中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (1): 44-50 DOI: 10.7536/PC170835 Previous Articles   Next Articles

• Review •

Progress on Control of Meso-Scale Structures for Droplet-Template Syntheses of Particle Materials

Wei Wang, Rui Xie, Xiaojie Ju, Zhuang Liu, Liangyin Chu*   

  1. State Key Laboratory of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 91434202).
PDF ( 822 ) Cited
Export

EndNote

Ris

BibTeX

For particle materials fabricated by droplet-template syntheses, the efficient fabrication and function enhancement can be realized by rational control of the interfacial meso-scale structures of droplets and particles. Study on the relationship between the interfacial meso-scale structures of droplets and particles and the reaction-diffusion processes, and the investigation of the interconnection between reaction and diffusion, are of significant importance for intensification and rational control of the synthesis processes. This review summarizes the recent progress on control of meso-scale structures for droplet-template syntheses of particle materials, mainly focusing on control of droplet morphology and droplet stability via manipulation of the aggregation meso-scale structures of interfacial amphiphilic molecules, and on control of the meso-scale structure of particles via manipulation of mass-transfer and reaction at/across droplet interfaces. This review provides scientific guidelines for the intensification and rational regulation of reaction processes for droplet-template syntheses of particle materials.
Contents
1 Introduction
2 Control of droplet morphology via manipulation of the aggregation meso-scale structures of interfacial amphiphilic molecules
3 Effect of aggregation meso-scale structures of interfacial amphiphilic molecules and nanoparticles on the droplet stability
4 Control of meso-scale structures of particles via manipulation of mass-transfer and reaction at/across droplet interfaces
5 Conclusion

CLC Number: 

[1] Wang W, Zhang M J, Chu L Y. Acc. Chem. Res., 2014, 47:373.
[2] Abbaspourrad A, Carroll N J, Kim S H, Weitz D A. Adv. Mater., 2013, 25:3215.
[3] Xu S Q, Nie Z H, Seo M, Lewis P, Kumacheva E, Stone H A, Garstecki P, Weibel D B, Gitlin I, Whitesides G M. Angew. Chem. Int. Ed., 2005, 44:724.
[4] Dinsmore A D, Hsu M F, Nikolaides M G, Marquez M, Bausch A R, Weitz D A. Science, 2002, 298:1006.
[5] Zhang M, Wang W, Xie R, Ju X J, Liu Z, Jiang L, Chen Q, Chu L Y. Particuology, 2016, 24:18.
[6] 李洪钟(Li H Z). 过程工程学报(Chinese Journal of Process Engineering), 2006, 6(6):991.
[7] Grzybowski B A. Angew. Chem. Int. Ed., 2011, 50:40.
[8] Almarcha C, Trevelyan P M J, Grosfils P, De Wit A. Phys. Rev. Lett., 2010, 104:044501.
[9] 李静海(Li J H), 胡英(Hu Y), 袁权(Yuan Q). 中国科学:化学(Science China Chemistry), 2014, 44(3):277.
[10] Li J H, Huang W L. Toward Mesoscience-The Principle of Compromise in Competition. Berlin:Springer, 2014.
[11] Li J, Ge W, Wang W, Yang N, Liu X, Wang L, He X, Wang X, Wang J, Kwauk M. From Multiscale Modeling to Meso-science-A Chemical Engineering Perspective. Berlin:Springer, 2013.
[12] Deng N N, Wang W, Ju X J, Xie R, Weitz D A, Chu L Y. Lab Chip, 2013, 13:4047.
[13] Torza S, Mason S G. Science, 1969, 163:813.
[14] Guzowski J, Korczyk P M, Jakiela S, Garstecki P. Soft Matter, 2012, 8:7269.
[15] Deng N N, Mou C L, Wang W, Ju X J, Xie R, Chu L Y. Microfluid. Nanofluid., 2014, 17:967.
[16] Wang W, Zhang M J, Xie R, Ju X J, Yang C, Mou C L, Weitz D A, Chu L Y. Angew. Chem. Int. Ed., 2013, 52:8084.
[17] Aronson M P, Princen H M. Nature, 1980, 286:370.
[18] Poulin P, Bibette J. Langmuir, 1998, 14:6341.
[19] Binks B P. Curr. Opin. Colloid Interface Sci., 2002, 7:21.
[20] Deng N N, Sun S X, Wang W, Ju X J, Xie R, Chu L Y. Lab Chip, 2013, 13:3653.
[21] Deng N N, Sun J, Wang W, Ju X J, Xie R, Chu L Y. ACS Appl. Mater. Interfaces, 2014, 6:3817.
[22] Sun J, Wang W, He F, Chen Z H, Xie R, Ju X J, Liu Z, Chu L Y. RSC Adv., 2016, 6:64182.
[23] Zhang M J, Wang W, Yang X L, Ma B, Liu Y M, Xie R, Ju X J, Liu Z, Chu L Y. ACS Appl. Mater. Interfaces, 2015, 7:13758.
[24] Ma Q, Song Y, Kim J W, Choi H S, Shum H C. ACS Macro Lett., 2016, 5:666.
[25] He F, Wang W, He X H, Yang X L, Li M, Xie R, Ju X J, Liu Z, Chu L Y. ACS Appl. Mater. Interfaces, 2016, 8:8743.
[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[3] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[4] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[5] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[6] Li Fu, Huaiwei Zhang, Weiting Ye, Chen Ye, Cheng-Te Lin. Solid-State Electroanalytical Chemistry and Its Application in Plant Analysis [J]. Progress in Chemistry, 2021, 33(8): 1440-1449.
[7] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[8] Yuanxia Zhang, Yan Bao, Jianzhong Ma. Synthesis of Janus Particles and Their Application Progress in Pickering Emulsion [J]. Progress in Chemistry, 2021, 33(2): 254-262.
[9] Danqing Zou, Cong Wang, Fei Xiao, Yuchen Wei, Lin Geng, Lei Wang. Janus Particles Applied in Environmental Detection [J]. Progress in Chemistry, 2021, 33(11): 2056-2068.
[10] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[11] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[12] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[13] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[14] Rui Bai, Xiaochun Tian, Shuhua Wang, Weifu Yan, Haiyin Gang, Yong Xiao. Noble Metal Nanoparticles Produced by Microorganism [J]. Progress in Chemistry, 2019, 31(6): 872-881.
[15] Maozhong Chen, Lanyi Wang, Xuehua Yu, Zhen Zhao. Application of Mn-Based Catalysts for the Catalytic Combustion of Diesel Soot [J]. Progress in Chemistry, 2019, 31(5): 723-737.