中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (12): 1887-1898 DOI: 10.7536/PC180345 Previous Articles   Next Articles

• Review •

Application of Low Surface Energy Compounds to the Superwetting Materials

Lingang Hou, Lili Ma, Yichen Zhou, Yu Zhao, Yi Zhang, Jinmei He*   

  1. College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21473132).
PDF ( 740 ) Cited
Export

EndNote

Ris

BibTeX

Recently, the superwetting materials have become a new research hotspot due to their potential application in self-cleaning, microfluidics transmission, biocompatibility etc. In addition to the creating of rough micro-nanoscale structure, the control of surface energy of the materials is also a vital factor for fabricating the superwetting materials. With the deepening of research on the mechanism of the wettability of superwetting surface, more and more kinds of low surface energy compounds with different structures have been used to decrease the surface energy. Based on the molecular structures and compound types, this paper reviews the low surface energy compounds in fabricating the superwetting materials, concludes the effects of pH value, temperature, concentration and solvent on the low surface energy materials, and summarizes the selection and application of low surface energy compounds for improving the mechanical strength, and preparing materials of wettability transformation and different wettability modification. Finally, some existing problems are discussed and the future research directions in this field are proposed.
Contents
1 Introduction
2 Types of the low surface energy compounds
2.1 Silane coupling agent
2.2 Aluminate coupling agent
2.3 Saturated fatty compounds
2.4 Low surface energy polymers with 3D structure
2.5 Composite compounds with low surface energy
3 Factors affecting the low surface energy of materials
3.1 pH
3.2 Temperature
3.3 Concentration
3.4 Solvent
3.5 Other factors
4 Selection and application of low surface energy compounds
4.1 Mechanical strength
4.2 Wettability transformation
4.3 Different wettability
5 Existing problems
6 Conclusion and outlook

CLC Number: 

[1] Zhang C Q, Mcadams Ⅱ D A, Grunlan J C. Adv. Mater., 2016, 28(30):6292.
[2] Darmanin T, Guittard F. J. Mater. Chem. A, 2014, 2:16319.
[3] 屈孟男(Qu M N), 侯琳刚(Hou L G), 何金梅(He J M), 马雪瑞(Ma X R), 袁明娟(Yuan M J), 刘向荣(Liu X R). 化学进展(Progress in Chemistry), 2016, 28(12):1774.
[4] Wang S T, Liu K S, Yao X, Jiang L. Chem. Rev., 2015, 115(16):8230.
[5] Patankar N A. Langmuir, 2004, 20(19):8209.
[6] Spori D M, Drobek T, Zürcher S, Ochsner M, Sprecher C, Mühlebach A, Spencer N D. Langmuir, 2008, 24(10):5411.
[7] Marmur A. Langmuir, 2004, 20(9):3517.
[8] Nosonovsky M. Langmuir, 2007, 23(6):3157.
[9] Alexander S, Eastoe J, Lord A M, Guittard F, Barron A R.ACS Appl. Mater. Inter., 2016, 8(1):660.
[10] Sukamanchi R, Mathew D, K.S. S K. ACS Sustainable Chem. Eng., 2017, 5(1):252.
[11] Rawal A, Sharma S, Kumar V, Saraswat H. Applied Surface Science, 2016, 389:469.
[12] Xu W G, Shi X F, Lu S X. Materials Chemistry and Physics, 2011, 129(3):1042.
[13] Barthlott W, Neinhuis C. Planta, 1997, 202(1):1.
[14] Koch K, Bohn H F, Barthlott W. Langmuir, 2009, 25(24):14116.
[15] Li W, Fang G P, Li Y F, Qiao G J. J. Phys. Chem. B, 2008, 112(24):7234.
[16] Zheng Q S, Yu Y, Zhao Z H. Langmuir, 2005, 21(26):12207.
[17] Izumi K, Tanaka H, Murakami M, Deguchi T, Morita A. Journal of Non-Crystalline Solids, 1990, 121(1/3):344.
[18] Tadanaga K, Morinaga J, Minami T. Journal of Sol-gel Science and Technology, 2000, 19(1/3):211.
[19] Deng X, Mammen L, Butt H J, Vollmer D. Science, 2012, 335(6064):67.
[20] Schutzius T M, Bayer I S, Tiwari M K, Megaridis C M. Ind. Eng. Chem. Res., 2011, 50(19):11117.
[21] Zhou C L, Chen Z D, Yang H, Hou K, Zeng X J, Zheng Y F, Cheng J. ACS Appl. Mater. Inter., 2017, 9(10):9184.
[22] Li Y, Men X H, Zhu X T, Ge B, Chu F J, Zhang Z Z. J. Mater. Sci., 2016, 51(5):2411.
[23] Wang Z X, Hou D Y, Lin S H. Environ. Sci. Technol., 2016, 50(7):3866.
[24] Li L X, Li B C, Dong J, Zhang J P. J. Mater. Chem. A, 2016, 4:13677.
[25] Qing Y Q, Hu C B, Yang C N, An K, Tang F W, Tan J Y, Liu C S. ACS Appl. Mater. Inter., 2017, 9(19):16571.
[26] Zhang W B, Xiang T H, Liu F, Zhang M, Gan W T, Zhai X L, Di X, Wang Y Z, Liu G X, Wang C Y. ACS Appl. Mater. Inter., 2017, 9(18):15776.
[27] Wu C Q, Liu Q, Chen R R, Liu J Y, Zhang H S, Li R M, Takahashi K, Liu P L, Wang J. ACS Appl. Mater. Inter., 2017, 9(12):11106.
[28] Abbas R, Khereby M A, Sadik W A, EI Demerdash A G M. Cellulose, 2015, 22:887.
[29] Guo F, Wen Q Y, Peng Y B, Guo Z G. J. Mater. Chem. A, 2017, 5:21866.
[30] Wang L M, McCarthy T J. Angew. Chem. Int. Ed., 2016, 55:244.
[31] Hsu C P, Chang L Y, Chiu C W, Lee P T C, Lin J J. ACS Appl. Mater. Inter., 2013, 5(3):538.
[32] 刘奇龙(Liu Q L), 袁志庆(Yuan Z Q), 吴若梅(Wu R M), 滑广军(Hua G J), 蒋海云(Jiang H Y), 郝喜海(Hao X H). 包装工程(Packaging Engineering), 2016, 37(5):31.
[33] 杨啸天(Yang X T), 帅茜(Shuai Q), 罗艳梅(Luo Y M), 董亦可(Dong Y K), 谭月明(Tan Y M), 陈波(Chen B), 马铭(Ma M). 应用化学(Chinese Journal of Applied Chemistry), 2015, 32(6):726.
[34] Cao C Y, Ge M Z, Huang J Y, Li S H, Deng S, Zhang S N, Chen Z, Zhang K Q, Al-Deyab S S, Lai Y K. J. Mater. Chem. A, 2016, 4:12179.
[35] Hou Y, Wang Z, Guo J, Shen H, Zhang H, Zhao N, Zhao Y P, Chen L, Liang S M, Jin Y, Xu J. RSC J. Mater. Chem. A, 2015, 3:23252.
[36] Li Q Q, Yan Y H, Yu M, Song B T, Shi S Q, Gong Y K. Applied Surface Science, 2016, 367:101.
[37] Qu M N, Hou L G, He J M, Feng J, Liu S S, Yao Y L. Fibers Polym., 2016, 17(12):2062.
[38] 林美群(Lin M Q), 马少健(Ma S J), 莫伟(Mo W), 王桂芳(Wang G F). 有色矿冶(Non-Ferrous Mining and Metallurgy), 2006, 22:83.
[39] Qu M N, Ma X R, He J M, Feng J, Liu S S, Yao Y L, Hou L G, Liu X R. ACS Appl. Mater. Inter., 2017, 9(1):1011.
[40] Shami Z, Amininasab S M, Shakeri P. ACS Appl. Mater. Inter., 2016, 8(42):28964.
[41] Cheng Z J, Lai H, Du Y, Fu K W, Hou R, Zhang N Q, Sun K N. ACS Appl. Mater. Inter., 2013, 5(21):11363.
[42] Wang K L, Dong Y M, Yan Y T, Zhang S F, Li J Z. RSC Adv., 2017, 7:29149.
[43] Schlaich C, Yu L X, Camacho L C, Wei Q, Haag R. Polym. Chem., 2016, 7:7446.
[44] Jefferson L U, Netchaev A D, Jefcoat J A, Windham A D, McFarland F M, Guo S, Buchanan R K, Buchanan J P. ACS Appl. Mater. Inter., 2015, 7(23):12639.
[45] Esteves A C C, Put M W P V D, Carcouët C C M, With G D. Adv. Funct. Mater., 2014, 24(7):986.
[46] Wang H X, Zhou H, Gestos A, Fang J, Lin T. ACS Appl. Mater. Inter., 2013, 5(20):10221.
[47] Zhang J, Lin W Q, Zhu C X, Lv J, Zhang W C, Feng J. Langmuir, 2018, 34(19):5600.
[48] Qu M N, Liu S S, He J M, Feng J, Yao Y L, Hou L G, Ma X R. J. Mater. Sci., 2016, 51(18):8718.
[49] Jiang Y G, Wang Z Q, Yu X, Shi F, Xu H P, Zhang X. Langmuir, 2005, 21(5):1986.
[50] Dang Z, Liu L B, Li Y, Xiang Y, Guo G L. ACS Appl. Mater. Inter., 2016, 8(45):31281.
[51] Ou R W, Wei J, Jiang L, Simon G P, Wang H T. Environ. Sci. Technol., 2016, 50(2):906.
[52] Yabu H, Hirai Y, Kojima M, Shimomura M. Chem. Mater., 2009, 21(9):1787.
[53] Zhu J F, Liu B, Li L Y, Zeng Z X, Zhao W J, Wang G, Guan X Y. J. Phys. Chem. A, 2016, 120(28):5617.
[54] Sheng J L, Zhang M, Xu Y, Yu J Y, Ding B. ACS Appl. Mater. Inter., 2016, 8(40):27218.
[55] Julthongpiput D, Lin Y H, Teng J, Zubarev E R, Tsukruk V V. Langmuir, 2003, 19(19):7832.
[56] Boyes S G, Brittain W J, Weng X, Cheng S Z D. Macromolecules, 2002, 35(13):4960.
[57] Granville A M, Boyes S G, Akgun B, Foster M D, Brittain W J. Macromolecules, 2004, 37(8):2790.
[58] Uyama A, Yamazoe S, Shigematsu S, Morimoto M, Yokojima S, Mayama H, Kojima Y, Nakamura S, Uchida K. Langmuir, 2011. 27(10):6395.
[59] Xu L, Wang J X, Song Y L, Jiang L. Chem. Mater., 2008, 20(11):3554.
[60] Sheng J L, Xu Y, Yu J Y, Ding B. ACS Appl. Mater. Inter., 2017, 9(17):15139.
[61] Wang Y X, Bhushan B. ACS Appl. Mater. Inter., 2015, 7(1):743.
[62] Cheng Z J, Lai H, Du Y, Fu K W, Hou R, Li C, Zhang N Q, Sun K N. ACS Appl. Mater. Inter., 2014, 6(1):636.
[63] Lei Z W, Zhang G Z, Deng Y H, Wang C Y. ACS Appl. Mater. Inter., 2017, 9(10):8967.
[64] Leon A D, Advincula R C. ACS Appl. Mater. Inter., 2014, 6(24):22666.
[65] Fujie T, Park J Y, Murata A, Estillore N C, Tria M C R, Takeoka S, Advincula R C. ACS Appl. Mater. Inter., 2009, 1(7):1404.
[66] Jiang W H, Wu G J, He Y N, Wang X G, An Y L, Song Y L, Jiang L. Chem. Commun., 2005, 0:3550.
[67] Lim H S, Han J T, Kwak D, Jin M H, Cho K. J. Am. Chem. Soc., 2006, 128(45):14458.
[68] Xu L Y, Ye Q, Lu X M, Lu Q H. ACS Appl. Mater. Inter., 2014, 6(16):14736.
[69] Minko S, Müller M, Motornov M, Nitschke M, Grundke K, Stamm M. J. Am. Chem. Soc., 2003, 125(13):3896.
[70] Yuan J, Wang J H, Zhang K L, Hu W B. RSC Adv., 2017, 7:28909.
[71] Li Z J, Yuan Y. RSC Adv., 2016, 6:90587.
[72] Su F H, Yao K. ACS Appl. Mater. Inter., 2014, 6(11):8762.
[73] Gao F, Wang W W, Li X X, Li L, Lin J P, Lin S L. J. Colloid Interf. Sci., 2016, 468:70.
[74] Li B C, Zhang J P. Chem. Commun., 2016, 52:2744.
[1] Xiaoguang Li, Xianglong Pang. Liquid Plasticines: Attributive Characters, Preparation Strategies and Application Explorations [J]. Progress in Chemistry, 2022, 34(8): 1760-1771.
[2] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[3] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[4] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[5] Yue Li, Yamei Lu, Pengfei Wang, Yingze Cao, Chun’ai Dai. Preparation and Application of Transparent Superhydrophobic Materials [J]. Progress in Chemistry, 2021, 33(12): 2362-2377.
[6] Yonggang Guo, Yachao Zhu, Xin Zhang, Bingpeng Luo. Effects of Superhydrophobic Surface on Tribological Properties: Mechanism, Status and Prospects [J]. Progress in Chemistry, 2020, 32(2/3): 320-330.
[7] Mengnan Qu*, Mingjuan Yuan, Jiao He, Menghui Xue, Jinmei He*. Smart Responsive Superwetting Materials [J]. Progress in Chemistry, 2018, 30(12): 1874-1886.
[8] Changlu Zhou, Zhong Xin*. Fabrication, Properties and Applications of Functional Surface Based on Polybenzoxazine [J]. Progress in Chemistry, 2018, 30(1): 112-123.
[9] Haikun Zheng, Shinan Chang, Yuanyuan Zhao. Anti-Icing & Icephobic Mechanism and Applications of Superhydrophobic/Ultra Slippery Surface [J]. Progress in Chemistry, 2017, 29(1): 102-118.
[10] Qu Mengnan*, Hou Lingang, He Jinmei*, Ma Xuerui, Yuan Mingjuan, Liu Xiangrong. Research and Development of Functional Superhydrophobic Materials [J]. Progress in Chemistry, 2016, 28(12): 1774-1787.
[11] Tian Miaomiao, Li Xuemei, Yin Yong, He Tao, Liu Jindun. Preparation of Superhydrophobic Membranes and Their Application in Membrane Distillation [J]. Progress in Chemistry, 2015, 27(8): 1033-1041.
[12] Zhan Yuanyuan, Liu Yuyun, Lv Jiuan, Zhao Yong, Yu Yanlei. Photoresponsive Surfaces with Controllable Wettability [J]. Progress in Chemistry, 2015, 27(2/3): 157-167.
[13] Zhang Kaiqiang, Li Bo, Zhao Yunhui, Li Hui, Yuan Xiaoyan. Functional POSS-Containing Polymers and Their Applications [J]. Progress in Chemistry, 2014, 26(0203): 394-402.
[14] Yan Yingdi, Luo Nengzhen, Xiang Xiangao, Xu Yiming, Zhang Qinghua, Zhan Xiaoli. Fabricating Mechanism and Preparation of Anti-Icing & Icephobic Coating [J]. Progress in Chemistry, 2014, 26(01): 214-222.
[15] Li Hui, Zhao Yunhui, Yuan Xiaoyan. Anti-Icing Coatings: From Surface Chemistry to Functional Surfaces [J]. Progress in Chemistry, 2012, 24(11): 2087-2096.