中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (3): 580-592 DOI: 10.7536/PC210220 Previous Articles   Next Articles

• Review •

The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions

Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng()   

  1. State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
  • Received: Revised: Online: Published:
  • Contact: Kaiming Peng
  • Supported by:
    National Natural Science Foundation of China(51978490); National Science and Technology Major Project for Water Pollution Control and Treatment(2017ZX07202003-02); Natural Science Foundation of Shanghai(20ZDR1461200); College Student Innovation and Entrepreneurship Training Program of Shanghai(S202005011)
Richhtml ( 30 ) PDF ( 592 ) Cited
Export

EndNote

Ris

BibTeX

Superwetting membrane can significantly improve the flux of emulsion treatment and effectively alleviate serious membrane pollution problems due to its unique wetting properties of water and oil. Therefore, more and more attention has been paid to the field of emulsion wastewater treatment. In this paper, the design and preparation methods of superhydrophilic membrane, Janus membrane and superwetting membrane with functional sites are summarized, the separation effect is evaluated and the mechanism of action is explored. The membrane is designed and prepared mainly by constructing hydrophilic surface and rough structure. The cross-linked fiber membrane synthesized by electrospinning method has a good application prospect in emulsion separation because it can break through the limitation of membrane pore size caused by screening effect. At the same time, depending on the type of oil/water separation mode and the application of membranes, we induce the filtration demulsification mode of superhydrophilic membrane and the oil gathering demulsification mode of Janus membrane and their characteristic, the former has the characteristics of low operating pressure, high filtration flux and good anti pollution performance, while the latter has the characteristics of high purity oil gathering. The effect of membrane structure and surfactant concentration on emulsion separation efficiency is also analyzed. Then, the vertical and tangential migration and transformation of droplets in the process of emulsion treatment by superwetting membrane are summarized, and the mechanism of droplet penetrating through the membrane in the process of Janus membrane oil gathering and demulsification and its mechanical analysis are discussed. At present, this part of research is mainly based on the prediction of droplet morphology and qualitative analysis of mechanics, the empirical and quantitative mechanical analysis of relevant mechanisms still need to be further studied. On this basis, a new idea and direction for the subsequent treatment of emulsion wastewater is proposed.

Contents

1 Introduction

2 Design and preparation of superwetting membrane and its properties

2.1 Superhydrophilic membrane

2.2 Janus membrane

2.3 Superwetting membrane with functional sites

2.4 Characteristic analysis of superwetting membrane

3 Separation effect of superwetting membrane in emulsion demulsification

3.1 Oil-water separation model of superwetting membrane for emulsion wastewater

3.2 Analysis of main influencing factors in emulsion membrane demulsification separation process

4 The mechanism of superwetting membrane in the demulsification process

4.1 The interception and demulsification mechanism of the hydrophilic structure

4.2 The one-way penetration mechanism of the Janus structure

4.3 The mechanism between functional sites on the membrane surface and surfactants at the oil-water interface

5 Conclusion and outlook

Fig.1 Design and preparation of different types of Superwetting membrane. a) Formation of a superhydrophilic underwater superoleophobic PAA-g-PVDF membrane by a salt-induced phase-inversion process[31]. b) Schematic illustration of the fabrication process for Janus CNTs@PANEN membranes[35]. c) Schematic illustration of the preparation of CNT-coated Janus membranes[16]
Table 1 Emulsions, membranes and separation effect parameters of some research cases
Fig.2 The separation device for filtering and separating internal phases.(a)Type H dead end filter[15,16];(b)cross-flow filter for hollow tubular Janus membrane[76];(c)ship type Janus oil collecting device[75]
Fig.3 The evolution of the behavior of oil droplets in all directions. (a)Schematic showing the assumed separation process for the SFEs and SSEs[85]. (b) Representative confocal images showing degrees of oil droplet deformation (R = 5 μm) in response to increased and decreased permeate flux[86]. (c) Conceptual schematic of the “stable” water fifilm trapped between the oil droplet and the membrane surface[86]. (d) Increased permeation induces drainage and rupture of the water fifilm, and a transition to wetting of the membrane by the oil[86]
Fig.4 Schematic force analyses of one underwater oil drop transported through a capillary pore of the JMs (from the hydrophilic side to the hydrophobic side)[39]
Fig.5 The mechanism of action of surfactant on the oil-water interface and the functional sites on the membrane surface. (a) Mechanism diagrams of PAN-PDAc6 membrane for demulsifification[23]. (b,c) Mechanism diagrams of PAN membrane for demulsifification[23]. (d~f) Proposed separation mechanism showing the mixed nonionic surfactant-stabilized emulsions separated by the MWCNTs(x)/CFM/PDMS membrane[44]
[1]
Fernández E, Benito J M, Pazos C, Coca J, Ruiz I, Ríos G. Colloids Surf. A: Physicochem. Eng. Aspects, 2005, 263(1/3): 363.

doi: 10.1016/j.colsurfa.2004.12.042
[2]
Um M J, Yoon S H, Lee C H, Chung K Y, Kim J J. Water Res., 2001, 35(17): 4095.

pmid: 11791839
[3]
Mahdi S M, Skóld R O. J. Dispers. Sci. Technol., 1990, 11(1): 1.

doi: 10.1080/01932699008943233
[4]
John J, Bhattacharya M, Raynor P C. Colloids Surf. A: Physicochem. Eng. Aspects, 2004, 237(1/3): 141.

doi: 10.1016/j.colsurfa.2003.12.029
[5]
Rong J, Qiu F X, Zhang T, Zhang X Y, Zhu Y, Xu J C, Yang D Y, Dai Y T. Chem. Eng. J., 2017, 322: 397.

doi: 10.1016/j.cej.2017.04.049
[6]
Takht Ravanchi M, Kaghazchi T, Kargari A. Desalination, 2009, 235(1/3): 199.

doi: 10.1016/j.desal.2007.10.042
[7]
Little R C. Environ. Sci. Technol., 1981, 15 (10): 1184.

doi: 10.1021/es00092a005 pmid: 22299696
[8]
Cui J Y, Wu Y L, Meng M J, Lu J, Wang C, Zhao J, Yan Y S. J. Appl. Polym. Sci., 2016, 133(19): DOI: 10.1002/app.43405.

doi: 10.1002/app.43405
[9]
Wu Y L, Yan M, Lu J, Wang C, Zhao J, Cui J Y, Li C X, Yan Y S. Chem. Eng. J., 2017, 309: 98.

doi: 10.1016/j.cej.2016.10.023
[10]
Cui J Y, Zhang Y F, Wang Y, Ding J Y, Yu P H, Yan Y S, Li C X, Zhou Z P. New J. Chem., 2018, 42(1): 118.

doi: 10.1039/C7NJ03152A
[11]
Liu L Y, Chen C, Yang S Y, Xie H, Gong M G, Xu X L. Phys. Chem. Chem. Phys., 2016, 18(2): 1317.

doi: 10.1039/C5CP06305A
[12]
Cui J Y, Zhou Z P, Xie A, Meng M J, Cui Y H, Liu S W, Lu J, Zhou S, Yan Y S, Dong H J. Sep. Purif. Technol., 2019, 209: 434.

doi: 10.1016/j.seppur.2018.03.054
[13]
Li W T, Yong J L, Yang Q, Chen F, Fang Y, Hou X. Acta Phys. Chim. Sin., 2018, 34(5):456.

doi: 10.3866/PKU.WHXB201709211
(李文涛, 雍佳乐, 杨青, 陈烽, 方瑶, 侯洵. 物理化学学报, 2018, 34(5):456.).
[14]
Zhang W F, Liu N, Cao Y Z, Chen Y N, Zhang Q D, Lin X, Qu R X, Li H F, Feng L. ACS Appl. Mater. Interfaces, 2016, 8(33): 21816.

doi: 10.1021/acsami.6b07018
[15]
Wang Z J, Wang Y, Liu G J. Angew. Chem. Int. Ed., 2016, 55(4): 1291.

doi: 10.1002/anie.201507451
[16]
An Y P, Yang J, Yang H C, Wu M B, Xu Z K. ACS Appl. Mater. Interfaces, 2018, 10(11): 9832.

doi: 10.1021/acsami.7b19700
[17]
Si Y, Fu Q X, Wang X Q, Zhu J, Yu J Y, Sun G, Ding B. ACS Nano, 2015, 9(4): 3791.

doi: 10.1021/nn506633b
[18]
Chen P C, Xu Z K. Sci. Rep., 2013, 3: 2776.

doi: 10.1038/srep02776
[19]
Fan J B, Song Y Y, Wang S T, Meng J X, Yang G, Guo X L, Feng L, Jiang L. Adv. Funct. Mater., 2015, 25(33): 5368.

doi: 10.1002/adfm.201501066
[20]
Yang H C, Pi J K, Liao K J, Huang H, Wu Q Y, Huang X J, Xu Z K. ACS Appl. Mater. Interfaces, 2014, 6(15): 12566.

doi: 10.1021/am502490j
[21]
Zhang F, Gao S J, Zhu Y Z, Jin J. J. Membr. Sci., 2016, 513: 67.

doi: 10.1016/j.memsci.2016.04.020
[22]
Ge J L, Zhang J C, Wang F, Li Z L, Yu J Y, Ding B. J. Mater. Chem. A, 2017, 5(2): 497.

doi: 10.1039/C6TA07652A
[23]
He B, Ding Y J, Wang J Q, Yao Z K, Qing W H, Zhang Y J, Liu F, Tang C Y. J. Membr. Sci., 2019, 581: 105.

doi: 10.1016/j.memsci.2019.03.045
[24]
Zuo J H, Chen J H, Wen X F, Xu S P, Pi P H. Progress in Chemistry, 2019, 31 (10): 1440.
(左继浩, 陈嘉慧, 文秀芳, 徐守萍, 皮丕辉. 化学进展, 2019, 31 (10): 1440.).

doi: 10.7536/PC190324
[25]
Yue X J, Li Z D, Zhang T, Yang D Y, Qiu F X. Chem. Eng. J., 2019, 364: 292.

doi: 10.1016/j.cej.2019.01.149
[26]
Ge M Z, Cao C Y, Huang J Y, Zhang X N, Tang Y X, Zhou X R, Zhang K Q, Chen Z, Lai Y K. Nanoscale Horiz., 2018, 3(3): 235.

doi: 10.1039/C7NH00185A
[27]
Zeng X J, Qian L, Yuan X X, Zhou C L, Li Z W, Cheng J, Xu S P, Wang S F, Pi P H, Wen X F. ACS Nano, 2017, 11(1): 760.

doi: 10.1021/acsnano.6b07182
[28]
Zhu Y Z, Zhang F, Wang D, Pei X F, Zhang W B, Jin J. J. Mater. Chem. A, 2013, 1(18): 5758.

doi: 10.1039/c3ta01598j
[29]
Chen X W, Hong L, Xu Y F, Ong Z W. ACS Appl. Mater. Interfaces, 2012, 4(4): 1909.

doi: 10.1021/am300207b
[30]
Wang Z X, Lau C H, Zhang N Q, Bai Y P, Shao L. J. Mater. Chem. A, 2015, 3(6): 2650.

doi: 10.1039/C4TA05970K
[31]
Zhang W B, Zhu Y Z, Liu X, Wang D, Li J Y, Jiang L, Jin J. Angew. Chem. Int. Ed., 2014, 53(3): 856.

doi: 10.1002/anie.201308183
[32]
Li H, Cao M, Ma X, Zhang Y, Jin X, Liu K, Jiang L. Adv. Mater. Interfaces, 2016, 3(19): 1600276.

doi: 10.1002/admi.201600276
[33]
Wu J, Wang N, Wang L, Dong H, Zhao Y, Jiang L. Soft Matter, 2012, 8(22): 5996.

doi: 10.1039/c2sm25514f
[34]
Hu L, Gao S J, Zhu Y Z, Zhang F, Jiang L, Jin J. J. Mater. Chem. A, 2015, 3(46): 23477.

doi: 10.1039/C5TA03975D
[35]
Jiang Y S, Hou J W, Xu J, Shan B T. Carbon, 2017, 115: 477.

doi: 10.1016/j.carbon.2017.01.053
[36]
Yang Y B, Yang X D, Fu L N, Zou M C, Cao A Y, Du Y P, Yuan Q, Yan C H. ACS Energy Lett., 2018, 3(5): 1165.

doi: 10.1021/acsenergylett.8b00433
[37]
Zhang Y, Barboiu M. Chem. Commun., 2015, 51(88): 15925.

doi: 10.1039/C5CC06805C
[38]
Li H N, Yang J, Xu Z K. Adv. Mater. Interfaces, 2020, 7(7): 1902064.

doi: 10.1002/admi.201902064
[39]
Yang J, Li H N, Chen Z X, He A, Zhong Q Z, Xu Z K. J. Mater. Chem. A, 2019, 7(13): 7907.

doi: 10.1039/C9TA00575G
[40]
Ren F F, Li G Q, Zhang Z, Zhang X D, Fan H, Zhou C, Wang Y L, Zhang Y H, Wang C W, Mu K, Su Y H, Wu D. J. Mater. Chem. A, 2017, 5(35): 18403.

doi: 10.1039/C7TA04392A
[41]
Wang H X, Zhou H, Yang W D, Zhao Y, Fang J, Lin T. ACS Appl. Mater. Interfaces, 2015, 7(41): 22874.

doi: 10.1021/acsami.5b05678
[42]
Liu G P, Jin W Q, Xu N P. Angew. Chem. Int. Ed., 2016, 55(43): 13384.

doi: 10.1002/anie.201600438
[43]
Lin Y M, Song C, Rutledge G C. Adv. Mater. Interfaces, 2019, 6(23): 1901285.

doi: 10.1002/admi.201901285
[44]
Ye X X, Wang Y P, Ke L, Cui Y W, Luo W, Wang X L, Huang X, Shi B. J. Mater. Chem. A, 2018, 6(29): 14058.

doi: 10.1039/C8TA04008G
[45]
Zheng X, Guo Z Y, Tian D L, Zhang X F, Jiang L. Adv. Mater. Interfaces, 2016, 3(18): 1600461.

doi: 10.1002/admi.201600461
[46]
Cheng Z J, Wang J W, Lai H, Du Y, Hou R, Li C, Zhang N Q, Sun K N. Langmuir, 2015, 31(4): 1393.

doi: 10.1021/la503676a
[47]
Shi Z, Zhang W B, Zhang F, Liu X, Wang D, Jin J, Jiang L. Adv. Mater., 2013, 25(17): 2422.

doi: 10.1002/adma.201204873
[48]
Gu J C, Xiao P, Chen J, Zhang J W, Huang Y J, Chen T. ACS Appl. Mater. Interfaces, 2014, 6(18): 16204.

doi: 10.1021/am504326m
[49]
Zhang W B, Shi Z, Zhang F, Liu X, Jin J, Jiang L. Adv. Mater., 2013, 25(14): 2071.

doi: 10.1002/adma.201204520
[50]
Yuan X Y, Li W, Zhu Z G, Han N, Zhang X X. Colloids Surf. A: Physicochem. Eng. Aspects, 2017, 516: 305.

doi: 10.1016/j.colsurfa.2016.12.047
[51]
Tian M, Liao Y, Wang R. J. Membr. Sci., 2020, 596: 117721.

doi: 10.1016/j.memsci.2019.117721
[52]
Song B T, Xu Q. Langmuir, 2016, 32(39): 9960.

doi: 10.1021/acs.langmuir.6b02500
[53]
Wang Z X, Jiang X, Cheng X Q, Lau C H, Shao L. ACS Appl. Mater. Interfaces, 2015, 7(18): 9534.

doi: 10.1021/acsami.5b00894
[54]
Zhu X B, Dudchenko A V, Khor C M, He X, Ramon G Z, Jassby D. Environ. Sci. Technol., 2018, 52(20):11591.
[55]
Gao S J, Shi Z, Zhang W B, Zhang F, Jin J. ACS Nano, 2014, 8(6): 6344.

doi: 10.1021/nn501851a
[56]
Wang S, Liang S, Liang P, Zhang X Y, Sun J Y, Wu S J, Huang X. J. Membr. Sci., 2015, 491: 37.

doi: 10.1016/j.memsci.2015.05.014
[57]
Sim E H, Kang J K, Lee S C, Choi N C, Kim S B, Park C Y. Desalination and Water Treatment, 2017, 97: 191.

doi: 10.5004/dwt.2017.21678
[58]
Das B, Chakrabarty B, Barkakati P. Korean J. Chem. Eng., 2017, 34(10): 2559.

doi: 10.1007/s11814-017-0185-z
[59]
Cai Y H, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. J. Membr. Sci., 2017, 543: 10.

doi: 10.1016/j.memsci.2017.08.047
[60]
Wang J, Hou L, Yan K K, Zhang L, Yu Q J. J. Membr. Sci., 2018, 547: 156.

doi: 10.1016/j.memsci.2017.10.028
[61]
Zou D, Xu J R, Chen X F, Drioli E, Qiu M H, Fan Y Q. Sep. Purif. Technol., 2019, 219: 127.

doi: 10.1016/j.seppur.2019.02.051
[62]
Zhong M, Su P K, Lai J Y, Liu Y L. J. Membr. Sci., 2018, 550: 18.

doi: 10.1016/j.memsci.2017.12.068
[63]
Xu D D, Zheng X T, Xiao R. RSC Adv., 2017, 7(12): 7108.

doi: 10.1039/C6RA26068C
[64]
Yue X J, Zhang T, Yang D Y, Qiu F X, Li Z D. Ind. Eng. Chem. Res., 2018, 57(31): 10439.

doi: 10.1021/acs.iecr.8b02577
[65]
Li Z, Xu Z L, Huang B Q, Li Y X, Wang M. Sep. Purif. Technol., 2019, 222: 75.

doi: 10.1016/j.seppur.2019.03.102
[66]
Zhan B, Liu Y, Li S Y, Kaya C, Stegmaier T, Aliabadi M, Han Z W, Ren L Q. Appl. Surf. Sci., 2019, 496: 143580.

doi: 10.1016/j.apsusc.2019.143580
[67]
Li Z K, Liu Y C, Li L B, Wei Y Y, Caro J, Wang H H. J. Membr. Sci., 2019, 592: 117361.

doi: 10.1016/j.memsci.2019.117361
[68]
Wang B, Chen C, Liu H T, Xia B B, Fan Y N, Chen T C. Thin Solid Films, 2018, 665: 9.

doi: 10.1016/j.tsf.2018.08.039
[69]
Sun Y C, Lin Y Q, Fang L F, Zhang L, Cheng L, Yoshioka T, Matsuyama H. J. Membr. Sci., 2019, 584: 161.

doi: 10.1016/j.memsci.2019.04.071
[70]
Kang L, Zhao L, Yao S, Duan C X. Ceram. Int., 2019, 45(13): 16717.

doi: 10.1016/j.ceramint.2019.05.195
[71]
Li M F, Li Y Q, Chang K Q, Cheng P, Liu K, Liu Q Z, Wang Y D, Lu Z T, Wang D. Compos. Commun., 2018, 7: 69.

doi: 10.1016/j.coco.2018.01.001
[72]
Hong X Q, Zhang B, Zhang X Y, Wu Y H, Wang T H, Qiu J S. J. Water Process. Eng., 2019, 32: 100973.

doi: 10.1016/j.jwpe.2019.100973
[73]
Sun J W, Bi H C, Su S, Jia H Y, Xie X, Sun L T. J. Membr. Sci., 2018, 553: 131.

doi: 10.1016/j.memsci.2018.02.029
[74]
Zuo J H, Gu Y H, Wei C, Yan X, Chen Y, Lang W Z. J. Membr. Sci., 2020, 595: 117475.

doi: 10.1016/j.memsci.2019.117475
[75]
Yang X B, Wang Z X, Shao L. J. Membr. Sci., 2018, 549: 67.

doi: 10.1016/j.memsci.2017.11.071
[76]
Li H N, Yang J, Xu Z K. J. Membr. Sci., 2020, 602: 117964.

doi: 10.1016/j.memsci.2020.117964
[77]
Wang J T, Wang H F. Sep. Purif. Technol., 2019, 212: 597.

doi: 10.1016/j.seppur.2018.11.078
[78]
Jin J, Zhao X L, Du Y H, Ding M, Xiang C J, Yan N, Jia C K, Han Z, Sun L D. iScience, 2018, 6: 289.

doi: 10.1016/j.isci.2018.08.004
[79]
Chen L W, Si Y F, Zhu H, Jiang T, Guo Z G. J. Membr. Sci., 2016, 520: 760.

doi: 10.1016/j.memsci.2016.08.026
[80]
Zhou X Y, Wang F F, Ji Y L, Chen W T, Wei J F. Environ. Sci. Technol., 2016, 50(7): 3860.

doi: 10.1021/acs.est.5b06007
[81]
Song S, Yang H, Zhou C L, Cheng J, Jiang Z B, Lu Z, Miao J. Chem. Eng. J., 2017, 320: 342.

doi: 10.1016/j.cej.2017.03.071
[82]
Yuan R, Liu J, Li Z, Chen Y, Wang Z, Liu Z, Jing G, Zhu Y, Wang H J. Colloid Interface Sci., 2019, 555: 569.

doi: 10.1016/j.jcis.2019.08.011
[83]
Gao S J, Shi Z, Zhang W B, Zhang F, Jin J. ACS Nano, 2014, 8(6): 6344.

doi: 10.1021/nn501851a
[84]
Deng W S, Long M Y, Zhou Q N, Wen N, Deng W L. J. Colloid Interface Sci., 2018, 511: 21.

doi: 10.1016/j.jcis.2017.09.070
[85]
Ge J L, Zong D D, Jin Q, Yu J Y, Ding B. Adv. Funct. Mater., 2018, 28(10): 1705051.

doi: 10.1002/adfm.201705051
[86]
Fux G, Ramon G Z. Environ. Sci. Technol., 2017, 51(23): 13842.

doi: 10.1021/acs.est.7b03391
[87]
Mohamed Z, Amgad S, Amr H. Water Res., 2018, 146: 159.

doi: S0043-1354(18)30731-0 pmid: 30243059
[88]
Tummons E N, Tarabara V V, Chew J W, Fane A G. J. Membr. Sci., 2016, 500: 211.

doi: 10.1016/j.memsci.2015.11.005
[89]
Liu Y N, Qu R X, Zhang W F, Li X Y, Wei Y, Feng L. ACS Appl. Mater. Interfaces, 2019, 11(22): 20545.

doi: 10.1021/acsami.9b04775
[90]
Park K C, Kim P, Grinthal A, He N, Fox D, Weaver J C, Aizenberg J. Nature, 2016, 531:78.

doi: 10.1038/nature16956
[91]
Cheng Z J, Wang B H, Lai H, Liu P C, Zhang D J, Tian D, Liu H W, Yu X Y, Sun B, Sun K N. Chem. Asian J., 2017, 12(16): 2085.

doi: 10.1002/asia.201700488
[92]
Yao C J, Luo M Y, Wang H L, Xu B, Cai Z S. J. Mater. Sci., 2019, 54(7): 5942.

doi: 10.1007/s10853-018-03241-6
[93]
Si Y F, Chen L W, Yang F C, Guo F, Guo Z G. J. Colloid Interface Sci., 2018, 509: 346.

doi: 10.1016/j.jcis.2017.09.033
[94]
Zhang C, He S, Wang D F, Xu F, Zhang F X, Zhang G X. J. Mater. Sci., 2018, 53(20): 14398.

doi: 10.1007/s10853-018-2659-8
[95]
Gao H, Duan Y Q, Yuan Z H. Chemical Journal of Chinese Universities, 2016, 37 (6):1208.
(高虹, 段月琴, 袁志好. 高等学校化学学报, 2016, 37 (6):1208.).
[1] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[2] Zhao Xiaoxi, Wang Cong, Tian Yong, Wang Xiufang. Preparation of Mesoporous Carbon Materials via Emulsion Method [J]. Progress in Chemistry, 2022, 34(10): 2316-2328.
[3] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[4] Yuanxia Zhang, Yan Bao, Jianzhong Ma. Synthesis of Janus Particles and Their Application Progress in Pickering Emulsion [J]. Progress in Chemistry, 2021, 33(2): 254-262.
[5] Fengfeng Gao, Yanyan Yang, Xiao Du, Xiaogang Hao, Guoqing Guan, Bing Tang. Electrically Switched Ion Membrane for Ion Selective Separation and Recovery: From ESIX to ESIPM [J]. Progress in Chemistry, 2020, 32(9): 1344-1351.
[6] Xiangli Chen, Kaiqiang Liu, Yu Fang. Molecular Gels: From Structural Regulation to Functional Applications [J]. Progress in Chemistry, 2020, 32(7): 861-872.
[7] Ning Liu, Shuilin Liu, Suyun Wu, Lin Fu, Zhi Wu, Laibing Li. Preparation and Application of Matal-Based Mesoporous Solid Bases [J]. Progress in Chemistry, 2020, 32(5): 536-547.
[8] Shiwei Tian, Guoliang Mao, Jiayu Zhang, Na Li, Mengyuan Jiang, Wei Wu. Switchable Pickering Emulsion System [J]. Progress in Chemistry, 2020, 32(4): 434-453.
[9] Jianxi Zhao, Panpan Gu, Hui Zeng, Shenglu Deng. Self-Assembly of Surfactants in Non-Polar Organic Solvents [J]. Progress in Chemistry, 2019, 31(5): 643-653.
[10] Sheng Feng, Fang Yang, Mengyao Liu, Hongxian Fan, Nian Xu. Carriers of Docetaxel: An Anticancer Drug [J]. Progress in Chemistry, 2019, 31(2/3): 368-380.
[11] Jihao Zuo, Jiahui Chen, Xiufang Wen, Shoupin Xu, Pihui Pi. Advanced Materials for Separation of Oil/Water Emulsion [J]. Progress in Chemistry, 2019, 31(10): 1440-1458.
[12] Mengnan Qu*, Mingjuan Yuan, Jiao He, Menghui Xue, Jinmei He*. Smart Responsive Superwetting Materials [J]. Progress in Chemistry, 2018, 30(12): 1874-1886.
[13] Lingang Hou, Lili Ma, Yichen Zhou, Yu Zhao, Yi Zhang, Jinmei He*. Application of Low Surface Energy Compounds to the Superwetting Materials [J]. Progress in Chemistry, 2018, 30(12): 1887-1898.
[14] Wei Wang, Rui Xie, Xiaojie Ju, Zhuang Liu, Liangyin Chu*. Progress on Control of Meso-Scale Structures for Droplet-Template Syntheses of Particle Materials [J]. Progress in Chemistry, 2018, 30(1): 44-50.
[15] Qing Xiang, Yingwu Luo*. RAFT Emulsion Polymerization [J]. Progress in Chemistry, 2018, 30(1): 101-111.