中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (9): 1344-1351 DOI: 10.7536/PC200104 Previous Articles   Next Articles

• Review •

Electrically Switched Ion Membrane for Ion Selective Separation and Recovery: From ESIX to ESIPM

Fengfeng Gao1, Yanyan Yang1, Xiao Du1, Xiaogang Hao1,**(), Guoqing Guan2, Bing Tang3   

  1. 1. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
    2. Institute of Regional Innovation(IRI), Hirosaki University, Aomori 030-0813, Japan
    3. College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received: Revised: Online: Published:
  • Contact: Xiaogang Hao
  • Supported by:
    the National Key Research and Development Program with Key Special Project of Intergovernmental Cooperation on International Science and Technology Innovation(2017YFE0129200); the National Natural Science Foundation of China(21276173, 21476156, 21576184, 21706181, 21776191); the Natural Science Foundation of Shanxi Province(201901D211054)
Richhtml ( 33 ) PDF ( 1337 ) Cited
Export

EndNote

Ris

BibTeX

Electrically switched ion membrane(ESIM) separation is a novel ion selective separation and recovery technology developed in recent years. To date, the target ion species separated by using ESIM have involved various metal cations and anions. ESIM separation is originated from electrically switched ion exchange(ESIX) technology, whose highly efficient operation depends on the electroactive ion exchange material(EIXM) with unique ion exchange function. Reversible ion loading/unloading can be easily controlled by modulating the redox states of the EIXM with both electronic and ionic conductivity to perform the separation of target ions from mixed solution and regeneration of the matrix. Therefore, the secondary waste is eliminated due to that the chemical regeneration of the ion-exchange matrix is not necessary. This paper begins with a brief introduction of EIXM to the structure design and controllable preparation of membrane/film materials, then the research progress of various mechanisms of ESIX and the development and application of some novel ESIX-ESIM modules are outlined. The development course from intermittent operation of ESIX to electrically switched ion permselective membrane(ESIPM) based on the ESIX principle is summarized. It is necessary to emphasize the design and synthesis of novel structural ESIM materials and the development of the corresponding membrane modules focused on the selective separation of target ions, then finally the industrial application of ESIM could be realized.

Contents

1 Introduction

2 Design, structure and controllable preparation of EIXM

3 Electrically switched ion exchange/separation mechanism

3.1 Traditional ESIX mechanism

3.2 ESIX-PTPS mechanism

3.3 ESIX-IIP coupling mechanism

3.4 ESIX-pH conversion mechanism

3.5 Electrically switched ion permselective membrane separation mechanism

4 Membrane modules development and application

5 Conclusion and outlook

Fig.1 The ESIX process of NiHCF
Fig.2 The ESIX-PTPS mechanism of α-ZrP/PANI complex film[33, 34]
Fig.3 Strategy for the preparation of Ni2+ ion imprinted ferricyanide/PPy[12]. Copyright 2015, ACS
Fig.4 The EDL-ESIPM mechanism of carbon-based membrane[55]. Copyright 2017, Elsevier
Fig.5 Schematic for the process of ESIPM[66]. Copyright 2012, Taiyuan University of Technology
[1]
王忠德( Wang Z D ), 郝晓刚(Hao X G), 杜晓(Du X). 电控离子交换技术及应用(Electrically Switched Ion Exchange Technology and Its Application). 北京:化学工业出版社(Beijing: Chemical Industry Press), 2017, 1.
[2]
郝晓刚( Hao X G ), 杜晓(Du X), 张权 104264206A, 2015.
[3]
Li N , Li Z J , Yuan J H , Hu J G , Miao J G , Zhang Q X , Niu L , Song J X. Electrochim. Acta, 2012, 72: 150.
[4]
肖俊强( Xiao J G ), 郝晓刚(Hao X G). 化学进展(Progress in Chemistry), 2010, 22(12): 2420.
[5]
Liu D F , Sun S Y , Yu J G. Chem. Eng. J., 2018, 377: 119825.
[6]
杨言言( Yang Y Y ), 张贝蕾(Zhang B L), 杜晓(Du X), 郝晓刚(Hao X G). 水处理技术(Technology of Water Treatment), 2019, 45(11): 42.
[7]
Sun B , Hao X G , Wang Z D , Guan G Q , Zhang Z L , Li Y B , Liu S B. J Hazard Mater., 2012, 233/234: 177.
[8]
Lin Y H , Cui X L , Bontha J. Environ. Sci. Technol., 2006, 40: 4004.
[9]
Zhang P L , Zheng J L , Zheng J L , Du X , Gao F F , Hao X G , Guan G Q , Li C C , Liu S B. Ind. Eng. Chem. Res., 2016, 55: 6194.
[10]
鞠健( Ju J ), 郝晓刚(Hao X G), 张忠林(Zhang Z L), 刘世斌(Liu S B), 孙彦平(Sun Y P). 无机材料学报(Journal of Inorganic Materials), 2008, 23(6): 1115.
[11]
Du X , Sun X L , Zhang H , Wang Z D , Hao X G , Guan G Q , Abudula A. Electrochim. Acta, 2015, 176: 1313.
[12]
Du X , Zhang H , Hao X G , Guan G Q , Abudula A. ACS Appl.Mater. Interfaces, 2014, 6: 9543.
[13]
Du X , Zhang D , Ma X L , Qiao W L , Wang Z D , Hao X G , Guan G Q. Electrochim. Acta, 2018, 282: 384.
[14]
Wang Z D , Ma Y , Hao X G , Huang W , Guan G Q , Abuliti A. Electrochim. Acta, 2014, 130: 40.
[15]
Liu M M , Du X , Gao F F , Luo J H , Wang Q , Liu F F , Chang L T , Hao X G. J. Solid State Electr., 2019, 23: 2541.
[16]
陈如意( Chen R Y ), 张朋乐(Zhang P L), 廖森梁(Liao S L), 李馨然(Li X R), 王忠德(Wang Z D), 郝晓刚(Hao X G). 电化学(Journal of Electrochemistry), 2015, 21: 344.
[17]
Luo J H , Du X , Gao F F , Yang Y Y , Hao X Q , Li S S , Hao X G , Tang K Y , Guan G Q. Chem. Eng. J., 2020, 380: 122529.
[18]
Yang Y Y , Du X , An X W , Ding S Q , Liu F F , Zhang Z L , Ma X L , Hao X G , Guan G Q , Zhang H. J. Colloid Interface Sci., 2018, 523: 159.
[19]
Zhang S , Shao Y , Liu J , Aksay I A , Lin Y H. ACS Appl.Mater. Interfaces, 2011, 3(9): 3633.
[20]
Cui H , Qian Y , An H , Sun C C , Zhai J P , Li Q. Water Res., 2012, 46(12): 3943.
[21]
Yang Y Y , Du X , Abuliti A , Zhang Z L , Ma X L , Tang K Y , Hao X G , Guan G Q. Sep. Purif. Technol., 2019, 223: 154.
[22]
Wang J , Gao F F , Du X , Ma X L , Hao X G , Ma W B , Wang K Z , Guan G Q , Abuliti A. Electrochim. Acta, 2019, 135288.
[23]
Du X , Hao X , Wang Z D , Guan G Q. J. Mater. Chem. A, 2016, 4: 6236.
[24]
郝晓刚( Hao X G ), 郭金霞(Guo J X), 张忠林(Zhang Z L), 刘世斌(Liu S B), 孙彦平(Sun Y P). 化工学报(Journal of Chemical Industry and Engineering(China)), 2005, 56(12): 2380.
[25]
Hao X G , Schwartz D T. Chem. Mater., 2005, 17: 5831.
[26]
Hao X G , Li Y G , Pritzker M. Sep. Purif. Technol., 2008, 63: 407.
[27]
Hao X G , Yan T , Wang Z D , Liu S B , Liang Z H , Shen Y H , Pritzker M. Thin Solid Films, 2012, 520: 2438.
[28]
Du X , Hao X G , Wang Z D , Ma X L , Guan G Q , Abuliti A , Ma G Z , Liu S B. Synth. Met., 2013, 175: 138.
[29]
Li Y , Zhao K , Du X , Wang Z D , Hao X G , Liu S B , Guan G Q. Synth. Met., 2012, 162: 107.
[30]
Chen W , Xia X H. Adv. Funct. Mater., 2007, 17: 2943.
[31]
Hao G X , Guo J X , Liu S B , Sun Y P. Trans. Nonferrous Met.Soc. China, 2006, 16: 556.
[32]
Takei T , Yonesaki Y , Kumada N , Kinomura N. Langmuir, 2008, 24: 8554.
[33]
Wang Z D , Feng Y T , Hao X G , Huang W , Feng X S. J. Mater. Chem. A, 2014, 2: 10263.
[34]
Wang Z D , Feng Y T , Hao X G , Huang W , Guan G Q , Abudula A. J. Hazard. Mater., 2014, 274: 436.
[35]
Zhang Q , Du X , Ma X L , Hao X G , Guan G Q , Wang Z D , Xue C F , Zhang Z L , Zuo Z J. J. Hazard. Mater., 2015, 289: 91.
[36]
Lilga M A , Orth R J , Sukamto J P H, Haight S M, Schwartz D T. Sep. Purif. Technol., 1997, 11: 147.
[37]
Jeerage K M , Schwartz D T. Sep. Sci. Technol., 2000, 35: 2375.
[38]
Li N , Li Z J , Yuan J H , Hu J G , Miao J G , Zhang Q X , Niu L , Song J X. Electrochim. Acta, 2012, 72: 150.
[39]
Jin X L , Huang L , Yu S , Ye M N , Yuan J H , Shen J F , Fang K M , Weng X X. Sep. Purif. Technol., 2019, 209: 65.
[40]
Su J Y , Jin G P , Chen T , Liu X D , Chen C N , Tian J J. Electrochim. Acta, 2017, 230: 399.
[41]
Chen R Z , Tanaka H , Kawamoto T , Asai M , Fukushima C , Na H , Kurihara M , Watanabe M , Arisaka M , Nankawa T. Electrochim. Acta, 2013, 87: 119.
[42]
Weidlich C , Mangold K M , Jüttner K. Electrochim. Acta, 2005, 50: 1547.
[43]
李越( Li Y ), 李慧(Li H), 郝晓刚(Hao X G), 张忠林(Zhang Z L), 梁镇海(Liang Z H), 刘世斌(Liu S B). 化工学报(Journal of Chemical Industry and Engineering(China)), 2010, 61(S1): 56.
[44]
Du X , Guan G Q , Li X M , Jagadale A D , Ma X L , Wang Z D , Hao X G , Abudula A. J. Mater. Chem. A, 2016, 4: 13989.
[45]
Guo Z Z , Shams M , Zhu C Z , Shi Q R , Tian Y H , Engelhard M H , Du D , Chowdhury I , Lin Y H. Environ. Sci. Technol., 2019, 53: 2612.
[46]
Weidlich C , Mangold K M. Electrochim. Acta, 2005, 50: 5247.
[47]
Cui H , Li Q , Qian Y , Tang R , An H , Zhai J P. Water Res., 2011, 45: 5736.
[48]
李越( Li Y ), 郝晓刚(Hao X G), 王忠德(Wang Z D), 张忠林(Zhang Z L), 梁镇海(Liang Z H), 刘世斌(Liu S B). 化工学报(Journal of Chemical Industry and Engineering(China)), 2010, 61(S1): 120.
[49]
李慧( Li H ), 李越(Li Y), 郝晓刚(Hao X G), 张忠林(Zhang Z L), 刘世斌(Liu S B). 高等学校化学学报(Chemical Journal of Chinese Universities), 2011, 32(7): 1645
[50]
Du X , Zhang Q , Qiao W L , Sun X L , Ma X L , Hao X G , Wang Z D , Abudula A , Guan G Q. Chem. Eng. J., 2016, 302: 516.
[51]
Kang C C , Li W M , Tan L , Li H , Wei C H , Tang Y W. J. Mater. Chem. A, 2013, 1: 7147.
[52]
Le X T , Viel P , Sorin A , Jegou P , Palacin S. Electrochim. Acta, 2009, 54: 6089.
[53]
Le X T , Viel P , Jegou P , Sorin A , Palacin S. Sep. Purif. Technol., 2009, 69: 135.
[54]
Gao F F , Du X , Hao X G , Li S S , Zheng J L , Yang Y Y , Han N C , Guan G Q. Electrochim. Acta, 2017, 236: 434.
[55]
Gao F F , Du X , Hao X G , Li S S , Zheng J L , Yang Y Y , Han N C , Guan G Q. J. Membr. Sci., 2017, 535: 20.
[56]
Gao F F , Du X , Hao X G , Li S S , An X W , Liu M M , Han N C , Wang T H , Guan G Q. Chem. Eng. J., 2017, 328: 293.
[57]
Gao F F , Du X , Hao X G , Ma X L , Chang L T , Han N C , Guan G Q , Tang K Y. Chem. Eng. J., 2020, 380: 122413.
[58]
孙斌( Sun B ), 郝晓刚(Hao X G), 王忠德(Wang Z D), 张忠林(Zhang Z L). 化工进展(Chemical Industry and Engineering Progress), 2011, 30(S1): 25.
[59]
Sun B , Hao X G , Wang Z D , Zhang Z L , Liu S B , Guan G Q. Chinese J. Chem. Eng., 2012, 20(5): 837.
[60]
Liao S L , Xue C F , Wang Y H , Zheng J L , Hao X G , Guan G Q , Abuliti A , Zhang H , Ma G Z. Sep. Purif. Technol., 2015, 139: 63.
[61]
郝晓刚( Hao X G ), 韩念琛(Han N C), 孙斌 102583664B, 2012.
[62]
Saleh M M. Desalination, 2009, 235: 319.
[63]
Price W E , Too C Q , Wallace G G , Zhou D. , Synth. Met. 1999, 102: 1338.
[64]
Davey J M , Ralph S F , Too C O , Wallace G G , Partridge A C. React. Funct. Polym., 2001, 49: 87.
[65]
Akieh M N , Ralph S F , Bobacka J , Ivaska A. J. Membrane Sci., 2010, 354: 162.
[66]
郝晓刚( Hao X G ), 郑君兰(Zheng J L), 孙斌 102718292B, 2012.
[67]
张忠林( Zhang Z L ), 郝晓刚(Hao X G), 郑君兰 104587835A, 2015.
[68]
郝晓刚( Hao X G ), 杜晓(Du X), 蔡富刚 105948188A, 2016.
[69]
Zhang H C , Hou J , Hu Y X , Wang P Y , Ou R , Jiang L , Liu Z J , Freeman B D , Hill A J , Wang H T. Sci. adv., 2018,4(2): eaaq0066.
[70]
Lu P , Liu Y , Zhou T , Wang, Q, Li Y S. J. Membrane Sci.,2018, 567: 89.
[71]
Anasori B , Lukatskaya M R , Gogotsi Y. Nat. Rev. Mater, 2017, 2(2): 16098.
[1] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[2] Feiran Wang, Fengjing Jiang. Ion-Conducting Membrane for Vanadium Redox Flow Batteries [J]. Progress in Chemistry, 2021, 33(3): 462-470.
[3] Qingbai Chen, Yu Liu, Jinli Zhao, Pengfei Li, Jianyou Wang. Emerging Ion Exchange Membrane Process-Based Zero Liquid Discharge Technology for Saline Wastewater [J]. Progress in Chemistry, 2019, 31(12): 1669-1680.
[4] Yu Zhiyuan, Ding Wande, Wang Zhining. Preparation and Application of Aquaporin Containing Biomimetic Membranes for Water Treatment and Desalination [J]. Progress in Chemistry, 2015, 27(7): 953-962.
[5] Zhang Huijie, Wang Shirong, Xiao Yin, Li Xianggao. Electrically Responsive Photonic Crystals [J]. Progress in Chemistry, 2014, 26(10): 1690-1700.
[6] Peng Yong, Wang Zhengbao. Zeolite MFI Membranes for Separation of Ethanol/Water Mixture [J]. Progress in Chemistry, 2013, 25(12): 2178-2188.
[7] Li Pengzhang, Wang Yuebo. Enrichment Methods of Phosphopeptides in Proteomics [J]. Progress in Chemistry, 2012, (9): 1785-1793.
[8] Fang Yanyan, Li Qian, Wang Xiaolin. Nanofiltration Understanding: A Separation Process of Molecular-Level with Nano-Scale Effect [J]. Progress in Chemistry, 2012, 24(05): 863-870.
[9] Xiao Junqiang, Hao Xiaogang. Research Progress of Electrochemically Switched Ion Exchange [J]. Progress in Chemistry, 2010, 22(12): 2420-2427.
[10] . Preparation and Applications of Hybrid Ion Exchange Membranes [J]. Progress in Chemistry, 2010, 22(10): 2003-2013.
[11] . Application of Ion Exchange Chromatography for Pharmaceutical Plasmid Analysis [J]. Progress in Chemistry, 2010, 22(0203): 482-488.
[12] Hong Housheng Chen Longxiang You Tao Zhang Qingwen. Pervaporation Composite Membranes [J]. Progress in Chemistry, 2009, 21(10): 2229-2234.
[13] Xu Yi1,2*,Zhang Jian1|Xu Pingzhou1,Lu Qian1,Zeng Xue1,Wen Zhiyu2. Separation and Concentration Methodologies by Solid-liquid Dual Phases Interaction on Micro-Fluidic Chip System [J]. Progress in Chemistry, 2007, 19(01): 186-192.
[14] Yaping Zhang Tongwen Xu . Development of the Membrane Potential Across Charged Membranes [J]. Progress in Chemistry, 2006, 18(12): 1592-1598.
[15]

Wang Xuesong

. Present Status and Development Trends of Membrane Separation [J]. Progress in Chemistry, 1994, 6(04): 321-.