Environ., 2020, 266: 118619.
[10]
Ma S, Xie J, Wen J Q, He K L, Li X, Liu W, Zhang X C. Appl. Surf. Sci., 2017, 391: 580.
[11]
Ren D D, Liang Z Z, Ng Y H, Zhang P, Xiang Q J, Li X. Chem. Eng. J., 2020, 390: 124496.
[12]
Liang Z Z, Shen R C, Ng Y H, Zhang P, Xiang Q J, Li X. J. Mater. Sci. Technol., 2020, 56: 89.
[13]
Zhang Z W, Li Q H, Qiao X Q, Hou D F, Li D S. Chinese J. Catal., 2019, 040: 371.
( 张振伟, 李秋昊, 乔秀清, 侯东芳, 李东升. 催化学报, 2019, 040: 371.)
[14]
Shen R C, Xie J, Xiang Q J, Chen X B, Jiang J Z, Li X. Chin. J. Catal., 2019, 40(3): 240.
[15]
Ren D D, Shen R C, Jiang Z M, Lu X Y, Li X. Chin. J. Catal., 2020, 41(1): 31.
[16]
Wei Z D, Xu M Q, Liu J Y, Guo W Q, Jiang Z, Shangguan W F. Chin. J. Catal., 2020, 41(1): 103.
[17]
Zhang S J, Duan S X, Chen G L, Meng S G, Zheng X Z, Fan Y, Fu X L, Chen S F. Chin. J. Catal., 2021, 42(1): 193.
[18]
Shen R C, Ding Y N, Li S B, Zhang P, Xiang Q J, Ng Y H, Li X. Chin. J. Catal., 2021, 42(1): 25.
[19]
Shen R C, Ren D D, Ding Y N, Guan Y T, Ng Y H, Zhang P, Li X. Sci. China Mater., 2020, 63(11): 2153.
[20]
Ren D D, Zhang W N, Ding Y N, Shen R C, Jiang Z M, Lu X Y, Li X. Sol. RRL, 2020, 4(8): 1900423.
[21]
Yan Y, Xia B Y, Xu Z C, Wang X. ACS Catal., 2014, 4(6): 1693.
[22]
Xiao W, Huang X L, Song W D, Yang Y, Herng T S, Xue J M, Feng Y P, Ding J. Nano Energy, 2016, 25: 60.
[23]
Li G B, Li W, Zhang J L. Catal. Sci. Technol., 2016, 6(6): 1821.
[24]
Dresselhaus M S, Thomas I L. Nature, 2001, 414(6861): 332.
[25]
Peng W L, Yuan B. Mater Rep, 2021, 09: 1.
( 彭伟良, 袁斌. 材料导报, 2021, 09: 1.).
[26]
Guo Y N, Tang J, Wang Z L, Kang Y M, Bando Y, Yamauchi Y. Nano Energy, 2018, 47: 494.
[27]
Huang X K, Xu X P, Li C, Wu D F, Cheng D J, Cao D P. Adv. Energy Mater., 2019, 9(22): 1803970.
[28]
Zou X X, Zhang Y. Chem. Soc. Rev., 2015, 44(15): 5148.
[29]
Huang Y C, Hu J, Xu H X, Bian W, Ge J X, Zang D J, Cheng D J, Lv Y, Zhang C, Gu J, Wei Y G. Adv. Energy Mater., 2018, 8(24): 1800789.
[30]
Jesse D B, Thomas R H, Jakob K, Pongkarn C, Thomas F J. ACS Catalysis, 2014, 4: 3957.
[31]
Liu L L, Li X Y, Xu L C, Liu R P, Yang Z. Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials, 2017, 396: 138.
[32]
Song X L, Chen G F, Guan L X, Zhang H, Tao J G. Appl. Phys. Express, 2016, 9(9): 095801.
[33]
Voiry D, Salehi M, Silva R, Fujita T, Chen M W, Asefa T, Shenoy V B, Eda G, Chhowalla M. Nano Lett., 2013, 13(12): 6222.
[34]
Liu G L, Robertson A W, Li M M J, Kuo W C H, Darby M T, Muhieddine M H, Lin Y C, Suenaga K, Stamatakis M, Warner J H, Tsang S C E. Nat. Chem., 2017, 9(8): 810.
[35]
Wang H, Tsai C, Kong D, Chan K, Cui Y. Nano Research, 2015, 8: 566.
[36]
Voiry D, Goswami A, Kappera R, Silva C D C C E, Kaplan D, Fujita T, Chen M W, Asefa T, Chhowalla M. Nat. Chem., 2015, 7(1): 45.
[37]
Wang H T, Lu Z Y, Kong D S, Sun J, Hymel T M, Cui Y. ACS Nano, 2014, 8(5): 4940.
[38]
Yin Y, Han J C, Zhang Y M, Zhang X H, Xu P, Yuan Q, Samad L, Wang X J, Wang Y, Zhang Z H, Zhang P, Cao X Z, Song B, Jin S. J. Am. Chem. Soc., 2016, 138(25): 7965.
[39]
Voiry D, Yamaguchi H, Li J W, Silva R, Alves D C B, Fujita T, Chen M W, Asefa T, Shenoy V B, Eda G, Chhowalla M. Nat. Mater., 2013, 12(9): 850.
[40]
Li H, Tsai C, Koh A L, Cai L L, Contryman A W, Fragapane A H, Zhao J H, Han H S, Manoharan H C, Abild-Pedersen F, N􀱼rskov J K, Zheng X L. Nat. Mater., 2016, 15(1): 48.
[41]
Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I. Science, 2007, 317(5834): 100.
[42]
Hao Y, Wang Y T, Xu L C, Yang Z, Liu R P, Li X Y. Appl. Surf. Sci., 2019, 469: 292.
[43]
Wang W P, Yao Q, Ma J J, Xu Y, Jiang J Q, Liu X E, Li Z C. CrystEngComm, 2020, 22(12): 2258.
[44]
Zhu C Z, Fu S F, Shi Q R, Du D, Lin Y H. Angew. Chem. Int. Ed., 2017, 56(45): 13944.
[45]
Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nat. Chem., 2011, 3(8): 634.
[46]
Jones J, Xiong H, DeLaRiva A T, Peterson E J, Pham H, Challa S R, Qi G, Oh S, Wiebenga M H, Pereira Hernandez X I, Wang Y, Datye A K. Science, 2016, 353(6295): 150.
[47]
Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Acc. Chem. Res., 2013, 46(8): 1740.
[48]
Lin L, Zhou W, Gao R, Yao S, Ma D. Nature, 2017, 544: 80.
[49]
Li X Y, Cui P, Zhong W H, Li J, Wang X J, Wang Z W, Jiang J. Chem. Commun., 2016, 52(90): 13233.
[50]
Li H S, Wang S S, Sawada H, Han G G D, Samuels T, Allen C S, Kirkland A I, Grossman J C, Warner J H. ACS Nano, 2017, 11(3): 3392.
[51]
Tsai C, Abild-Pedersen F, N􀱼rskov J K. Nano Lett., 2014, 14(3): 1381.
[52]
Paul K K, Sreekanth N, Biroju R K, Pattison A J, Escalera-LÓpez D, Guha A K, Narayanan T N, Rees N V, Theis W, Giri P K. J. Mater. Chem. A, 2018, 6(45): 22681.
[53]
Dubertret B, Heine T, Terrones M. Acc. Chem. Res., 2015, 48(1): 1.
[54]
Liu Q, Li X, He Q, Khalil A, Song L. Small, 2015, 11: 5556.
[55]
Lei Z D, Zhan J, Tang L, Zhang Y, Wang Y. Adv. Energy Mater., 2018, 8(19): 1703482.
[56]
Wu W Z, Niu C Y, Wei C, Jia Y, Li C, Xu Q. Angew. Chem. Int. Ed., 2019, 58(7): 2029.
[57]
Liu Y, Wu J, Hackenberg K P, Zhang J, Wang Y M, Yang Y, Keyshar K, Gu J, Ogitsu T, Vajtai R. Nature Energy, 2017, 2: 17127.
[58]
Yakovkin I N, Petrova N V. Chem. Phys., 2014, 434: 20.
[59]
Liang J X, Yang X F, Xu C Q, Zhang T, Li J. Chinese J. Catal., 2017, 38: 1566.
( 梁锦霞, 杨小峰, 许聪俏, 张涛, 李隽. 催化学报, 2017, 38: 1566.)
[60]
Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier D M, Zhang P, Guo Q, Zang D, Wu B, Fu G, Zheng N. Science, 2016, 352(6287): 797.
[61]
Deng J, Li H B, Xiao J P, Tu Y C, Deng D H, Yang H X, Tian H F, Li J Q, Ren P J, Bao X H. Energy Environ. Sci., 2015, 8(5): 1594.
[62]
Luo Z Y, Ouyang Y X, Zhang H, Xiao M L, Ge J J, Jiang Z, Wang J L, Tang D M, Cao X Z, Liu C P, Xing W. Nat. Commun., 2018, 9(1): 1.
[63]
Zhang J M, Xu X P, Yang L, Cheng D J, Cao D P. Small Methods, 2019, 3(12): 1900653.
[64]
Wang H, Ouyang L Y, Zou G F, Sun C, Hu J, Xiao X, Gao L J. ACS Catal., 2018, 8(10): 9529.
[65]
Wang Q, Zhao Z L, Dong S, He D S, Lawrence M J, Han S B, Cai C, Xiang S H, Rodriguez P, Xiang B, Wang Z G, Liang Y Y, Gu M. Nano Energy, 2018, 53: 458.
[66]
Lau T H M, Lu X W, Kulhavy J, Wu S, Lu L L, Wu T S, Kato R, Foord J S, Soo Y L, Suenaga K, Tsang S C E. Chem. Sci., 2018, 9(21): 4769.
[67]
Ji L, Yan P F, Zhu C H, Ma C Y, Wu W Z, Wei C, Shen Y L, Chu S Q, Wang J O, Du Y, Chen J, Yang X N, Xu Q. Appl. Catal. B: Environ., 2019, 251: 87.
[68]
Sun M, Nelson A, Adjaye J. J. Catal., 2005, 233(2): 411.
[69]
Krebs E, Silvi B, Raybaud P. Catal. Today, 2008, 130(1): 160.
[70]
Huang Y C, Sun Y H, Zheng X L, Aoki T, Pattengale B, Huang J E, He X, Bian W, Younan S, Williams N, Hu J, Ge J X, Pu N, Yan X X, Pan X Q, Zhang L J, Wei Y G, Gu J. Nat. Commun., 2019, 10(1): 1.
[71]
Pattengale B, Huang Y C, Yan X X, Yang S Z, Younan S, Hu W H, Li Z D, Lee S, Pan X Q, Gu J, Huang J E. Nat. Commun., 2020, 11(1): 1.
[72]
Qi K, Cui X Q, Gu L, Yu S S, Fan X F, Luo M C, Xu S, Li N B, Zheng L R, Zhang Q H, Ma J Y, Gong Y, Lv F, Wang K, Huang H H, Zhang W, Guo S J, Zheng W T, Liu P. Nat. Commun., 2019, 10(1): 1.
[73]
Merki D, Vrubel H, Rovelli L, Fierro S, Hu X L. Chem. Sci., 2012, 3(8): 2515.
[74]
Qi K, Yu S S, Wang Q Y, Zhang W, Fan J C, Zheng W T, Cui X Q. J. Mater. Chem. A, 2016, 4(11): 4025.
[75]
Xiao W, Liu P T, Zhang J Y, Song W D, Feng Y P, Gao D Q, Ding J. Adv. Energy Mater., 2017, 7(7): 1602086.
[76]
Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. J. Am. Chem. Soc., 2013, 135(47): 17881.
[77]
Liu P T, Zhu J Y, Zhang J Y, Xi P X, Tao K, Gao D Q, Xue D S. ACS Energy Lett., 2017, 2(4): 745.
[78]
Ren X P, Yang F, Chen R, Ren P Y, Wang Y H. New J. Chem., 2020, 44(4): 1493.
[79]
Ren X P, Ma Q, Fan H B, Pang L Q, Zhang Y X, Yao Y, Ren X D, Liu S F. Chem. Commun., 2015, 51(88): 15997.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[3] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[4] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[5] Changle Yue, Wenjing Bao, Jilei Liang, Yunqi Liu, Daofeng Sun, Yukun Lu. Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water [J]. Progress in Chemistry, 2022, 34(5): 1061-1075.
[6] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[7] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[8] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[9] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[10] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[11] Xiangjuan Chen, Huan Wang, Weijia An, Li Liu, Wenquan Cui. Study on Photoelectrocatalysis of Organic Carbon Materials [J]. Progress in Chemistry, 2022, 34(11): 2361-2372.
[12] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[13] Yin Xie, Liyang Zhang, Peijin Ying, Jiacheng Wang, Kuan Sun, Meng Li. Intensified Field-Effect of Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(9): 1571-1585.
[14] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[15] Xiaolu Liu, Yuxiao Geng, Ran Hao, Yuping Liu, Zhongyong Yuan, Wei Li. Electrocatalytic Nitrogen Reduction Reaction under Ambient Condition: Current Status, Challenges, and Perspectives [J]. Progress in Chemistry, 2021, 33(7): 1074-1091.