中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (5): 536-547 DOI: 10.7536/PC190831 Previous Articles   Next Articles

• Review •

Preparation and Application of Matal-Based Mesoporous Solid Bases

Ning Liu1, Shuilin Liu1,**(), Suyun Wu1, Lin Fu2, Zhi Wu1, Laibing Li1,**()   

  1. 1.Department of Materials and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China
    2.National & Local United Engineering Research Center for Chemical Process Simulation and Intensification, School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
  • Received: Revised: Online: Published:
  • Contact: Shuilin Liu, Laibing Li
  • About author:
    ** e-mail: (Shuilin Liu);
    (Laibing Li)
  • Supported by:
    National Natural Science Foundation of China(51802093); Hunan Provincial Natural Science Foundation of China(2019JJ50107); Hunan Provincial Natural Science Foundation of China(2017JJ2063); Foundation of Hunan Educational Committee(18B465); Talent Scientific Research Fund of Hunan Institute of Technology(HQ 17014); Talent Scientific Research Fund of Hunan Institute of Technology(HQ 17011); Engineering Research Center in Hunan Province(Grants No.[2019]853)()
Richhtml ( 50 ) PDF ( 512 ) Cited
Export

EndNote

Ris

BibTeX

For the demands of sustainable development and green chemistry, the use of heterogeneous catalysts instead of conventional homogeneous ones has received increasing attention. Among various heterogeneous catalysts, mesoporous solid bases are extremely desirable in green catalytic processes, due to their advantages of high specific surface, negligible corrosion, accelerated mass transport and easy separation. Great progress has been made in mesoporous solid bases in the last decade. In addition to their wide applications in the catalytic synthesis of organics and fine chemicals, mesoporous solid bases have also been used in the field of energy and environmental catalysis. In this review, we provide an overview of recent research progress in the preparation and application of metal-based mesoporous solid bases(including MgO,hydrotalcite-like compounds, modified-Al2O3,modified-ZrO2, and modified-CeO2), which is basically grouped by the metal type and illustrated with typical examples. The advantage, disadvantages and mechanisms for four main synthesis methods, including soft-template method, hard-template method, solvent evaporation-induced self-assembly(EISA) synthesis and solvent-free synthesis are discussed and compared in detail. Moreover, their applications in the fields of catalysis, energy storage and environment are briefly introduced as well. Finally, the existing problems of the preparing metal-based mesoporous oxides are briefly discussed, and the strategies are provided for the construction of novel metal-based mesoporous solid bases.

Contents

1 Introduction

2 Preparation and application of matal-based mesoporous oxides

2.1 Mesoporous MgO

2.2 Mesoporous hydrotalcite-like

2.3 Mesoporous modified-Al2O3

2.4 Mesoporous modified-ZrO2

2.5 Mesoporous modified-CeO2

2.6 Others

3 Conclusion and outlook

Fig. 1 Schematic illustration of the synthesis of mesoporous MgO using PDMS-PEO copolymer as a template[11]
Fig. 2 The TEM and SEM images of mesoporous MgO with different structure:(a)honeycomb[11];(2)wormhole-like micropores(3)hierarchical microspheres;(4)nanowire[11,12,26,29]
Table 1 The properties of the reported mesoporous MgO using different synthetic methods
Fig. 3 The SEM images of Zn-Al hydrotalcites at different calcination temperature[31]
Fig. 4 The synthesis of mesoporous γ-Al2O3 functionalized with metal oxides[55]
Fig. 5 The synthesis of Na-modified mesoporous ZrO2 in a hard template process[63]
Fig. 6 Schematic illustration of synthesis process(a), N2 adsorption-desorption curves(b), SEM(c), (d)TEM, and (e) images of multi-scale porous CeO2[79]
Fig. 7 Schematic illustration for the synthesis of mesoporous CeO2[80]
[1]
Souzanchi S, Nazari L, Rao K T V, Yuan Z, Tan Z, Xu C C. Catal. Today, 2019,319:76. https://linkinghub.elsevier.com/retrieve/pii/S0920586118303250

doi: 10.1016/j.cattod.2018.03.056
[2]
Sun L B, Liu X Q, Zhou H C. Chem. Soc. Rev., 2015,44(15):5092. http://xlink.rsc.org/?DOI=C5CS00090D

doi: 10.1039/C5CS00090D
[3]
Marwaha A, Dhir A, Mahla S K, Mohapatra S K. Catal. Rev., 2018,60(4):594. https://www.tandfonline.com/doi/full/10.1080/01614940.2018.1494782

doi: 10.1080/01614940.2018.1494782
[4]
Wu W B, Li Y, Li H, Zhao W F, Yang S. Catalysts, 2018,8(7):264. http://www.mdpi.com/2073-4344/8/7/264

doi: 10.3390/catal8070264
[5]
Bing W H, Wei M. J. Solid State Chem., 2019,269:184. https://linkinghub.elsevier.com/retrieve/pii/S0022459618304109

doi: 10.1016/j.jssc.2018.09.023
[6]
Yang X, Yu I K, Cho D W, Chen S S, Tsang D C W, Shang J, Yip A C K, Wang L, Ok Y S. ACS Sustain. Chem. Eng., 2019,7(5):4851. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b05311

doi: 10.1021/acssuschemeng.8b05311
[7]
Qi X X, Yan X R, Peng W C, Zhang J S, Tong Y B, Li J, Sun D K, Hui G, Zhang J L. New J. Chem., 2019,43(12):4698. http://xlink.rsc.org/?DOI=C8NJ05643A

doi: 10.1039/C8NJ05643A
[8]
Ghalandari A, Taghizadeh M, Rahmani M. Chem. Eng. Technol., 2019,42(1):89. http://doi.wiley.com/10.1002/ceat.v42.1

doi: 10.1002/ceat.v42.1
[9]
Díez V K, Ferretti C A, Torresi P A, Apesteguía C R, Di Cosimo J I. Catal. Today, 2011,173(1):21. https://linkinghub.elsevier.com/retrieve/pii/S0920586111002264

doi: 10.1016/j.cattod.2011.02.060
[10]
Schwach P, Hamilton N, Eichelbaum M, Thum L, Lunkenbein T, Schlögl R, Trunschke A. J. Catal., 2015,329:574. https://linkinghub.elsevier.com/retrieve/pii/S0021951715001463

doi: 10.1016/j.jcat.2015.05.008
[11]
Jeon H, Kim D J, Kim S J, Kim J H. Fuel Process. Technol., 2013,116:325. http://dx.doi.org/10.1016/j.fuproc2013.07.013

doi: 10.1016/j.fuproc2013.07.013
[12]
Wang G Z, Zhang L, Dai H X, Deng J Q, Liu C X, He H, Au C T. Inorg. Chem., 2008,47(10):4015. https://pubs.acs.org/doi/10.1021/ic7015462

doi: 10.1021/ic7015462
[13]
Gao W L, Zhou T T, Louis B, Wang Q. Catalysts, 2017,7(4):116. http://www.mdpi.com/2073-4344/7/4/116

doi: 10.3390/catal7040116
[14]
Sharma J, Sharma M, Basu S. J. Environ. Chem. Eng., 2017,5(4):3429. https://linkinghub.elsevier.com/retrieve/pii/S2213343717303196

doi: 10.1016/j.jece.2017.07.015
[15]
Wu Y J, Bose S. Langmuir, 2005,21(8):3232. https://pubs.acs.org/doi/10.1021/la046754z

doi: 10.1021/la046754z
[16]
Xu C H, Yuan K K, Jin X T, Yu Z C, Zheng L, Lü Y D, Wang X Q, Zhu L Y, Zhang G H, Xu D. Ceram. Int., 2017,43(18):16210. https://linkinghub.elsevier.com/retrieve/pii/S0272884217318722

doi: 10.1016/j.ceramint.2017.08.199
[17]
Li W C, Lu A H, Weidenthaler C, Schüth F. Chem. Mater., 2004,16(26):5676. https://pubs.acs.org/doi/10.1021/cm048759n

doi: 10.1021/cm048759n
[18]
Najafi A. Ceram. Int., 2017,43(7):5813. https://linkinghub.elsevier.com/retrieve/pii/S027288421730158X

doi: 10.1016/j.ceramint.2017.01.135
[19]
Roggenbuck J, Koch G, Tiemann M. Chem. Mater., 2006,18(17):4151. https://pubs.acs.org/doi/10.1021/cm060740s

doi: 10.1021/cm060740s
[20]
Roggenbuck J, Tiemann M. J. Am. Chem. Soc., 2005,127(4):1096. https://pubs.acs.org/doi/10.1021/ja043605u

doi: 10.1021/ja043605u
[21]
Sun R Q, Sun L B, Chun Y, Xu Q H, Wu H. Micropor. Mesopor. Mat., 2008,111(1):314. https://linkinghub.elsevier.com/retrieve/pii/S1387181107004660

doi: 10.1016/j.micromeso.2007.08.006
[22]
Bian S W, Baltrusaitis J, Galhotra P, Grassian V H. J. Mater. Chem., 2010,20(39):8705. http://xlink.rsc.org/?DOI=c0jm01261k

doi: 10.1039/c0jm01261k
[23]
Ling Z X, Zheng M B, Du Q L, Wang Y W, Song J K, Dai W J, Zhang L F, Ji G B, Cao J M. Solid State Sci., 2011,13(12):2073. http://www.sciencedirect.com/science/article/pii/S1293255810000166

doi: 10.1016/j.solidstatesciences.2010.01.013
[24]
Veldurthi S, Shin C H, Joo O S, Jung, K D. Miropor. Mesopor. Mat., 2012,152:31.
[25]
Zhao X, Ji G Z, Liu W, He X, Anthony E J, Zhao M. Chem. Eng. J., 2018,332:216. https://linkinghub.elsevier.com/retrieve/pii/S138589471731567X

doi: 10.1016/j.cej.2017.09.068
[26]
Purwajanti S, Zhou L, Ahmad N Y, Zhang J, Zhang H W, Huang X D, Yu C Z. ACS Appl. Mater. Interf., 2015,7(38):21278. https://pubs.acs.org/doi/10.1021/acsami.5b05553

doi: 10.1021/acsami.5b05553
[27]
Chen L M, Sun X M, Liu Y N, Li Y D. Appl. Catal. A: Gen., 2004,265(1):123. https://linkinghub.elsevier.com/retrieve/pii/S0926860X04000511

doi: 10.1016/j.apcata.2004.01.008
[28]
Takenaka S, Sato S, Takahashi R, Sodesawa T. Phys. Chem. Chem. Phys., 2003,5(21):4968. http://xlink.rsc.org/?DOI=B307144H

doi: 10.1039/B307144H
[29]
Yu Z C, Xu C H, Yuan K K, Gan X Z, Zhou H F, Wang X Q, Zhu L Y, Zhang G H, Xu D. Ceram. Int., 2018,44(8):9454. https://linkinghub.elsevier.com/retrieve/pii/S0272884218304735

doi: 10.1016/j.ceramint.2018.02.162
[30]
Calderón F, Fernández R, Sánchez F, Fernández-Mayoralas A. Adv. Synth. Catal., 2005,347(10):1395. http://doi.wiley.com/10.1002/%28ISSN%291615-4169

doi: 10.1002/(ISSN)1615-4169
[31]
Kocík J, Frolich K, Perková I, Horáíek J. J. Chem. Technol. Biotechnol., 2019,94(2):435.
[32]
Liu Q H, Wang B C, Wang C X, Tian Z J, Qu W, Ma H J, Xu R H. Green Chem., 2014,16(5):2604. http://dx.doi.org/10.1039/c3gc42648c

doi: 10.1039/c3gc42648c
[33]
Tantirungrotechai J, Chotmongkolsap P, Pohmakotr M. Micropor. Mesopor. Mat., 2010,128(1):41. https://linkinghub.elsevier.com/retrieve/pii/S1387181109003667

doi: 10.1016/j.micromeso.2009.08.001
[34]
Paul M, Pal N, Mondal J, Bhaumik A. Chem. Eng. Sci., 2012,71:564. https://linkinghub.elsevier.com/retrieve/pii/S0009250911008372

doi: 10.1016/j.ces.2011.11.038
[35]
Oka Y, Kuroda Y, Matsuno T, Kamata K, Wada H, Shimojima A, Kuroda K. Chem-A Eur. J., 2017,23(39):9362. http://doi.wiley.com/10.1002/chem.v23.39

doi: 10.1002/chem.v23.39
[36]
Kuroda Y, Yamaguchi K, Kuroda K, Mizuno N B. Chem. Soc. JPN., 2015,88(12):1765. http://www.journal.csj.jp/doi/10.1246/bcsj.20150271

doi: 10.1246/bcsj.20150271
[37]
Wang D F, Zhang X L, Ma J, Yu H W, Shen J Z, Wei W. Catal. Sci. Technol., 2016,6(5):1530. http://xlink.rsc.org/?DOI=C5CY01712B

doi: 10.1039/C5CY01712B
[38]
Nowicki J, Lach J, Organek M, Sabura E. Appl. Catal. A: Gen., 2016,524:17. https://linkinghub.elsevier.com/retrieve/pii/S0926860X16302630

doi: 10.1016/j.apcata.2016.05.015
[39]
Rastegarpanah A, Rezaei M, Meshkani F, Dai H, Arandiyan H. Int. J. Hydrogen Energ., 2018,43(32):15112. https://linkinghub.elsevier.com/retrieve/pii/S036031991831869X

doi: 10.1016/j.ijhydene.2018.06.057
[40]
Wang Z, Fongarland P, Lu G, Essayem N. J. Catal., 2014,318:108. https://linkinghub.elsevier.com/retrieve/pii/S002195171400195X

doi: 10.1016/j.jcat.2014.07.006
[41]
Tao G, Hua Z L, Gao Z, Chen Y, Wang L J, He Q J, Chen H R, Shi J L. RSC Adv., 2012,2(32):12337. http://xlink.rsc.org/?DOI=c2ra22218c

doi: 10.1039/c2ra22218c
[42]
Gao L J, Teng G Y, Lv J H, Xiao G M. Energ. Fuel., 2009,24(1):646. https://pubs.acs.org/doi/10.1021/ef900800d

doi: 10.1021/ef900800d
[43]
Sun C J, Qiu F X, Yang D Y, Ye B. Fuel Process. Technol., 2014,126:383. http://dx.doi.org/10.1016/j.fuproc.2014.05.021

doi: 10.1016/j.fuproc.2014.05.021
[44]
Sun G, Li Y, Cai Z Z, Teng Y L, Wang Y, Reaney M. J. Appl. Catal. B: Environ., 2017,209:118. https://linkinghub.elsevier.com/retrieve/pii/S092633731730190X

doi: 10.1016/j.apcatb.2017.02.078
[45]
Zhang X L, Wang D F, Ma J, Wei W. Catal. Lett., 2017,147(5):1181. http://link.springer.com/10.1007/s10562-017-2013-9

doi: 10.1007/s10562-017-2013-9
[46]
Wu W, Wan Z J, Zhu M M, Zhang D K. Micropor. Mesopor. Mat., 2016,223:203. https://linkinghub.elsevier.com/retrieve/pii/S1387181115006034

doi: 10.1016/j.micromeso.2015.11.004
[47]
Wei J, Ren Y, Luo W, Sun Z K, Cheng X W, Li Y H, Deng Y H, Elzatahry A, Al-Dahyan D, Zhao D. Chem. Mater., 2017,29(5):2211. https://pubs.acs.org/doi/10.1021/acs.chemmater.6b05032

doi: 10.1021/acs.chemmater.6b05032
[48]
Vosoughi V, Badoga S, Dalai A K, Abatzoglou N. Fuel process. Technol., 2017,162:55. https://linkinghub.elsevier.com/retrieve/pii/S0378382016311778

doi: 10.1016/j.fuproc.2017.03.029
[49]
Zhang Y, Zhou K D, Zhang L F, Wu H D, Guo J. Fuel, 2019,253:431. https://linkinghub.elsevier.com/retrieve/pii/S0016236119307665

doi: 10.1016/j.fuel.2019.05.021
[50]
Zhen M A, Zhou B, Ren Y. Front. Env. Sci. Eng., 2013,7(3):341. http://link.springer.com/10.1007/s11783-012-0472-1

doi: 10.1007/s11783-012-0472-1
[51]
Nevanperä T K, Ojala S, Laitinen T, Pitkäaho S, Saukko S, Keiski R L. Catalysts, 2019,9(7):603. https://www.mdpi.com/2073-4344/9/7/603

doi: 10.3390/catal9070603
[52]
Byun M Y, Kim J S, Park D W, Lee M S. J. Nanosci. Nanotechno., 2018,18(9):6283. http://www.ingentaconnect.com/content/10.1166/jnn.2018.15643

doi: 10.1166/jnn.2018.15643
[53]
Rascón F, Wischert R, Copéret C. Chem. Sci., 2011,2(8):1449. http://dx.doi.org/10.1039/c1sc00073j

doi: 10.1039/c1sc00073j
[54]
Sun L B, Yang J, Kou J H, Gu, F N, Chun Y, Wang Y, Zhu J, Zou Z G. Angew. Chem. Int. Edit., 2008,47(18):3418. http://doi.wiley.com/10.1002/%28ISSN%291521-3773

doi: 10.1002/(ISSN)1521-3773
[55]
Sun L B, Tian W H, Liu X Q. J. Phys. Chem. C, 2009,113(44):19172. https://pubs.acs.org/doi/10.1021/jp907224f

doi: 10.1021/jp907224f
[56]
Liu Y Y, Qin G H, Song X Y, Ding J W, Liu F S, Yu S T, Ge X. P. J. Taiwan Inst. Chem. Eng., 2018,86:222. https://linkinghub.elsevier.com/retrieve/pii/S1876107018301147

doi: 10.1016/j.jtice.2018.02.028
[57]
Zheng X, Fan W, Kong W, Wang Y, Qi C. Kinet. Catal., 2014,55(5):592. http://link.springer.com/10.1134/S002315841405005X

doi: 10.1134/S002315841405005X
[58]
Murugan C, Bajaj H C, Jasra R V. Catal. Lett., 2010,137(3/4):224. http://link.springer.com/10.1007/s10562-010-0348-6

doi: 10.1007/s10562-010-0348-6
[59]
Koo H M, Ahn C I, Lee D H, Roh H S, Shin C H, Kye H, Bae J W. Fuel, 2018,225:460. https://linkinghub.elsevier.com/retrieve/pii/S0016236118305933

doi: 10.1016/j.fuel.2018.03.175
[60]
Hu F, Zhang D, Wang F, Li R X, Zhang S Q, Wu X. Sci. Adv. Mater., 2016,8(6):1242. http://www.ingentaconnect.com/content/10.1166/sam.2016.2734

doi: 10.1166/sam.2016.2734
[61]
Miao Z C, Li Z B, Suo C, Zhao J P, Si W J, Zhou J, Zhuo S P. Adv. Powder Technol., 2018,29(12):3569. https://linkinghub.elsevier.com/retrieve/pii/S0921883118306307

doi: 10.1016/j.apt.2018.09.041
[62]
Wang H G, Yu F, Su J J, Shi G L, Pan D H, Li R F. Ceram. Int., 2017,43(9):7033. https://linkinghub.elsevier.com/retrieve/pii/S027288421730336X

doi: 10.1016/j.ceramint.2017.02.131
[63]
Gong L, Sun L B, Sun Y H, Li T T, Liu X Q. J. Phys. Chem. C, 2011,115(23):11633. https://pubs.acs.org/doi/10.1021/jp2021165

doi: 10.1021/jp2021165
[64]
Ding Y Q, Sun H, Duan J Z, Chen P, Lou H, Zheng X M. Catal. Commun., 2011,12(7):606. https://linkinghub.elsevier.com/retrieve/pii/S1566736710004048

doi: 10.1016/j.catcom.2010.12.019
[65]
Liu S G, Huang S Y, Guan L X, Li J P, Zhao N, Wei W, Sun Y H. Micropor. Mesopor. Mat., 2007,102(1):304. https://linkinghub.elsevier.com/retrieve/pii/S138718110700008X

doi: 10.1016/j.micromeso.2006.12.052
[66]
Tian X K, Xiao T, Yang C, Zhou Z X, Ke H Z. Mater. Chem. Phys., 2010,124(1):744. https://linkinghub.elsevier.com/retrieve/pii/S0254058410005973

doi: 10.1016/j.matchemphys.2010.07.050
[67]
Eom H J, Kim M S, Lee D W, Hong Y K, Jeong G, Lee K Y. Appl. Catal. A: Gen, 2015,493:149. https://linkinghub.elsevier.com/retrieve/pii/S0926860X15000034

doi: 10.1016/j.apcata.2014.12.052
[68]
Liu S G, Ma J, Guan L X, Li J P, Wei W, Sun Y H. Micropor. Mesopor. Mat., 2009,117(1):466. https://linkinghub.elsevier.com/retrieve/pii/S1387181108003624

doi: 10.1016/j.micromeso.2008.07.026
[69]
Zhang X L, Wang D F, Wu G D, Wang X L, Jiang X X, Liu S F, Zhou D G, Xu D M, Gao J. Appl. Catal. A: Gen, 2018,555:130. https://linkinghub.elsevier.com/retrieve/pii/S0926860X18300711

doi: 10.1016/j.apcata.2018.02.013
[70]
Liu S G, Zhang X L, Li J P, Zhao N, Wei W, Sun Y H. Catal. Commun., 2008,9(7):1527. https://linkinghub.elsevier.com/retrieve/pii/S1566736707005353

doi: 10.1016/j.catcom.2007.12.007
[71]
Mishra B G, Rao G R. J. Mol. Catal. A: Chem., 2006,243(2):204. https://linkinghub.elsevier.com/retrieve/pii/S1381116905005510

doi: 10.1016/j.molcata.2005.07.048
[72]
Wu Z, Mann A K P, Li M J, Overbury S H. J. Phys. Chem. C, 2015,119(13):7340. https://pubs.acs.org/doi/10.1021/acs.jpcc.5b00859

doi: 10.1021/acs.jpcc.5b00859
[73]
Xu J, Long K Z, Wu F, Xu B, Li Y X, Cao Y. Appl. Catal. A: Gen, 2014,484:1. https://linkinghub.elsevier.com/retrieve/pii/S0926860X14004281

doi: 10.1016/j.apcata.2014.07.009
[74]
Laha S C, Ryoo R. Chem. Commun., 2003(17):2138.
[75]
Qu Z P, Yu F L, Zhang X D, Wang Y, Gao J S. Chem. Eng. J., 2013,229:522. https://linkinghub.elsevier.com/retrieve/pii/S1385894713008346

doi: 10.1016/j.cej.2013.06.061
[76]
Ji P F, Zhang J L, Chen F, Anpo M. J. Phys. Chem. C, 2008,112(46):17809. https://pubs.acs.org/doi/10.1021/jp8054087

doi: 10.1021/jp8054087
[77]
Perkas N, Rotter H, Vradman L, Landau M V, Gedanken A. Langmuir, 2006,22(16):7072. https://pubs.acs.org/doi/10.1021/la0600907

doi: 10.1021/la0600907
[78]
Li T T, Sun L B, Gong L, Liu X Y, Liu X Q. J. Mol. Catal. A: Chem., 2012,352:38. https://linkinghub.elsevier.com/retrieve/pii/S1381116911003979

doi: 10.1016/j.molcata.2011.09.030
[79]
Ouyang J, Li X Y, Jin J, Yang H M, Tang A D. J. Alloy. Compd., 2014,606:236. https://linkinghub.elsevier.com/retrieve/pii/S0925838814008615

doi: 10.1016/j.jallcom.2014.04.048
[80]
Xu Y H, Li R X. RSC Adv., 2015,5(56):44828. http://xlink.rsc.org/?DOI=C5RA03274A

doi: 10.1039/C5RA03274A
[81]
Li G, Zhang C, Wang Z, Huang H, Peng H, Li X. Appl. Catal. A: Gen., 2018,550:67. https://linkinghub.elsevier.com/retrieve/pii/S0926860X17305240

doi: 10.1016/j.apcata.2017.11.003
[82]
Romo J E, Bollar N V, Zimmermann C J, Wettstein S G. ChemCatChem, 2018,10(21):4805. https://onlinelibrary.wiley.com/toc/18673899/10/21

doi: 10.1002/cctc.v10.21
[83]
Ikram M, Liu Y, Lv H, Liu L, Rehman A U, Kan K, Zhang W, He L, Wang Y, Wang R, Shi K. Appl Surf. Sci., 2019,466:1. https://linkinghub.elsevier.com/retrieve/pii/S0169433218327144

doi: 10.1016/j.apsusc.2018.10.018
[84]
Ma J, Ren Y, Zhou X, Liu L, Zhu Y, Cheng X, Xu P, Li X, Deng Y, Zhao D. Adv. Funct. Mater., 2018,28(6):1705268. https://onlinelibrary.wiley.com/toc/16163028/28/6

doi: 10.1002/adfm.v28.6
[85]
He G, Zhang J, Hu Y, Bai Z, Wei C. Appl. Catal. B: Environ., 2019,250:301. https://linkinghub.elsevier.com/retrieve/pii/S0926337319302437

doi: 10.1016/j.apcatb.2019.03.027
[86]
Soltani S, Rashid U, Roodbar T, Nehdi I A, Ibrahim M. Chem. Eng. Commun., 2019,206(1):33. https://www.tandfonline.com/doi/full/10.1080/00986445.2018.1471399

doi: 10.1080/00986445.2018.1471399
[87]
Bai B, Qiao Q, Li Y, Peng Y, Li J. Chinese J. Catal., 2018,39(4):630. https://linkinghub.elsevier.com/retrieve/pii/S1872206718630360

doi: 10.1016/S1872-2067(18)63036-0
[88]
Dutt M, Kaushik A, Tomar M, Gupta V, Singh V. J. Porous Mat., 2019,1.
[1] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[2] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[3] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[4] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[5] Zhao Xiaoxi, Wang Cong, Tian Yong, Wang Xiufang. Preparation of Mesoporous Carbon Materials via Emulsion Method [J]. Progress in Chemistry, 2022, 34(10): 2316-2328.
[6] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[7] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[8] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[9] Yue Yang, Jueyu Wang, Min Zhao, Daizong Cui. Virus-Templated Synthesis of Metal Nanomaterials and Their Application [J]. Progress in Chemistry, 2019, 31(7): 1007-1019.
[10] Jianxi Zhao, Panpan Gu, Hui Zeng, Shenglu Deng. Self-Assembly of Surfactants in Non-Polar Organic Solvents [J]. Progress in Chemistry, 2019, 31(5): 643-653.
[11] Qiwei Ying, Jianguo Liao, Minhang Wu, Zhihao Zhai, Xinru Liu. Research on Bioactive Glass Nanospheres as Delivery [J]. Progress in Chemistry, 2019, 31(5): 773-782.
[12] Sheng Feng, Fang Yang, Mengyao Liu, Hongxian Fan, Nian Xu. Carriers of Docetaxel: An Anticancer Drug [J]. Progress in Chemistry, 2019, 31(2/3): 368-380.
[13] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[14] Chang Liu, Feng Wu, Qianqian Su, Weiping Qian. Template Preparation and Application in Biological Detection of Porous Noble Metal Nanostructures [J]. Progress in Chemistry, 2019, 31(10): 1396-1405.
[15] Botian Li, Xing Wen, Liming Tang. Preparation of One-Dimensional Polymer-Inorganic Composite Nanomaterials [J]. Progress in Chemistry, 2018, 30(4): 338-348.