中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (4): 434-453 DOI: 10.7536/PC190633 Previous Articles   Next Articles

Switchable Pickering Emulsion System

Shiwei Tian, Guoliang Mao*(), Jiayu Zhang, Na Li, Mengyuan Jiang, Wei Wu   

  1. Provincial Key Laboratory of Oil and Gas Chemical Technology, School of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
  • Received: Revised: Online: Published:
  • Contact: Guoliang Mao
  • Supported by:
    the National Natural Science Foundation of China(51534004, U1362110)
Richhtml ( 69 ) PDF ( 1491 ) Cited
Export

EndNote

Ris

BibTeX

Pickering emulsion uses solid particles of colloidal size instead of traditional surfactants as stabilizer, which has the advantages like ultra-stability, biocompatibility, environmental friendliness and so on. Switchable Pickering emulsion is able to change the surface wettability of the solid emulsifier with changes of pH, CO2/N2 concentration, magnetic field, temperature or light intensity. The characteristics of fast conversion between “emulsification” and “demulsification” can meet the demand for transient stability of emulsion in heterogeneous catalysis, emulsion polymerization and so on, so it has a wide application prospect. This paper comprehensively summarizes the research and development of switchable Pickering emulsion in recent years and its application in interface catalytic system, treatment of organic wastewater by liquid membrane, encapsulation and release of drugs, etc.

Contents

1 Introduction

2 Preparation and stability of Pickering emulsion

2.1 Preparation of Pickering emulsion

2.2 Stability and influencing factors of Pickering emulsion

3 Switchable Pickering emulsion

3.1 pH trigger

3.2 CO2/N2 trigger

3.3 Magnetic trigger

3.4 Thermo trigger

3.5 Light trigger

4 Application of switchable Pickering emulsion

4.1 Catalytic system

4.2 Wastewater treatment

4.3 Encapsulation and release of drugs

4.4 Release and recovery nanoparticles of macroporous polymer

4.5 Biology

5 Conclusion and outlook

Table 1 Pickering emulsion stabilized by various types of particles
Entry Particles
(Types)
Particle (wettability) Modifiers/surfactants Emulsions ref
1 Inorganic Silica nanoparticles (hydrophilicity) Hydrophilicity: methyl poly(ethylene glycol)
and Hydrophobicity: organosilanes
O/W 53
2 Inorganic Silica nanoparticles (hydrophilicity) (MeO)3SiCH2CH2CH2(NHCH2CH2)2NH2 W/O 31
3 Inorganic Silica nanoparticles (hydrophilicity) Tween 80 (non-ionic) and Span 80 (non-ionic) O/W 55
4 Inorganic Silica submicronic particles (hydrophilicity) Didodecyldimethylammoniumbromide (cationic) W/O 56
5 Inorganic Silica nanoparticles (hydrophilicity) (3-aminopropyl)triethoxysilane (APTES) O/W 57
6 Inorganic Silica nanoparticles (hydrophilicity) APTES、Glutaraldehyde、Hemoglobin O/W 58
7 Inorganic Silica nanoparticles (hydrophilicity) Dichlorodimethylsilane W/O 59
8 Inorganic Titania nanoparticles (hydrophilicity)
Titaniananoparticles (hydrophobicity) and Super
(MeO)3SiCH3 (0.4 or 4 mmol/g) O/W or W/O 60
9 Inorganic paramagnetic iron oxide nanoparticles
(hydrophilicity)
TiO2:seven-carbon chain silane
Fe3O4:three-carbon chain silane
W/O 44
10 Inorganic Calcium carbonate nanoparticles
(hydrophilicity)
Sodium dodecyl sulfate (SDS) or
Sodium 2-ethylhexylsulfosuccinate (AOT)
O/W to W/O
to O/W
61
11 Inorganic Calcium carbonate nanoparticles
(hydrophilicity)
AOT (anionic) O/W to W/O 62
12 Inorganic Zinc oxide nanoparticles (hydrophilicity) N,N'-bis(dimethylalkyl)-α,ω-
alkanediammonium dibromide(cationic)
O/W 63
13 Inorganic Montmorillonite nanoparticles
(hydrophilicity)
bis(2-hydroxyethyl)oleylamine (oil soluble) O/W 64
14 Inorganic Kaolinite nanoparticles (hydrophilicity) SPAN-80 (non-ionic) O/W to W/O 33
15 Inorganic Palygorskite nanoparticles (hydrophilicity) Poly(2-(diethylamino)ethyl methacrylate (PDEAEMA) W/O to O/W 65
16 Inorganic Graphene oxide nanoparticles
(hydrophilicity)
Carboxyl be reversibly protonated (at different pH) O/W 66
17 Inorganic Carbon black nanoparticles (hydrophilicity) para-amino benzoic acid (added acid or salt) O/W 67
18 Organic Polystyrene latex nanoparticles (hydrophilicity) [PDMA-PMMA] diblock copolymer O/W 68
19 Organic Polystyrene(PS)microparticles
PS:hydrophobicity; PS:hydrophilicity;
A-PS:hydrophilicity
PS): (—COOH)、(—NH2)、(—SO3H)
PS): (—COOH)
A-PS):polystyrene
O/W 69
20 Organic Starch nanocrystals (hydrophilicity) Sodium azide O/W 70
21 Organic Starch-based nanoparticles (hydrophilicity) PDMAEMA O/W 71
22 Organic Polylactic acid nanoparticles (hydrophilicity) Cashew tree gum O/W 72
23 Organic Calcium alginate nanoparticles (hydrophilicity) Ionic gelation between Ca2+ and —COO- O/W 73
24 Organic Nanofibers from bacterial cellulose
(hydrophilicity)
O/W 74
25 Organic Lignin microparticles (hydrophilicity) O/W 75
26 Organic Soy protein-jackfruitfilum pectin nanoparticles
(amphiphilicity)
O/W 76
Fig. 1 Schematic diagram of the stability mechanism of Pickering emulsion
Fig. 2 Schematic diagram of the three-dimensional network structure of Pickering emulsion continuous phase[77]
Fig. 3 Schematic diagram of three-phase contact angle θ
Fig. 4 Preparation of PZS microspheres[82]
Fig. 5 Dehydro-phobicization of carboxylated betaine mole-cules and silica particles in alkaline media(a) and in situ hydrophobization in acidic aqueous media (b)[32]. Copyrihgt 2017, American Chemical Society.
Fig. 6 The synthesis route of PDMA-b-PAPBA diblock copolymer[43]
Table 2 Non-covalently modified CO2/N2 switchable Pickering emulsion emulsifier
Fig. 7 The CO2/N2 responsiveness of DMDEA[21]
Fig. 8 The CO2/N2 and light dual stimuli responses of AZO-B4[14]
Fig. 9 Schematic illustration of CO2/N2 and redox dual responsive Pickering emulsion prepared by the modified silica with SeTA[36]. Copyrihgt 2017, American Chemical Society
Fig. 10 Non-ionized and ionized forms of C14PAO[24]
Fig. 11 The demulsification/re-stabilization cycles of n-decane-in-water emulsion[101]. Copyrihgt 2019, American Chemical Society
Fig. 12 Preparation of functionalizing CO2-responsive particles[102]
Table 3 Magentic switchable Pickering emulsion systems
Fig. 13 Thermo-switchable Pickering emulsion prepared by silica in combination with $C_{12}E_{n}^{121}$. Copyrihgt 2017, American Chemical Society
Fig. 14 Schematic illustration of light and magnetic dual-responsive W/O Pickering emulsion micro-reactor system[44].(a)Two droplets approach each other under the action of static magnetic field,(b)coalescence and chemical reaction following UV irradiation. Copyrihgt 2017, American Chemical Society
Fig. 15 In situ organic reactions in Pickering emulsion microreactors[132]
Fig. 16 Schematic illustration of the pH-switchable Pickering emulsion catalytic strategy[31]. Copyrihgt 2015, Royal Society of Chemistry
Fig. 17 Schematic illustration of the reaction in the Pickering emulsion system based on nanoscale magnetic stirring bars[134]. Copyrihgt 2018, Royal Society of Chemistry
Fig. 18 Schematic illustration of the Pickering emulsion liquid membrane system[137]
Fig. 19 The mechanism of mass transfer interface of Pickering emulsion liquid membrane[137]
Fig. 20 Mechanism of organic pollutants in wastewater extracted by IL/W Pickering emulsion[30]
Fig. 21 The strategy for encapsulation and release of the light-responsive Pickering emulsion[138]. Copyright 2013, American Chemical Society
[1]
郭爽(Guo S), 陈志强(Chen Z Q), 任笑菲(Ren X F), 张永民(Zhang Y M), 刘雪锋(Zhang X F) 化学进展(Progress in Chemistry), 2017,29(7):695.
[2]
Wang F, Tang J T, Liu H, Yu G P , Zou Y P. Mater. Chem. Front., 2019,3(3):356. http://xlink.rsc.org/?DOI=C8QM00540K

doi: 10.1039/C8QM00540K
[3]
Tang J T, Quinlan P J, Tam K C . Soft Matter, 2015,11(18):3512.
[4]
Binks B P. Curr. Opin. Colloid Interface Sci., 2002,7(1):21.
[5]
Xue N, Zhang G H, Zhang X M, Yang H Q. Chem. Commun , 2018,54(92):13014.
[6]
Zhou X, Li W P, Zhu L Q, Ye H , Liu H C. RSC Adv., 2019,9(4):1782.
[7]
Shen X T, Bonde J S, Kamra T, Bülow L, Leo J C, Linke D, Ye L. . Angew. Chem, 2014,53(40):10687. http://doi.wiley.com/10.1002/anie.201406049

doi: 10.1002/anie.201406049
[8]
Jiménez-Saelices C, Seantier B, Grohens Y, Capron I. ACS Appl. Mater. Interfaces, 2018,10(18):16193. https://pubs.acs.org/doi/10.1021/acsami.8b02418

doi: 10.1021/acsami.8b02418
[9]
Xia Y F, Wu J, Wei W, Du Y Q, Wan T, Ma X W, An W Q, Guo A Y, Miao C Y, Yue H, Li S G, Cao X T, Su Z J , Ma G H. Nat. Mater., 2018,17:187. http://www.nature.com/articles/nmat5057

doi: 10.1038/nmat5057
[10]
Wiese S, Spiess A C , Richtering W. Angew. Chem. Int. Edit., 2013,52(2):576. e30966b2-1a4c-4558-9143-0605f1586cefhttp://dx.doi.org/10.1002/anie.201206931

doi: 10.1002/anie.201206931
[11]
Liu Y X, Jessop P G, Cunningham M, Eckert C A, Liotta C L . Science, 2006,313(5789):958. https://www.sciencemag.org/lookup/doi/10.1126/science.1128142

doi: 10.1126/science.1128142
[12]
Brunier B, Shebat-Othman N, Chevalier Y, Bourgeat-Lami E . Aiche J, 2018,64(7):2612. http://doi.wiley.com/10.1002/aic.v64.7

doi: 10.1002/aic.v64.7
[13]
Geng J M, Pu J Y, Wang L Z, Bai B J . Fuel, 2018,223:140. https://linkinghub.elsevier.com/retrieve/pii/S0016236118304526

doi: 10.1016/j.fuel.2018.03.046
[14]
Jiang J Z, Ma Y X, Cui Z G, Binks B P . Langmuir, 2016,32(34):8668. https://pubs.acs.org/doi/10.1021/acs.langmuir.6b01475

doi: 10.1021/acs.langmuir.6b01475
[15]
Thompson K L, Fielding L A, Mykhaylyk O O, Lane J A, Derry M J , Armes S P. Chem. Sci., 2015,6(7):4207.
[16]
刘凯鸿(Liu K H), 林琪(Lin Q), 崔正刚(Cui Z G), 裴晓梅(Pei X M), 蒋建中(Jiang J Z) 高等学校化学学报(Chemical Research in Chinese Universities), 2017,38(1):85.
[17]
Zoppe J O, Venditti R A, Rojas O J . J Colloid Interf. Sci., 2012,369(1):202. https://linkinghub.elsevier.com/retrieve/pii/S0021979711015001

doi: 10.1016/j.jcis.2011.12.011
[18]
Sharma T, Kumar G S , Sangwai J S. Ind. Eng. Chem. Res., 2015,54(5):1576.
[19]
Chen Z W, Zhou L, Bing W, Zhang Z J, Li Z H, Ren J S, Qu S G .J Am. Chem. Soc., 2014,136(20):7498. bc619035-cbb4-4bff-9fdf-2b6437dbc82ehttp://dx.doi.org/10.1021/ja503123m

doi: 10.1021/ja503123m
[20]
Anwar N, Willms T, Grimme B , Kuehne A J C ACS Macro Lett., 2013,2(9):766. https://pubs.acs.org/doi/10.1021/mz400362g

doi: 10.1021/mz400362g
[21]
Jiang J Z, Zhu Y, Cui Z G , Binks B P. Angew. Chem. Int. Edit., 2013,52(47):12373.
[22]
Zhang Y M, Guo S, Wu W T, Qin Z R, Liu X F . Langmuir, 2016,32(45):11861. https://pubs.acs.org/doi/10.1021/acs.langmuir.6b03034

doi: 10.1021/acs.langmuir.6b03034
[23]
Xu M D, Zhang W Q, Pei X M, Jiang J Z, Cui Z G , Binks B P. RSC Adv., 2017,7(47):29742. http://xlink.rsc.org/?DOI=C7RA03722H

doi: 10.1039/C7RA03722H
[24]
Zhang Y M, Ren X F, Guo S, Liu X F , Fang Y. ACS Sustainable Chem. Eng., 2018,6(2):2641. https://pubs.acs.org/doi/10.1021/acssuschemeng.7b04162

doi: 10.1021/acssuschemeng.7b04162
[25]
孔伟伟(Kong W W), 郭爽(Guo S), 张永民(Zhang Y M), 刘雪锋(Liu X F) 物理化学学报(Acta Physico-Chimica Sinica), 2017,33(6):1205.
[26]
Quesada M, Muniesa C, Botella P . Chem.Mater, 2013,25(13):2597.
[27]
Yuan J, Deng A, Yang D G, Li H M, Chen J, Gao Y . Polymer, 2018,158:1. https://linkinghub.elsevier.com/retrieve/pii/S0032386118309704

doi: 10.1016/j.polymer.2018.10.043
[28]
Zhou J, Qiao X Y, Binks B P, Sun K, Bai M W, Li Y L, Liu Y . Langmuir, 2011,27(7):3308. https://pubs.acs.org/doi/10.1021/la1036844

doi: 10.1021/la1036844
[29]
Peng J X, Liu Q X, Xu Z H , Masliyah J. Adv. Funct. Mater., 2012,22(8):1732.
[30]
Yang H R, Zhang H X, Peng J X, Zhang Y Y, Du G Q, Fang Y .J Colloid Interface Sci., 2017,485:213. https://linkinghub.elsevier.com/retrieve/pii/S0021979716306786

doi: 10.1016/j.jcis.2016.09.023
[31]
Huang J P , Yang H Q. Chem. Commun., 2015,51(34):7333. http://xlink.rsc.org/?DOI=C5CC01211B

doi: 10.1039/C5CC01211B
[32]
Liu K H, Jiang J Z, Cui Z G, Binks B P . Langmuir, 2017,33(9):2296. https://pubs.acs.org/doi/10.1021/acs.langmuir.6b04459

doi: 10.1021/acs.langmuir.6b04459
[33]
Nallamilli T , Basavaraj M G. Appl. Clay Sci., 2017,148:68. https://linkinghub.elsevier.com/retrieve/pii/S0169131717303423

doi: 10.1016/j.clay.2017.07.038
[34]
Nguyen B T, Wang W K, Saunders B R, Benyahia L, Nicolai T . Langmuir, 2015,31(12):3605. https://pubs.acs.org/doi/10.1021/la5049024

doi: 10.1021/la5049024
[35]
Tu F Q, Lee D .J Am. Chem. Soc., 2014,136(28):9999. c35ce08e-d0d4-4caa-8b93-61a8a955125fhttp://dx.doi.org/10.1021/ja503189r

doi: 10.1021/ja503189r
[36]
Zhang Y M, Guo S, Ren X F, Liu X F, Fang Y . Langmuir, 2017,33(45):12973. https://pubs.acs.org/doi/10.1021/acs.langmuir.7b02976

doi: 10.1021/acs.langmuir.7b02976
[37]
Chen Q J, Xu Y Y, Cao X T, Qin L J , An Z S. Polym. Chem., 2014,5(1):175.
[38]
Chen Y, Bai Y K, Chen S B, Ju J P, Li Y Q, Wang T M , Wang Q H. ACS Appl. Mater Interfaces, 2014,6(16):13334. https://pubs.acs.org/doi/10.1021/am504124a

doi: 10.1021/am504124a
[39]
Fameau A L, Lam S , Velev O D. Chem. Sci., 2013,4(10):3874. 6c6ddba6-a075-4229-b228-b9b46bef733fhttp://dx.doi.org/10.1039/c3sc51774h

doi: 10.1039/c3sc51774h
[40]
Tang J T , Lee M F X, Zhang W, Zhao B X, Berry R M, Tam K C Biomacromolecules, 2014,15(8), 3052. d73e17f6-66ef-47fd-91ef-66e229e5dba3http://dx.doi.org/10.1021/bm500663w

doi: 10.1021/bm500663w
[41]
Yang H L, Liang F X, Wang X, Chen Y, Zhang C L, Wang Q, Qu X Z, Li J L, Wu D C, Yang Z Z . Macromolecules, 2015,46(7):2754. https://pubs.acs.org/doi/10.1021/ma400261y

doi: 10.1021/ma400261y
[42]
Wang X F, Shi Y, Graff R W, Lee D Y, Gao H F . Polymer, 2015,72, 361. https://linkinghub.elsevier.com/retrieve/pii/S0032386114011562

doi: 10.1016/j.polymer.2014.12.056
[43]
Guo H Z, Yang D G, Yang M, Gao Y, Liu Y J, Li H M . Soft Matter, 2016,12(48):9683. http://xlink.rsc.org/?DOI=C6SM02336C

doi: 10.1039/C6SM02336C
[44]
Xie C Y, Meng S X, Xue L H, Bai R X, Yang X, Wang Y L, Qiu Z P, Binks B P, Guo T, Meng T . Langmuir, 2017,33(49):14139. https://pubs.acs.org/doi/10.1021/acs.langmuir.7b03642

doi: 10.1021/acs.langmuir.7b03642
[45]
Guo S, Zhang Y M . Colloids and Surfaces A: Physicochem. Eng. Aspects, 2019,562:119. https://linkinghub.elsevier.com/retrieve/pii/S0927775718316911

doi: 10.1016/j.colsurfa.2018.11.012
[46]
Jiang Q Y, Sun N, Li Q H, Si W M, Li J, Li A X, Gao Z L, Wang W W, Wang J R . Langmuir, 2019,35:5848. https://pubs.acs.org/doi/10.1021/acs.langmuir.9b00250

doi: 10.1021/acs.langmuir.9b00250
[47]
杨飞(Yang F), 王君(Wang J), 蓝强(Lan Q), 孙德军(Sun D J), 李传宪(Li C X). 化学进展(Progress in Chemistry), 2009,21(708):1418. 0e2a4cd0-1546-4e63-8471-b68556ea19a0http://www.progchem.ac.cn//CN/abstract/abstract10072.shtml
[48]
Melle S, Lask M, Fuller G G . Langmuir, 2005,21(6):2158. https://pubs.acs.org/doi/10.1021/la047691n

doi: 10.1021/la047691n
[49]
Thickett S C, Teo G H. Polym. Chem , 2019,10(23):2906. http://xlink.rsc.org/?DOI=C9PY00097F

doi: 10.1039/C9PY00097F
[50]
Ding Y, Xu H, Wu H H, He M Y, Wu P . Chem. Commun, 2018,54(57):7932. http://xlink.rsc.org/?DOI=C8CC03267J

doi: 10.1039/C8CC03267J
[51]
Binks B P, Olusanya S O . Langmuir, 2018,34(17):5040. https://pubs.acs.org/doi/10.1021/acs.langmuir.8b00715

doi: 10.1021/acs.langmuir.8b00715
[52]
Binks B P. Phys. Chem. Chem. Phys., 2007,9(48):6298. http://xlink.rsc.org/?DOI=b716587k

doi: 10.1039/b716587k
[53]
Björkegren S, Nordstierna L, Törncrona A, Palmqvist A .J Colloid Interface Sci., 2017,487:250. https://linkinghub.elsevier.com/retrieve/pii/S002197971630786X

doi: 10.1016/j.jcis.2016.10.031
[54]
Wei W, Wang T, Luo J, Zhu Y, Gu Y, Liu X Y . Colloids and Surfaces A: Physicochem. Eng Aspects, 2015,487:58. https://linkinghub.elsevier.com/retrieve/pii/S0927775715302508

doi: 10.1016/j.colsurfa.2015.09.060
[55]
Jiang J, Cao J Z, Wang W, Shen H Y . Holzforschung, 2018,72(6):489. http://www.degruyter.com/view/j/hfsg.2018.72.issue-6/hf-2017-0154/hf-2017-0154.xml

doi: 10.1515/hf-2017-0154
[56]
Lebdioua K, Aimable A, Cerbelaud M, Videcoq A, Peyratout C .J Colloid Interface Sci., 2018,520:127. https://linkinghub.elsevier.com/retrieve/pii/S0021979718302613

doi: 10.1016/j.jcis.2018.03.019
[57]
Yaakov N, Mani K A, Felfbaum R, Lahat M, Costa N D, Belausov E, Ment D, Mechrez G . ACS Omega, 2018,3(10):14294. https://pubs.acs.org/doi/10.1021/acsomega.8b02225

doi: 10.1021/acsomega.8b02225
[58]
Pan Y C, Qiu W, Li Q, Zhu S H, Lin C X, Zeng W B, Xiong X Q, Liu X Y, Lin Y H . Chemcatchem, 2019,11(7):1878. https://onlinelibrary.wiley.com/toc/18673899/11/7

doi: 10.1002/cctc.v11.7
[59]
Meng Z X, Zhang M , Yang H Q. Green Chem., 2019,21(3):627. http://xlink.rsc.org/?DOI=C8GC03585G

doi: 10.1039/C8GC03585G
[60]
Zhang Y B, Zhang M, Yang H Q . ChemCatChem, 2018,10(22):5224. http://doi.wiley.com/10.1002/cctc.v10.22

doi: 10.1002/cctc.v10.22
[61]
Cui Z G, Cui C F, Zhu Y, Binks B P . Langmuir, 2012,28(1):314. https://pubs.acs.org/doi/10.1021/la204021v

doi: 10.1021/la204021v
[62]
Cui Z G, Cui Y Z, Cui C F, Chen Z, Binks B P . Langmuir, 2010,26(15):12567. https://pubs.acs.org/doi/10.1021/la1016559

doi: 10.1021/la1016559
[63]
Moghadam T F, Azizian S, Wettig S .J Colloid Interface Sci., 2017,486:204. https://linkinghub.elsevier.com/retrieve/pii/S0021979716307329

doi: 10.1016/j.jcis.2016.09.069
[64]
Dong J N, Worthen A J, Foster L M, Chen Y S, Cornell K A, Bryant S L, Truskett T M, Bielawski C W , Johnston K P. ACS Appl.Mater. Interfaces, 2014,6(14):11502.
[65]
Lu J, Zhou W, Chen J, Jin Y L, Walters K B, Ding S J . RSC Adv, 2015,5(13):9416. http://xlink.rsc.org/?DOI=C4RA14109A

doi: 10.1039/C4RA14109A
[66]
Kim J, Cote L J, Kim F, Yuan W, Shull K R, Huang J X .J Am. Chem. Soc., 2010,132(23):8180. https://pubs.acs.org/doi/10.1021/ja102777p

doi: 10.1021/ja102777p
[67]
Saha A, Nikova A, Venkataraman P, John V T, Bose A . ACS Appl. Mater. Interfaces, 2013,5(8):3094. https://pubs.acs.org/doi/10.1021/am3032844

doi: 10.1021/am3032844
[68]
Amalvy J I, Armes S P, Binks B P, Rodrigues J A , Unali G F. Chem. Commun., 2003,9(15):1826.
[69]
Dai L L, Tarimala S, Wu C Y, Guttula S, Wu J . Scanning, 2010,30(2):87. http://doi.wiley.com/10.1002/%28ISSN%290161-0457

doi: 10.1002/(ISSN)0161-0457
[70]
Li C, Sun P D, Yang C . Starch-Starke, 2012,64(6):497. http://doi.wiley.com/10.1002/star.v64.6

doi: 10.1002/star.v64.6
[71]
Qi L, Luo Z G , Lu X X. Green Chem., 2018,20(7):1538. http://xlink.rsc.org/?DOI=C8GC00143J

doi: 10.1039/C8GC00143J
[72]
Richter A R , Feitosa J P A, Paula H C B, Goycoolea F M, Paula R C M D Colloid Surface B, 2018,164:201. https://linkinghub.elsevier.com/retrieve/pii/S0927776518300237

doi: 10.1016/j.colsurfb.2018.01.023
[73]
Zhang W J, Sun X, Fan X L, Li M, He G H. J Dispersion Sci. Technol., 2017,39(3):367. https://www.tandfonline.com/doi/full/10.1080/01932691.2017.1320223

doi: 10.1080/01932691.2017.1320223
[74]
Zhai X C, Lin D H, Liu D J , Yang X B. Food Res. Int., 2017,103:12. https://linkinghub.elsevier.com/retrieve/pii/S0963996917307111

doi: 10.1016/j.foodres.2017.10.030
[75]
Pang Y X, Li X, Wang S W, Qiu X Q, Yang D J , Lou H M. React. Funct. Polym., 2018,123:115. https://linkinghub.elsevier.com/retrieve/pii/S1381514817303103

doi: 10.1016/j.reactfunctpolym.2017.12.018
[76]
Jin B, Zhou X S, Guan J M, Yan S L, Xu J Y, Chen J W .J Dispersion Sci. Technol., 2019,40(6):909. https://www.tandfonline.com/doi/full/10.1080/01932691.2018.1489277

doi: 10.1080/01932691.2018.1489277
[77]
Lagaly G, Reese M , Abend S. Appl. Clay Sci., 1999,14(1/3):83.
[78]
谭伟强(Tan W Q), 臧渡洋(Zang D Y), 李云飞(Li Y F), 张永建(Zhang Y J), 陆晨君(Lu C J), 栗志广(Jia Z G) 高等学校化学学报(Chemical Research in Chinese Universities), 2014,35(1):85. 30338b14-38ff-4c62-935b-be51095fbe93http://www.cjcu.jlu.edu.cn/CN/abstract/abstract24992.shtml

doi: 10.7503/cjcu20130905
[79]
Kaptay G. and Colloids Surfaces A: Physicochem. Eng. Aspects, 2006,282/283:387. https://linkinghub.elsevier.com/retrieve/pii/S0927775705009775

doi: 10.1016/j.colsurfa.2005.12.021
[80]
Zhang Q, Bai R X, Guo T, Meng T . ACS Appl Mater Interfaces, 2015,7(33):18240. https://pubs.acs.org/doi/10.1021/acsami.5b06808

doi: 10.1021/acsami.5b06808
[81]
Yang F, Niu Q, Lan Q, Sun D J .J Colloid Interface Sci., 2007,306(2):285. https://linkinghub.elsevier.com/retrieve/pii/S002197970600957X

doi: 10.1016/j.jcis.2006.10.062
[82]
Zhang X Y, Ren S M, Han T W, Hua M Q, He S F . Colloids and Surfaces A: Physicochem. Eng Aspects, 2018,542:42. https://linkinghub.elsevier.com/retrieve/pii/S0927775718300402

doi: 10.1016/j.colsurfa.2018.01.034
[83]
Briggs T R. Ind. Eng. Chem., 2002,13(11):1008.
[84]
林兆云(Lin Z Y). 华南理工大学博士论文(Doctoral Dissertation of South China University of Technology), 2016.
[85]
易成林(Yi CL), 杨轶群(Yang Y Q), 江金强(Jiang J Q), 刘晓亚(Liu X Y), 江明(Jiang M) 化学进展(Progress in Chemistry), 2011,23(1):65.
[86]
Dai S, Ravi P, Tam K C . Soft Matter, 2008,4(3):435.
[87]
Fujii S, Cai Y L , Weaver J V M, Armes S P. . J. Am. Chem. Soc., 2005,127(20):7304.
[88]
Binks B P , Lumsdon S O. Phys. Chem. Chem. Phys., 2000,2(2):2959.
[89]
Dyab A K F . Colloids and Surfaces A: Physicochem. Eng. Aspects, 2012,402(1):2.
[90]
Shahid S, Rajesh S, Basavaraj M G . Langmuir, 2018,34(17):5060.
[91]
Qin S Y, Yong X . Soft Matter, 2019,15(16):3291.
[92]
Raju R R, Liebig F, Klemke B, Koetz J . Colloid Polym. Sci., 2018,296(6):1039.
[93]
Zhang Y M, An P Y, Liu X F, Fang Y , Hu X Y. Colloid Polym. Sci., 2015,293(2):357. http://link.springer.com/10.1007/s00396-014-3421-7

doi: 10.1007/s00396-014-3421-7
[94]
Su X, Jessop P G, Cunningham M F . Macromolecules, 2012,45(2):666.
[95]
Zhang Y M, Feng Y J .J Colloid Interface Sci., 2015,447:173.
[96]
Guo Z R, Feng Y J, He S, Qu M Z, Chen H L, Liu H B, Wu Y F, Wang Y . Adv. Mater, 2013,25(4):584.
[97]
Jessop P G, Heldebrant D J, Li X W, Eckert C A, Liotta C L . Nature, 2005,436(7054):1102.
[98]
Wang S, Liu D F, Zhao J H, Li X J, Xu D X, Gu Y, Lu H S . J. CO2 Util., 2018,26:239.
[99]
Zhang Y M, Feng Y J, Wang Y J, Li X L . Langmuir, 2013,29(13):4187. https://pubs.acs.org/doi/10.1021/la400051a

doi: 10.1021/la400051a
[100]
Shi Y L, Xiong D Z, Chen Y K, Wang H Y, Wang J J .J Mol. Liq., 2019,274:239.
[101]
Xu M D, Xu L F, Lin Q, Pei X M, Jiang J Z, Zhu H Y, Cui Z G, Binks B P . Langmuir, 2019,35(11):4058. https://pubs.acs.org/doi/10.1021/acs.langmuir.8b04159

doi: 10.1021/acs.langmuir.8b04159
[102]
Liang C, Liu Q X , Xu Z H. ACS Appl. Mater. Interfaces, 2014,6(9):6898. https://pubs.acs.org/doi/10.1021/am5007113

doi: 10.1021/am5007113
[103]
Qian Y, Zhang Q, Qiu X Q , Zhu S P. Green Chem., 2014,16(12):4963. 6674eb99-c7cb-4349-a0af-95c25e25520ehttp://dx.doi.org/10.1039/c4gc01242a

doi: 10.1039/c4gc01242a
[104]
Zhou J, Wang L J, Qiao X Y, Binks B P, Sun K .J Colloid Interface Sci., 2012,367(1):213. https://linkinghub.elsevier.com/retrieve/pii/S0021979711013725

doi: 10.1016/j.jcis.2011.11.001
[105]
Qiao X Y, Zhou J, Binks B P, Gong X L, Sun K . Colloids and Surfaces A: Physicochem. Eng Aspects, 2012,412(20):20.
[106]
Kraft D J, Luigjes B , Folter J W J D, Philipse A P, Kegel W K.. Phys. Chem. B, 2010,114(38):12257. https://pubs.acs.org/doi/10.1021/jp104662g

doi: 10.1021/jp104662g
[107]
Ingram D R, Kotsmar C, Yoon K Y, Shao S, Huh C, Bryant S L, Milner T E, Johnston K P .J Colloid Interface Sci., 2010,351(1):225.
[108]
Lan Q, Liu C, Yang F, Liu S Y, Xu J, Sun D J .J Colloid Interface Sci., 2007,310(1):260. https://linkinghub.elsevier.com/retrieve/pii/S0021979707000653

doi: 10.1016/j.jcis.2007.01.081
[109]
Lin Z Y, Yu D H , Li Y M. Colloid Polym. Sci., 2015,293(1):125.
[110]
Al-Sahhaf T A, Fahim M A, Elsharkawy A M . J Dispersion Sci. Technol., 2009,30(5):597.
[111]
Low L E, Tey B T, Ong B H, Tang S Y . Polymer, 2018,141:93. https://linkinghub.elsevier.com/retrieve/pii/S003238611830199X

doi: 10.1016/j.polymer.2018.03.001
[112]
Nypelö T, Rodriguez-Abreu C, Kolen’ko Y V, Rivas J , Rojas O J. ACS Appl. Mater. Interfaces, 2014,6(19):16851.
[113]
Liang J L, Li H P, Yan J E, Hou W G . Energy Fuels, 2015,28(9):6172.
[114]
Low L E, Tey B T, Ong B H, Chan E S , Tang S Y. Carbohydr. Polym., 2017,155:391. https://linkinghub.elsevier.com/retrieve/pii/S0144861716310451

doi: 10.1016/j.carbpol.2016.08.091
[115]
Kim Y J, Liu Y D, Seo Y, Choi H J . Langmuir, 2013,29(16):4959. https://pubs.acs.org/doi/10.1021/la400523w

doi: 10.1021/la400523w
[116]
Han S, Choi J, Seo Y P, Park I J, Choi H J, Seo Y . Langmuir, 2018,34(8):2807.
[117]
Tsuji1 S, Kawaguchi1 H . Langmuir, 2008,24(7):3300. https://pubs.acs.org/doi/10.1021/la701780g

doi: 10.1021/la701780g
[118]
Kwok M H, Ngai T .J Taiwan Inst. Chem. Eng., 2018,92:97. https://linkinghub.elsevier.com/retrieve/pii/S1876107018300622

doi: 10.1016/j.jtice.2018.01.041
[119]
Monteux C, Marlière C, Paris P, Pantoustier N, Sanson N, Perrin P . Langmuir, 2010,26(17):13839. https://pubs.acs.org/doi/10.1021/la1019982

doi: 10.1021/la1019982
[120]
Saigal T, Dong H C, Matyjaszewski K, Tilton R D . Langmuir, 2010,26(19):15200.
[121]
Zhu Y, Fu T, Liu K H, Lin Q, Pei X M, Jiang J Z, Cui Z G, Binks B P . Langmuir, 2017,33(23):5724. https://pubs.acs.org/doi/10.1021/acs.langmuir.7b00273

doi: 10.1021/acs.langmuir.7b00273
[122]
Sun J, Wang W, He F, Chen Z H, Xie R, Ju X J, Liu Z , Chu L Y. RSC Adv., 2016,6(69):64182.
[123]
Pei X P, Zhai K K, Wang C, Deng Y K, Tan Y, Zhang B C, Bai Y G, Xu K, Wang P X . Langmuir, 2019,35(22):7222.
[124]
Cao Y Y, Wang Z, Zhang S M , Wang Y P. Mater. Chem. Front., 2017,1(10):2136.
[125]
Guo S Y, Jiang Y N, Wu F, Yu P, Liu H B, Li Y L , Mao L Q. ACS Appl. Mater. Interfaces, 2018,11(3):2684.
[126]
Li X H, Zheng W L, Pan H Y, Yu Y, Chen L, Wu P .J Catal., 2013,300(4):9.
[127]
Cole-Hamilton D J . Science, 2003,299(5613):1702.
[128]
Cole-Hamilton D J . Science, 2010,327(5961):41. https://www.sciencemag.org/lookup/doi/10.1126/science.1184556

doi: 10.1126/science.1184556
[129]
Crossley S, Faria J, Shen M, Resasco D E . Science, 2010,327(5961):68. https://www.sciencemag.org/lookup/doi/10.1126/science.1180769

doi: 10.1126/science.1180769
[130]
Zhang W J, Fu L M, Yang H Q . Chemsuschem, 2014,7(2):391. http://doi.wiley.com/10.1002/cssc.201301001

doi: 10.1002/cssc.201301001
[131]
Yang X, Wang Y L, Bai R X, Ma H L, Wang W H, Sun H J, Dong Y M, Qu F M, Tang Q M, Guo T, Binks B P, Meng T . Green Chem, 2019,21(9):2229.
[132]
Cho J, Cho J, Kim H, Lim M, Jo H, Kim H C, Min S J, Rhee H , Jim J W. Green Chem., 2018,20(12):2840.
[133]
Hao Y J, Liu Y F, Yang R, Zhang X M, Liu J , Yang H Q. Chin. Chem. Lett., 2018,29(6):778.
[134]
Zhou X, Chen C Y, Cao C Y, Song T, Yang H Q , Song W G. Chem. Sci., 2018,9(9):2575. http://xlink.rsc.org/?DOI=C7SC05164F

doi: 10.1039/C7SC05164F
[135]
Tang J, Zhou X, Cao S X, Zhu L Y, Xi L L , Wang J L. ACS Appl. Mater. Interfaces, 2019,11(17):16156.
[136]
Li N N . Ind. Eng. Chem. Process Des. Develop., 1971,10(2):215.
[137]
Lin Z Y, Zhang Z, Li Y M , Deng Y L. Chem. Eng. J., 2016,288:305.
[138]
Bai R X, Xue L H, Dou R K, Meng S X, Xie C Y, Zhang Q, Guo T, Meng T . Langmuir, 2016,32(36):9254.
[139]
Shi Y L, Xiong D Z, Li Z Y, Wang H Y, Pei Y C, Chen Y K , Wang J J. ACS Sustainable Chem. Eng., 2018,6(11):15383.
[140]
Hua Y, Zhang S M, Chen J D, Zhu Y . J. Mater. Chem. A, 2013,1(44):13970.
[141]
谢春燕(Xie C Y). 西南交通大学研究生论文(Postgraduate Dissertation of Southwest Jiaotong University), 2016.
[142]
Rodríguez-Arco L, Li M, Mann S. . Nat. Mater., 2017,16:857.
No related articles found!
Viewed
Full text


Abstract

Switchable Pickering Emulsion System