中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (4): 643-654 DOI: 10.7536/PC221103 Previous Articles   

• Review •

Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities

Jiaye Li, Peng Zhang, Yuan Pan()   

  1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China),Qingdao 266580, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail:panyuan@upc.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22108306); Taishan Scholars Research Project(tsqn201909065); Excellent Youth Science Foundation of Shandong Province(ZR2021YQ15); Shandong Provincial Natural Science Foundation, China(ZR2020QB174)
Richhtml ( 48 ) PDF ( 471 ) Cited
Export

EndNote

Ris

BibTeX

Electrocatalytic carbon dioxide reduction (ECR) is an environmentally friendly energy conversion method that can convert CO2 into various high value-added fuels or chemicals. However, it usually is subject to low catalytic activity, low selectivity and low macrocyclic stability at high current densities. Benefitting from the advantages of high selectivity, high catalytic activity and high atom utilization, single atom catalysts show great potential in ECR process. Therefore, how to design single atom catalysts with high activity, high selectivity and high macrocyclic stability has become a research hot issue in this field. This paper reviews the research progress of a series of single atom catalysts in electrocatalytic carbon dioxide reduction at high current densities, and focuses on the activity regulation mechanisms, product selectivity regulation mechanisms and macrocyclic stability regulation mechanisms to enhance the ECR performance of single atom catalysts, which provides ideas for the systematic design and synthesis of ECR single atom catalysts. The opportunities and challenges of ECR single atom catalysts are prospected.

Fig.1 (a) Synthesis, (b) test reactor, (c)TEM image and (d) performance test of Ni-SAC[15]
Fig.2 (a) Synthesis, (b) stability test and (c) ECR performance test of Co-N5/HNPCSs[31]
Fig.3 Synthesis, characterization and ECR stability of Ni@C3N4-CN(a) synthesis; (b) TEM image; (c) ECR stability[47]
Fig.4 Synthesis, characterization and performance test of Cu-APC[49]:(a) synthesis; (b) TEM image; (c) performance test; (d) stability test
Fig.5 Synthesis of CuO/Ni SA, schematic diagram of action mechanism and product selectivity test[53].(a) Synthesis and mechanism; (b) C2+ selectivity test; (c) C2H4 selectivity test; (d) C2H5OH selectivity test
[1]
Jia C, Shi Z, Zhao C. Curr. Opin. Green Sustain. Chem., 2022, 37: 100651.
[2]
Wu J H, Huang Y, Ye W, Li Y G. Adv. Sci., 2017, 4(11): 1700194.

doi: 10.1002/advs.201700194
[3]
Liu J, Cai Y M, Song R B, Ding S C, Lyu Z Y, Chang Y C, Tian H Y, Zhang X, Du D, Zhu W L, Zhou Y, Lin Y H. Mater. Today, 2021, 48: 95.

doi: 10.1016/j.mattod.2021.02.005
[4]
Guo J Y, Zhang W L, Zhang L H, Chen D T, Zhan J Y, Wang X L, Shiju N R, Yu F S. Adv. Sci., 2021, 8(23): 2102884.

doi: 10.1002/advs.v8.23
[5]
Huang H W, Jia H H, Liu Z, Gao P F, Zhao J T, Luo Z L, Yang J L, Zeng J. Angew. Chem., 2017, 56(13): 3594.

doi: 10.1002/anie.v56.13
[6]
Ji Y F, NØrskov J K, Chan K R. J. Phys. Chem. C, 2019, 123(7): 4256.

doi: 10.1021/acs.jpcc.8b11628
[7]
Jiao Y, Zheng Y, Chen P, Jaroniec M, Qiao S Z. J. Am. Chem. Soc., 2017, 139(49): 18093.

doi: 10.1021/jacs.7b10817 pmid: 29151346
[8]
Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen B A, Haasch R, Abiade J, Yarin A L, Salehi-Khojin A. Nat. Commun., 2013, 4: 2819.

doi: 10.1038/ncomms3819
[9]
Tornow C E, Thorson M R, Ma S C, Gewirth A A, Kenis P J A. J. Am. Chem. Soc., 2012, 134(48): 19520.

doi: 10.1021/ja308217w
[10]
Zhang P, Li J, Pan Y. Acta Energiae Solaris Sinica., 2022, 43(6): 306.

doi: 10.19912/j.0254-0096.tynxb.2022-0606
[11]
Wang M M, Li M, Liu Y Q, Zhang C, Pan Y. Nano Res., 2022, 15(6): 4925.

doi: 10.1007/s12274-022-4175-z
[12]
Qu M, Chen Z, Sun Z Y, Zhou D N, Xu W J, Tang H, Gu H F, Liang T, Hu P F, Li G W, Wang Y, Chen Z, Wang T, Jia B B. Nano Res., 2023, 16: 2170.

doi: 10.1007/s12274-022-4969-z
[13]
Pan F P, Deng W, Justiniano C, Li Y. Appl. Catal. B, 2018, 226: 463.

doi: 10.1016/j.apcatb.2018.01.001
[14]
Ju W, Bagger A, Hao G P, Varela A S, Sinev I, Bon V, Roldan Cuenya B, Kaskel S, Rossmeisl J, Strasser P. Nat. Commun., 2017, 8: 944.

doi: 10.1038/s41467-017-01035-z
[15]
Fan Q K, Gao P F, Ren S, Qu Y T, Kong C C, Yang J, Wu Y E. Nano Res., 2023, 16: 2003.

doi: 10.1007/s12274-022-4472-6
[16]
Yang F Q, Mao X Y, Ma M F, Jiang C, Zhang P X, Wang J, Deng Q, Zeng Z L, Deng S G. Carbon, 2020, 168: 528.

doi: 10.1016/j.carbon.2020.06.088
[17]
Yang H P, Lin Q, Wu Y, Li G D, Hu Q, Chai X Y, Ren X Z, Zhang Q L, Liu J H, He C X. Nano Energy, 2020, 70: 104454.

doi: 10.1016/j.nanoen.2020.104454
[18]
Jiang K, Siahrostami S, Akey A J, Li Y B, Lu Z Y, Lattimer J, Hu Y F, Stokes C, Gangishetty M, Chen G X, Zhou Y W, Hill W, Cai W B, Bell D, Chan K R, NØrskov J K, Cui Y, Wang H T. Chem, 2017, 3(6): 950.

doi: 10.1016/j.chempr.2017.09.014
[19]
Pang Y J, Li J, Wang Z Y, Tan C S, Hsieh P L, Zhuang T T, Liang Z Q, Zou C Q, Wang X, De Luna P, Edwards J P, Xu Y, Li F W, Dinh C T, Zhong M, Lou Y H, Wu D, Chen L J, Sargent E H, Sinton D. Nat. Catal., 2019, 2(3): 251.

doi: 10.1038/s41929-019-0225-7
[20]
Li C W, Ciston J, Kanan M W. Nature, 2014, 508(7497): 504.

doi: 10.1038/nature13249
[21]
Zhang N Q, Zhang X X, Tao L, Jiang P, Ye C L, Lin R, Huang Z W, Li A, Pang D W, Yan H, Wang Y, Xu P, An S F, Zhang Q H, Liu L C, Du S X, Han X D, Wang D S, Li Y D. Angew. Chem, 2021, 60(11): 6170.

doi: 10.1002/anie.v60.11
[22]
Rosen B A, Salehi-Khojin A, Thorson M R, Zhu W, Whipple D T, Kenis P J A, Masel R I. Science, 2011, 334(6056): 643.

doi: 10.1126/science.1209786
[23]
Zhang Q Q, Guan J Q. Adv. Funct. Mater., 2020, 30(31): 2000768.

doi: 10.1002/adfm.v30.31
[24]
Chen Y, Hu F, Hao Y N, Wang Y H, Xie Y Y, Wang H, Yin L J, Yu D S, Yang H C, Ma J, Kai D, Li L L, Peng S J. Nano Res., 2022, 15(4): 3283.

doi: 10.1007/s12274-021-3978-7
[25]
He Q, Lee J H, Liu D B, Liu Y M, Lin Z X, Xie Z H, Hwang S, Kattel S, Song L, Chen J G. Adv. Funct. Mater., 2020, 30(17): 2000407.

doi: 10.1002/adfm.v30.17
[26]
Yuan X T, Zhang L, Li L L, Dong H, Chen S, Zhu W J, Hu C L, Deng W Y, Zhao Z J, Gong J L. J. Am. Chem. Soc., 2019, 141(12): 4791.

doi: 10.1021/jacs.8b11771
[27]
Bok J, Lee S Y, Lee B H, Kim C, Le Tri Nguyen D, Kim J W, Jung E, Lee C W, Jung Y, Lee H S, Kim J, Lee K, Ko W, Kim Y S, Cho S P, Yoo J S, Hyeon T, Hwang Y J. J. Am. Chem. Soc., 2021, 143(14): 5386.

doi: 10.1021/jacs.0c12696
[28]
Li Y, Adli N M, Shan W T, Wang M Y, Zachman M J, Hwang S, Tabassum H, Karakalos S, Feng Z X, Wang G F, Li Y C, Wu G. Energy Environ. Sci., 2022, 15(5): 2108.

doi: 10.1039/D2EE00318J
[29]
Gu J, Hsu C S, Bai L C, Chen H M, Hu X L. Science, 2019, 364(6445): 1091.

doi: 10.1126/science.aaw7515
[30]
Wang C, Ren H A, Wang Z H, Guan Q X, Liu Y P, Li W. Appl. Catal. B, 2022, 304: 120958.

doi: 10.1016/j.apcatb.2021.120958
[31]
Pan Y, Lin R, Chen Y. J. Am. Chem. Soc., 2018, 140(12): 4218.

doi: 10.1021/jacs.8b00814
[32]
Zhu C Z, Fu S F, Shi Q R, Du D, Lin Y H. Angew. Chem. Int. Ed., 2017, 56(45): 13944.

doi: 10.1002/anie.201703864
[33]
Chen S H, Wang B Q, Zhu J X, Wang L Q, Ou H H, Zhang Z D, Liang X, Zheng L R, Zhou L, Su Y Q, Wang D S, Li Y D. Nano Lett., 2021, 21(17): 7325.

doi: 10.1021/acs.nanolett.1c02502
[34]
Tan X, Tahini H A, Arandiyan H, Smith S C. Adv. Theory Simul., 2019, 2(3): 1800094.

doi: 10.1002/adts.v2.3
[35]
Hu C H, Wang Y J, Chen J M, Wang H F, Shen K, Tang K W, Chen L Y, Li Y W. Small, 2022, 18(22): 2201391.

doi: 10.1002/smll.v18.22
[36]
Shang H S, Wang T, Pei J J, Jiang Z L, Zhou D N, Wang Y, Li H J, Dong J C, Zhuang Z B, Chen W X, Wang D S, Zhang J T, Li Y D. Angew. Chem, 2020, 59(50): 22465.

doi: 10.1002/anie.v59.50
[37]
Lu P L, Tan X, Zhao H T, Xiang Q, Liu K L, Zhao X X, Yin X M, Li X Z, Hai X, Xi S B, Wee A T S, Pennycook S J, Yu X F, Yuan M L, Wu J B, Zhang G J, Smith S C, Yin Z Y. ACS Nano, 2021, 15(3): 5671.

doi: 10.1021/acsnano.1c00858
[38]
Chen Z, Gao M R, Duan N Q, Zhang J G, Zhang Y Q, Fan T T, Zhang J W, Dong Y Y, Li J H, Liu Q X, Yi X D, Luo J L. Appl. Catal. B Environ., 2020, 277: 119252.

doi: 10.1016/j.apcatb.2020.119252
[39]
Lee M Y, Ringe S, Kim H, Kang S, Kwon Y. ACS Energy Lett., 2020, 5(9): 2987.

doi: 10.1021/acsenergylett.0c01387
[40]
Wen G B, Ren B H, Park M G, Yang J, Dou H Z, Zhang Z, Deng Y P, Bai Z Y, Yang L, Gostick J, Botton G A, Hu Y F, Chen Z W. Angew. Chem. Int. Ed., 2020, 59(31): 13124.

doi: 10.1002/anie.v59.31
[41]
Ni W, Gao Y, Lin Y, Ma C, Guo X, Wang S, Zhang S. ACS Catalysis, 2021, 11(9): 5212.

doi: 10.1021/acscatal.0c05514
[42]
Wang Q Y, Liu K, Fu J W, Cai C, Li H, Long Y, Chen S Y, Liu B, Li H M, Li W Z, Qiu X Q, Zhang N, Hu J H, Pan H, Liu M. Angew. Chem., 2021, 60(48): 25241.

doi: 10.1002/anie.v60.48
[43]
Jia C, Li S N, Zhao Y, Hocking R K, Ren W H, Chen X J, Su Z, Yang W F, Wang Y, Zheng S S, Pan F, Zhao C. Adv. Funct. Mater., 2021, 31(51): 2107072.

doi: 10.1002/adfm.v31.51
[44]
Li Z, Wu R, Xiao S H, Yang Y C, Lai L, Chen J S, Chen Y. Chem. Eng. J., 2022, 430: 132882.

doi: 10.1016/j.cej.2021.132882
[45]
Sun X H, Tuo Y X, Ye C L, Chen C, Lu Q, Li G N, Jiang P, Chen S H, Zhu P, Ma M, Zhang J, Bitter J H, Wang D S, Li Y D. Angew. Chem. Int. Ed., 2021, 60(44): 23614.

doi: 10.1002/anie.v60.44
[46]
Li K, Zhang S B, Zhang X L, Liu S, Jiang H S, Jiang T L, Shen C Y, Yu Y, Chen W. Nano Lett., 2022, 22(4): 1557.

doi: 10.1021/acs.nanolett.1c04382
[47]
Wang Q Y, Liu K, Hu K M, Cai C, Li H, Li H M, Herran M, Lu Y R, Chan T S, Ma C, Fu J W, Zhang S G, Liang Y, CortÉs E, Liu M. Nat. Commun., 2022, 13: 6082.

doi: 10.1038/s41467-022-33692-0
[48]
Hou J, Fan Z, Luo R, Zhang Y, Zhang B, Zhai P, Zhang Y, Wang C, Gao J, Zhou W, Sun L. Angew. Chem., 2023, 62(7),DOI:10.1002/anie.202216326.

doi: 10.1002/anie.202216326
[49]
Jiao J Q, Lin R, Liu S J, Cheong W C, Zhang C, Chen Z, Pan Y, Tang J G, Wu K L, Hung S F, Chen H M, Zheng L R, Lu Q, Yang X, Xu B J, Xiao H, Li J, Wang D S, Peng Q, Chen C, Li Y D. Nat. Chem., 2019, 11(3): 222.

doi: 10.1038/s41557-018-0201-x
[50]
Yi J D, Gao X, Zhou H, Chen W, Wu Y. Angew. Chem., 2022, 61(47),DOI:10.1002/anie.202212329.

doi: 10.1002/anie.202212329
[51]
Zhang Z D, Zhu J X, Chen S H, Sun W M, Wang D S. Angew. Chem, 2023, 62(3),DOI:10.1002/anie.202215136.

doi: 10.1002/anie.202215136
[52]
Zheng T T, Liu C X, Guo C X, Zhang M L, Li X, Jiang Q, Xue W Q, Li H L, Li A W, Pao C W, Xiao J P, Xia C, Zeng J. Nat. Nanotechnol., 2021, 16(12): 1386.

doi: 10.1038/s41565-021-00974-5
[53]
Zhang Y, Li P, Zhao C M, Zhou G, Zhou F Y, Zhang Q T, Su C L, Wu Y E. Sci. Bull., 2022, 67(16): 1679.

doi: 10.1016/j.scib.2022.07.029 pmid: 36546047
[54]
Wei X F, Wei S X, Cao S F, Hu Y Y, Zhou S N, Liu S Y, Wang Z J, Lu X Q. Appl. Surf. Sci., 2021, 564: 150423.

doi: 10.1016/j.apsusc.2021.150423
[55]
Yang H P, Wu Y, Li G D, Lin Q, Hu Q, Zhang Q L, Liu J H, He C X. J. Am. Chem. Soc., 2019, 141(32): 12717.

doi: 10.1021/jacs.9b04907
[56]
Cai Y M, Fu J J, Zhou Y, Chang Y C, Min Q H, Zhu J J, Lin Y H, Zhu W L. Nat. Commun., 2021, 12: 586.

doi: 10.1038/s41467-020-20769-x
[57]
Qi R, Zhu B E, Han Z K, Gao Y. ACS Catal., 2022, 12(14): 8269.

doi: 10.1021/acscatal.2c02149
[58]
Zhang J, Xu T S, Yuan D, Tian J L, Ma D W.J. CO2 Util., 2021, 43: 101367.
[59]
Gao Z Y, Meng Y, Koso A, Mishima J, Xie B, Ni Z M, Xia S J. Colloids Surf. A, 2022, 648: 129365.

doi: 10.1016/j.colsurfa.2022.129365
[60]
Zhao S Y, Wang T S, Zhou G M, Zhang L J, Lin C, Veder J P, Johannessen B, Saunders M, Yin L C, Liu C, De Marco R, Yang S Z, Zhang Q F, Jiang S P. ChemNanoMat, 2020, 6(7): 997.

doi: 10.1002/cnma.v6.7
[61]
Wang H, Chuai H, Chen X, Lin J, Zhang S, Ma X. ACS Appl. Mater. Interfaces. 2023, 15(1): 1376.

doi: 10.1021/acsami.2c19502
[62]
Zhang Z D, Wang D S. J. Mater. Chem. A, 2022, 10(11): 5863.

doi: 10.1039/D1TA07778C
[63]
Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Acc. Chem. Res., 2013, 46(8): 1740.

doi: 10.1021/ar300361m
[64]
Ji S F, Chen Y J, Wang X L, Zhang Z D, Wang D S, Li Y D. Chem. Rev., 2020, 120(21): 11900.

doi: 10.1021/acs.chemrev.9b00818
[65]
Yang D X, Zhu Q G, Chen C J, Liu H Z, Liu Z M, Zhao Z J, Zhang X Y, Liu S J, Han B X. Nat. Commun., 2019, 10: 677.

doi: 10.1038/s41467-019-08653-9
[66]
Sebastián-Pascual P, Mezzavilla S, Stephens I E L, Escudero-Escribano M. ChemCatChem, 2019, 11(16): 3626.

doi: 10.1002/cctc.v11.16
[67]
Burdyny T, Smith W A. Energy Environ. Sci., 2019, 12(5): 1442.

doi: 10.1039/C8EE03134G
[68]
Ampelli C, Genovese C, Errahali M, Gatti G, Marchese L, Perathoner S, Centi G. J. Appl. Electrochem., 2015, 45(7): 701.

doi: 10.1007/s10800-015-0847-7
[69]
Gabardo C M, Seifitokaldani A, Edwards J P, Dinh C T, Burdyny T, Kibria M G, O’Brien C P, Sargent E H, Sinton D. Energy Environ. Sci., 2018, 11(9): 2531.

doi: 10.1039/C8EE01684D
[70]
Zhang L X, Hu S Q, Zhu X F, Yang W S. J. Energy Chem., 2017, 26(4): 593.

doi: 10.1016/j.jechem.2017.04.004
[71]
Zhang X M, Song Y F, Wang G X, Bao X H. J. Energy Chem., 2017, 26(5): 839.

doi: 10.1016/j.jechem.2017.07.003
[72]
Salvatore D A, Weekes D M, He J F, Dettelbach K E, Li Y C, Mallouk T E, Berlinguette C P. ACS Energy Lett., 2018, 3(1): 149.

doi: 10.1021/acsenergylett.7b01017
[73]
Marepally B C, Ampelli C, Genovese C, Saboo T, Perathoner S, Wisser F M, Veyre L, Canivet J, Alessandra Quadrelli E, Centi G. ChemSusChem, 2017, 10(22): 4442.

doi: 10.1002/cssc.201701506 pmid: 28921891
[1] Wenhao Wu, Wen Lei, Liqiong Wang, Sen Wang, Haijun Zhang. Preparation of Single Atom Catalysts [J]. Progress in Chemistry, 2020, 32(1): 23-32.