中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (9): 1571-1585 DOI: 10.7536/PC200812 Previous Articles   Next Articles

• Review •

Intensified Field-Effect of Hydrogen Evolution Reaction

Yin Xie, Liyang Zhang, Peijin Ying, Jiacheng Wang, Kuan Sun, Meng Li()   

  1. MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University,Chongqing 400044, China
  • Received: Revised: Online: Published:
  • Contact: Meng Li
  • Supported by:
    National Natural Science Foundation of China(52173235); Natural Science Foundation of Chongqing(cstc2018jcyjAX0375); Fundamental Research Funds for the Central Universities(2020CDJQY-A055); Fundamental Research Funds for the Central Universities(2019CDXYDL0007)
Richhtml ( 53 ) PDF ( 925 ) Cited
Export

EndNote

Ris

BibTeX

There are many factors affecting energy consumption and hydrogen evolution efficiency in the process of hydrogen evolution by water electrolysis, among which interface resistance and bubble coverage are two of the most significant factors. It's found that the interface resistance and bubble coverage of the catalyst can be effectively reduced by strengthening external field-effect in the process of water electrolysis. For instance, thermal field can introduce energy into the charge transfer during the reaction process, thereby reducing the charge transfer resistance and overpotential. Besides, it is able to directly adjust the electronic structure of the catalyst or induce the redistribution of electrolyte ions by using the electric field, which promotes the interfacial charge transfer. What's more, polarization of water molecules can be induced in a optical field. Therefore, the introduction of thermal field, magnetic field, ultrasonic field, electric field, high-gravity field and optical field into the electrolytic cell are effective strategies to reduce energy consumption and hence improve the efficiency of hydrogen evolution. In recent years, although some works focusing on the field-effect of water electrolysis are reported, there are few reviews to systematically introduce the field-effect in water electrolysis. In this paper, the research progress of field-effect in hydrogen evolution reaction in recent years is reviewed. Moreover, this paper introduces the basic principles of various field-effect of water electrolysis, analyzes the effects of various fields through experimental cases, and summarizes the challenges as well as prospect of field enhanced water electrolysis hydrogen evolution.

Contents

Contents

1 Introduction

2 Hydrogen evolution reaction

3 Intensified field-effect of HER

3.1 Thermal field

3.2 Magnetic field

3.3 Ultrasonic field

3.4 Electric field

3.5 Gravitational field

3.6 Optical field

3.7 Multiple field

4 Conclusion and outlook

Fig.1 (a) The mechanism of hydrogen evolution on the electrode surface in acid solution[47]; (b) “volcanic effect” between M—H bond and hydrogen evolution reaction current[50]
Table 1 The mechanism of hydrogen evolution from water electrolysis enhanced by different external fields
Fig.2 (a) The influence of reaction temperature on reaction efficiency of (FexNi1-x) 9S8 (x= 0~1) catalyst in hydrogen evolution reaction. (b) Linear sweep voltammograms of Fe4.5Ni4.5S8 in 0.5 M H2SO4 at different temperatures (The figure shows the overpotential at 10 mA/cm2 at each temperature). (c) Temperature-dependent Nyquist plots of EIS for Fe4.5Ni4.5S8 and corresponding Bode plots (inset). (d) Tafel plot at different temperatures[32]. (e) Polarization curves at different temperatures of Ni-MoO2/RGO. (f) Nyquist curves at different temperatures of Ni-MoO2/RGO[31]
Fig.3 (a) Sketch of the distribution of magnetic induction (B), current density (j), and Lorentz-force (F) in the vicinity of an electrolytic bubble in an electrode-normal magnetic field[65].(b) H2 bubble state produced by copper foam electrode (B = 0 T, j = 1000 A/m2). (c) H2 bubble state produced by copper foam electrode (B = 0.9 T, j = 1000 A/m2). (d) Diagrammatic sketch of the circulating ?ow (blue arrows) on one side of the electrolyzer, which is caused by the uneven distributed Lorentz force (FL). (e) The curve of the number of larger bubbles (N1, d ≥ 0.9 mm) and smaller bubbles (N2, d < 0.9 mm) with the current density[35]. (f) Voltage drop between electrodes vs. current density[34]
Fig.4 Exterior appearance of the experimental cell. (1) Inlet and (2) outlet water ?ows, (3) location of the working electrode, (4) location of the counter electrode, (5) location of the reference electrode, (6) generation of the ultrasonic field. (b) A cross section of the experimental cell. (7) Diaphragm. (c) Linear sweep potential curves of the cell voltage for different NaOH concentrations at an operating temperature of 30 ℃ with scan rate of 2 mV·s-1. The efficiency of H2 production (d) without and (e) with application of the ultrasonic field in NaOH solution[36]
Fig.5 (a) (1) The normal state of device under closed circuit without any gate voltage. (2) The energy band of the device with the positive gate voltage bias, (3) with the negative gate voltage bias[66]. (b) Cross-sectional view of MoS2 working electrode (VBG is back-gate bias). (c) Charge density difference map of monolayer MoS2 (The map shows localization of excess charge on the Mo atoms near the sulfur vacancy denoted by red circles)[68]. (d) Statistic-based influence of the back gate on the onset overpotential and Tafel slope (The square dots are the average values, and the error bar represents standard error). (e) Plot of Rct and Rp. (f) Concentration of positive and negative charges (line represents H+, and dots represent SO 4 2 -, respectively) and the net charge (inset) under different additional potential biases induced (0, - 0.1, - 0.2, - 0.3, - 0.8 V)[39]
Fig.6 Moving track of bubbles on electrode surface under normal gravity condition (a) and high-gravity field (b)[40]. (c) The states of hydrogen foam in electrolyte after chronoamperometry measurement under various gravity conditions. (d) The ohmic resistance (RG) during water electrolysis under various gravity conditions[41]
Fig.7 (a) (1) Residue electric field effect causes the lack of efficiency in water electrolysis (Eion, is electric field induced between ionic compounds which is antiparallel to the field induced by electrode. Meanwhile ECA, is the electric field from the electrodes). (2) The polarization and the infinite behaviour of collimated sunlight attribute to strengthening the electric field in water electrolysis. (b) Experimental setup chart of the effect of sunlight in hydrogen production from water electrolysis. (c) The electrical Conductivity as a function of laser power[43]. (d) Hydrogen yields with respect to time at different optical light sources[73]
Fig.8 (a) Schematic illustration of the photothermal-effect-driven strategy for enhancing electrocatalytic HER and OER activities over Ni/RGO. (b) Time-dependent temperature curve of Ni/RGO in 1 M KOH electrolyte under the irradiation of 300 W Xenon lamp (intensity = 850 mW·cm-2) (Inset: Infrared images of Ni/RGO before irradiation (left) and after irradiation (right) for 15 min)[74]. (c)Schematic diagram of experimental device of the effect of magnetic and optic field in water electrolysis. (d) The percentage of Hydrogen yield under different conditions; electrolysis (E) only; electrolysis with laser (EL) electrolysis with magnetic (EM) only; electrolysis with laser-magnet (ELM)[73]
[1]
Li T F, Luo G, Liu K H, Li X, Sun D M, Xu L, Li Y F, Tang Y W. Adv. Funct. Mater., 2018, 28(51): 1805828.

doi: 10.1002/adfm.v28.51
[2]
Pu Z, Wei S, Chen Z, Mu S. Appl. Catal. B, 2016, 196:193.

doi: 10.1016/j.apcatb.2016.05.027
[3]
Wei R B, Huang Z L, Gu G H, Wang Z, Zeng L X, Chen Y B, Liu Z Q. Appl. Catal. B: Environ., 2018, 231: 101.

doi: 10.1016/j.apcatb.2018.03.014
[4]
Yu L, Zhou H Q, Sun J Y, Qin F, Yu F, Bao J M, Yu Y, Chen S, Ren Z F. Energy Environ. Sci., 2017, 10(8): 1820.

doi: 10.1039/C7EE01571B
[5]
Luo X, Ji P X, Wang P Y, Cheng R L, Chen D, Lin C, Zhang J N, He J W, Shi Z H, Li N, Xiao S Q, Mu S C. Adv. Energy Mater., 2020, 10(17): 1903891.

doi: 10.1002/aenm.v10.17
[6]
Zhao Y, Hoivik N, Wang K Y. Nano Energy, 2016, 30: 728.

doi: 10.1016/j.nanoen.2016.09.027
[7]
Zou X X, Zhang Y. Chem. Soc. Rev., 2015, 44(15): 5148.

doi: 10.1039/C4CS00448E
[8]
Zhang Y L, Luo M C, Yang Y, Li Y J, Guo S J. ACS Energy Lett., 2019, 4(7): 1672.

doi: 10.1021/acsenergylett.9b01045
[9]
Zhou H Q, Yu F, Huang Y F, Sun J Y, Zhu Z, Nielsen R J, He R, Bao J M, Goddard III W A, Chen S, Ren Z F. Nat. Commun., 2016, 7(1): 1.
[10]
Hai X, Zhou W, Wang S Y, Pang H, Chang K, Ichihara F, Ye J H. Nano Energy, 2017, 39: 409.

doi: 10.1016/j.nanoen.2017.07.021
[11]
Wakisaka T, Kusada K, Wu D S, Yamamoto T, Toriyama T, Matsumura S, Akiba H, Yamamuro O, Ikeda K, Otomo T, Palina N, Chen Y N, Kumara L S R, Song C, Sakata O, Xie W, Koyama M, Kubota Y, Kawaguchi S, Arevalo R L, Aspera S M, Arguelles E F, Nakanishi H, Kitagawa H. J. Am. Chem. Soc., 2020, 142(3): 1247.

doi: 10.1021/jacs.9b09219 pmid: 31750648
[12]
Yang Y Q, Zhang K, Lin H L, Li X, Chan H C, Yang L C, Gao Q S. ACS Catal., 2017, 7(4): 2357.

doi: 10.1021/acscatal.6b03192
[13]
Zhao Y G, Mavrokefalos C K, Zhang P, Erni R, Li J G, Triana C A, Patzke G R. Chem. Mater., 2020, 32(4): 1371.

doi: 10.1021/acs.chemmater.9b02933
[14]
Liu D, Tong R, Qu Y J, Zhu Q, Zhong X W, Fang M L, Ho Lo K, Zhang F F, Ye Y C, Tang Y X, Chen S, Xing G C, Pan H. Appl. Catal. B: Environ., 2020, 267: 118721.

doi: 10.1016/j.apcatb.2020.118721
[15]
Zhao Y Q, Jin B, Zheng Y, Jin H Y, Jiao Y, Qiao S Z. Adv. Energy Mater., 2018, 8(29): 1801926.

doi: 10.1002/aenm.v8.29
[16]
Wang G X, Chen W, Chen G L, Huang J, Song C S, Chen D L, Du Y, Li C R, Ostrikov K K. Nano Energy, 2020, 71: 104637.

doi: 10.1016/j.nanoen.2020.104637
[17]
Jiang K, Liu B Y, Luo M, Ning S C, Peng M, Zhao Y, Lu Y R, Chan T S, Groot F M F, Tan Y W. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8
[18]
Wu H, Lu X, Zheng G F, Ho G W. Adv. Energy Mater., 2018, 8(14): 1870064.

doi: 10.1002/aenm.v8.14
[19]
Xia C, Liang H F, Zhu J J, Schwingenschlögl U, Alshareef H N. Adv. Energy Mater., 2017, 7(9): 1602089.

doi: 10.1002/aenm.201602089
[20]
Wu X Q, Guo Y R, Wang T, Sun B X, Liu Z L, Wu Y, Zhang S J, Zheng J, Li X G. Chem. Commun., 2019, 55(29): 4202.

doi: 10.1039/C9CC00527G
[21]
Xiao P, Chen W, Wang X. Adv. Energy Mater., 2015, 5(24): 1500985.

doi: 10.1002/aenm.201500985
[22]
Wang Y, Liu L N, Zhang X, Yan F, Zhu C L, Chen Y J. J. Mater. Chem. A, 2019, 7(39): 22412.

doi: 10.1039/c9ta07859b
[23]
Ha D H, Han B H, Risch M, Giordano L, Yao K P C, Karayaylali P, Shao-Horn Y. Nano Energy, 2016, 29: 37.

doi: 10.1016/j.nanoen.2016.04.034
[24]
Xiao P, Ge X M, Wang H B, Liu Z L, Fisher A, Wang X. Adv. Funct. Mater., 2015, 25(10): 1520.

doi: 10.1002/adfm.201403633
[25]
Li J S, Wang Y, Liu C H, Li S L, Wang Y G, Dong L Z, Dai Z H, Li Y F, Lan Y Q. Nat. Commun., 2016, 7(1): 1.
[26]
Tang C Y, Wang W, Sun A K, Qi C K, Zhang D Z, Wu Z Z, Wang D Z. ACS Catal., 2015, 5(11): 6956.

doi: 10.1021/acscatal.5b01803
[27]
Theerthagiri J, Lee S J, Murthy A P, Madhavan J, Choi M Y. Curr. Opin. Solid State Mater. Sci., 2020, 24(1): 100805.

doi: 10.1016/j.cossms.2020.100805
[28]
Zhou P, Xing D N, Liu Y Y, Wang Z Y, Wang P, Zheng Z K, Qin X Y, Zhang X Y, Dai Y, Huang B B. J. Mater. Chem. A, 2019, 7(10): 5513.

doi: 10.1039/C8TA12043A
[29]
Zhang Y Q, Ouyang B, Xu J, Chen S, Rawat R S, Fan H J. Adv. Energy Mater., 2016, 6(11): 1600221.

doi: 10.1002/aenm.201600221
[30]
Yu L, Song S W, McElhenny B, Ding F Z, Luo D, Yu Y, Chen S, Ren Z F. J. Mater. Chem. A, 2019, 7(34): 19728.

doi: 10.1039/c9ta05455c
[31]
Sharma L, Khushwaha H S, Mathur A, Halder A. J. Solid State Chem., 2018, 265: 208.

doi: 10.1016/j.jssc.2018.06.005
[32]
Piontek S, Andronescu C, Zaichenko A, Konkena B junge Puring K, Marler B, Antoni H, Sinev I, Muhler M, Mollenhauer D, Roldan Cuenya B, Schuhmann W, Apfel U P. ACS Catal., 2018, 8(2): 987.

doi: 10.1021/acscatal.7b02617
[33]
Diao Z, Dunne P A, Zangari G, Coey J M D. Electrochem. Commun., 2009, 11(4): 740.

doi: 10.1016/j.elecom.2009.01.020
[34]
Liu H B, Xu H T, Pan L M, Zhong D H, Liu Y. Int. J. Hydrog. Energy, 2019, 44(41): 22780.

doi: 10.1016/j.ijhydene.2019.07.024
[35]
Liu Y, Pan L M, Liu H B, Chen T M, Yin S Y, Liu M M. Int. J. Hydrog. Energy, 2019, 44(3): 1352.

doi: 10.1016/j.ijhydene.2018.11.103
[36]
Li S D, Wang C C, Chen C Y. Electrochimica Acta, 2009, 54(15): 3877.

doi: 10.1016/j.electacta.2009.01.087
[37]
Hung C Y, Li S D, Wang C C, Chen C Y. J. Membr. Sci., 2012, 389: 197.

doi: 10.1016/j.memsci.2011.10.050
[38]
Ling F L, Zhou T W, Liu X Q, Kang W, Zeng W, Zhang Y X, Fang L, Lu Y, Zhou M. Nanotechnology, 2018, 29(3): 03LT01.

doi: 10.1088/1361-6528/aa9eb5
[39]
Yan M Y, Pan X L, Wang P Y, Chen F, He L, Jiang G P, Wang J H, Liu J Z, Xu X, Liao X B, Yang J H, Mai L Q. Nano Lett., 2017, 17(7): 4109.

doi: 10.1021/acs.nanolett.7b00855
[40]
Wang M Y, Wang Z, Guo Z C. Int. J. Hydrog. Energy, 2009, 34(13): 5311.

doi: 10.1016/j.ijhydene.2009.05.043
[41]
Wang M Y, Wang Z, Guo Z C. Int. J. Hydrog. Energy, 2010, 35(8): 3198.

doi: 10.1016/j.ijhydene.2010.01.128
[42]
Lao L, Ramshaw C, Yeung H. J. Appl. Electrochem., 2011, 41(6): 645.

doi: 10.1007/s10800-011-0275-2
[43]
Bidin N, Azni S R, Abu Bakar M A, Johari A R, Abdul Munap D H F, Salebi M F, Abd Razak S N, Sahidan N S, Sulaiman S N A. Int. J. Hydrog. Energy, 2017, 42(1): 133.

doi: 10.1016/j.ijhydene.2016.11.203
[44]
Tuomi S M, Guil-Lopez R, Kallio T. J. Catal., 2016, 334: 102.

doi: 10.1016/j.jcat.2015.11.018
[45]
Niether C, Faure S, Bordet A, Deseure J, Chatenet M, Carrey J, Chaudret B, Rouet A. Nat. Energy, 2018, 3(6): 476.

doi: 10.1038/s41560-018-0132-1
[46]
Feng W S, Pang W B, Xu Y, Guo A M, Gao X H, Qiu X Q, Chen W. ChemElectroChem, 2020, 7(1): 31.

doi: 10.1002/celc.v7.1
[47]
Morales-Guio C G, Stern L A, Hu X L. Chem. Soc. Rev., 2014, 43(18): 6555.

doi: 10.1039/c3cs60468c pmid: 24626338
[48]
Strmcnik D, Lopes P P, Genorio B, Stamenkovic V R, Markovic N M. Nano Energy, 2016, 29: 29.

doi: 10.1016/j.nanoen.2016.04.017
[49]
Ledezma-Yanez I, Wallace W D Z, Sebastián-Pascual P, Climent V, Feliu J M, Koper M T M. Nat. Energy, 2017, 2(4): 1.

doi: 10.1038/ng0992-1
[50]
Conway B E, Jerkiewicz G. Electrochimica Acta, 2000, 45(25/26): 4075.

doi: 10.1016/S0013-4686(00)00523-5
[51]
Ma Q, Ba J Z, Jiang Y X, Li J, Wu W H, Chem. Defenc. Ships, 2007, 6.
(马强, 巴俊洲, 蒋亚雄, 李军, 吴文宏. 舰船防化, 2007, 6.).
[52]
Aldas K. Appl. Math. Comput., 2004, 154(2): 507.
[53]
Wang M Y, Wang Z, Gong X Z, Guo Z C. Renew. Sustain. Energy Rev., 2014, 29: 573.

doi: 10.1016/j.rser.2013.08.090
[54]
Zhang B B, Daniel Q, Cheng M, Fan L Z, Sun L C. Faraday Discuss., 2017, 198: 169.

doi: 10.1039/C6FD00206D
[55]
Zou Y J, Xiao Z A, Fei X M. Chin. J. Rare Metal, 2004, 954.
(邹勇进, 肖作安, 费锡明. 稀有金属, 2004, 954.).
[56]
Padhy G K, Ramasubbu V, Parvathavarthini N, Wu C S, Albert S K. Int. J. Hydrog. Energy, 2015, 40(20): 6714.

doi: 10.1016/j.ijhydene.2015.03.153
[57]
Conway B E, Tilak B V. Electrochimica Acta, 2002, 47(22/23): 3571.

doi: 10.1016/S0013-4686(02)00329-8
[58]
Li T H, Kang S, Zhang X, Fu X, Feng S L, Hu Z F, Zhu D L, Lu W Q. J. Phys. D: Appl. Phys., 2020, 53(18): 185302.

doi: 10.1088/1361-6463/ab732b
[59]
Lai Y S,Del Rosario M A J V G, Chen W F, Yen S C, Pan F, Ren Q, Su Y H. ACS Appl. Energy Mater., 2019, 2: 7092.

doi: 10.1021/acsaem.9b01010
[60]
Monzon L M A, Coey J M D. Electrochem. Commun., 2014, 42: 38.

doi: 10.1016/j.elecom.2014.02.006
[61]
Lin M Y, Hourng L W, Kuo C W. Int. J. Hydrog. Energy, 2012, 37(2): 1311.

doi: 10.1016/j.ijhydene.2011.10.024
[62]
Kaya M F, Demir N, Albawabiji M S, Tas M. Int. J. Hydrog. Energy, 2017, 42(28): 17583.

doi: 10.1016/j.ijhydene.2017.02.039
[63]
Koza J A, Mühlenhoff S, Uhlemann M, Eckert K, Gebert A, Schultz L. Electrochem. Commun., 2009, 11(2): 425.

doi: 10.1016/j.elecom.2008.12.010
[64]
Darband G B, Aliofkhazraei M, Shanmugam S. Renew. Sustain. Energy Rev., 2019, 114: 109300.

doi: 10.1016/j.rser.2019.109300
[65]
Weier T, Baczyzmalski D, Massing J, Landgraf S, Cierpka C. Int. J. Hydrog. Energy, 2017, 42(33): 20923.

doi: 10.1016/j.ijhydene.2017.07.034
[66]
Wang J H, Yan M Y, Zhao K N, Liao X B, Wang P Y, Pan X L, Yang W, Mai L Q. Adv. Mater., 2017, 29(7): 1604464.

doi: 10.1002/adma.201604464
[67]
Voiry D, Fullon R,Yang J, de Carvalho Castro e Silva C, Kappera R, Bozkurt I, Kaplan D, Lagos M J, Batson P E, Gupta G, Mohite A D, Dong L, Er D Q, Shenoy V B, Asefa T, Chhowalla M. Nat. Mater., 2016, 15(9): 1003.

doi: 10.1038/nmat4660
[68]
Wang Y, Udyavara S, Neurock M, Frisbie C D. Nano Lett., 2019, 19(9): 6118.

doi: 10.1021/acs.nanolett.9b02079 pmid: 31434483
[69]
Pell W G, Conway B E, Marincic N. J. Electroanal. Chem., 2000, 491(1/2): 9.

doi: 10.1016/S0022-0728(00)00207-2
[70]
Wang M Y, Xing H Q, Wang Z, Guo Z C. Acta Phys.- Chim. Sin., 2008, 24:520.

doi: 10.3866/PKU.WHXB20080330
[71]
Zhao L X, Guo Z C, Wang Z, Wang M Y. Metall. Mater. Trans. B, 2010, 41(3): 505.

doi: 10.1007/s11663-010-9376-2
[72]
Shahid M, Bt Bidin N, Rehman A. Optoelectron. Adv. Mat., 2010, 4:1670.
[73]
Bidin N, Azni S R, Islam S, Abdullah M, Ahmad M F S, Krishnan G, Johari A R, Bakar M A A, Sahidan N S, Musa N, Salebi M F, Razali N, Sanagi M M. Int. J. Hydrog. Energy, 2017, 42(26): 16325.

doi: 10.1016/j.ijhydene.2017.05.169
[74]
Gu L, Zhang C, Guo Y M, Gao J, Yu Y F, Zhang B. ACS Sustainable Chem. Eng., 2019, 7(4): 3710.

doi: 10.1021/acssuschemeng.8b06117
[1] Changle Yue, Wenjing Bao, Jilei Liang, Yunqi Liu, Daofeng Sun, Yukun Lu. Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water [J]. Progress in Chemistry, 2022, 34(5): 1061-1075.
[2] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[3] Wei Kang, Lu Li, Qing Zhao, Cheng Wang, Jianlong Wang, Yue Teng. Application of New Hydrogen and Oxygen Evolution Electrochemical Catalysts for Solid Polymer Water Electrolysis System [J]. Progress in Chemistry, 2020, 32(12): 1952-1977.
[4] Xianwei Lv, Zhongpan Hu, Hui Zhao, Yuping Liu, Zhongyong Yuan. Self-Supporting Transition Metal Phosphides as Electrocatalysts for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2018, 30(7): 947-957.
[5] Lishan Peng, Zidong Wei*. Design and Product Engineering of High-Performance Electrode Catalytic Materials for Water Electrolysis [J]. Progress in Chemistry, 2018, 30(1): 14-28.
[6] Yufu Chen, Xianggao Li, Yin Xiao, Shirong Wang. Solution Processed Large-Scale Small Molecular Organic Field-Effect Transistors [J]. Progress in Chemistry, 2017, 29(4): 359-372.
[7] Gaobo Lin, Ting Luo, Lvbing Yuan, Wenjie Liang*, Hai Xu*. High Performance n-Type and Ambipolar Small Organic Semiconductors for Organic Field-Effect Transistors [J]. Progress in Chemistry, 2017, 29(11): 1316-1330.
[8] Zhao Chong, Xu Fen*, Sun Lixian*, Fan Minghui, Zou Yongjin, Chu Hailiang. Hydrogen Generation by Al-Based Materials Hydrolysis [J]. Progress in Chemistry, 2016, 28(12): 1870-1879.
[9] Wang Cheng, Wang Shubo, Zhang Jianbo, Li Jianqiu, Wang Jianlong, Yang Minggao. The Durability Research on the Proton Exchange Membrane Fuel Cell for Automobile Application [J]. Progress in Chemistry, 2015, 27(4): 424-435.
[10] Wang Cheng, Wang Shubo, Zhang Jianbo, Li Jianqiu, Yang Minggao, Wang Jianlong. The Key Materials and Components for Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2015, 27(2/3): 310-320.
[11] Li Xue, Zhang Yifang, Qi Weihong, Cao Xiaowu, Wang Yuan, Li Haohua. Hydrogen Storage Nanoalloys [J]. Progress in Chemistry, 2013, 25(07): 1122-1130.
[12] Song Jingyi, Jiang Lang*, Dong Huanli, Hu Wenping*. Organic Micro- and Nano-Crystal Field-Effect Transistors [J]. Progress in Chemistry, 2013, 25(01): 12-27.
[13] Yang Liu, Lei Ting, Pei Jian*, Liu Chenjiang* . Design Strategy , Processing and Applications of Organic Micro- and Nano-Materials [J]. Progress in Chemistry, 2012, 24(12): 2299-2311.
[14] Cai Xiaozhou, Jiang Lang, Dong Huanli, Li Jingze*, Hu Wenping* . Organic Circuits and Their Basic Elements [J]. Progress in Chemistry, 2012, 24(12): 2431-2442.
[15] He Fei, Peng Ranran, Yang Shangfeng. Reversible Solid Oxide Cell with Proton Conducting Electrolyte: Materials and Reaction Machanism [J]. Progress in Chemistry, 2011, 23(0203): 477-486.